A Port-Hamiltonian Formulation of a Wireless Communication System
Authors
Viswanath Talasila, Ramkrishna Pasumarthy
Abstract
In this chapter we model the traffic dynamics in a wireless communication system (characterized by a set of routers exchanging data with each other) in the port-Hamiltonian framework. Communication systems are characterized by elements which produce significant time delays (by design) in their response, unlike (say) an idealized circuit or mechanical element. Furthermore, the communication between two routers (compositionality) involves losses due to the characteristics of radio signal propagation. In this paper we study the type of Dirac structure used to model a communication element (a router), we analyze the stability properties of a router and finally we study the compositionality properties that evolve under lossy interconnections.
Keywords
Traffic Flow; Buffer Size; Congestion Control; Transmitted Packet; Wireless Communication System
Citation
- ISBN: 9783319209876
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-319-20988-3_1
BibTeX
@inbook{Talasila_2015,
title={{A Port-Hamiltonian Formulation of a Wireless Communication System}},
ISBN={9783319209883},
ISSN={1610-7411},
DOI={10.1007/978-3-319-20988-3_1},
booktitle={{Mathematical Control Theory I}},
publisher={Springer International Publishing},
author={Talasila, Viswanath and Pasumarthy, Ramkrishna},
year={2015},
pages={1--19}
}
References
- Adas, A. Traffic models in broadband networks. IEEE Communications Magazine vol. 35 82–89 (1997) – 10.1109/35.601746
- Ali, H. M., Busson, A. & Vèque, V. Channel assignment algorithms. Proceedings of the 4th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks 120–127 (2009) doi:10.1145/1641913.1641931 – 10.1145/1641913.1641931
- Appenzeller, G., Keslassy, I. & McKeown, N. Sizing router buffers. Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications 281–292 (2004) doi:10.1145/1015467.1015499 – 10.1145/1015467.1015499
- Azgin, A., Altunbasak, Y. & AlRegib, G. Cooperative MAC and routing protocols for wireless ad hoc networks. GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005. 6 pp. – 2859 (2005) doi:10.1109/glocom.2005.1578280 – 10.1109/glocom.2005.1578280
- M. Becchi, From Poisson Processes to Self Similarity: A Survey of Network Traffic Models, Technical Report, Citeseer, 2008
- J.-Y.L. Boudec, Rate Adaptation, Congestion Control and Fairness—A Tutorial, Ecole Polytechnique Fédérale de Lausanne (EPFL), 12 Sept 2014
- B. Chandrasekaran, Survey of Network Traffic Models, Lecture Notes (Washington University, St. Louis, 2015)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Haenggi, M. On routing in random Rayleigh fading networks. IEEE Transactions on Wireless Communications vol. 4 1553–1562 (2005) – 10.1109/twc.2005.850376
- Hull, B., Jamieson, K. & Balakrishnan, H. Mitigating congestion in wireless sensor networks. Proceedings of the 2nd international conference on Embedded networked sensor systems 134–147 (2004) doi:10.1145/1031495.1031512 – 10.1145/1031495.1031512
- Information Technology—Open System Interconnection—Basic Reference Model: The Basic Model, ISO/IEC 7498–1 (1994)
- Iliofotou, M. et al. Network monitoring using traffic dispersion graphs (tdgs). Proceedings of the 7th ACM SIGCOMM conference on Internet measurement 315–320 (2007) doi:10.1145/1298306.1298349 – 10.1145/1298306.1298349
- Ivrlac, M. T., Utschick, W. & Nossek, J. A. Fading correlations in wireless MIMO communication systems. IEEE Journal on Selected Areas in Communications vol. 21 819–828 (2003) – 10.1109/jsac.2003.810348
- Li, T., Leith, D. & Malone, D. Buffer Sizing for 802.11-Based Networks. IEEE/ACM Transactions on Networking vol. 19 156–169 (2011) – 10.1109/tnet.2010.2089992
- Mergen, G. & Tong, L. Stability and Capacity of Regular Wireless Networks. IEEE Transactions on Information Theory vol. 51 1938–1953 (2005) – 10.1109/tit.2005.847728
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- A.J. van der Schaft, Port-Hamiltonian Systems: An Introductory Survey, in Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Villamizar, C. & Song, C. High performance TCP in ANSNET. ACM SIGCOMM Computer Communication Review vol. 24 45–60 (1994) – 10.1145/205511.205520