Authors

Agissilaos Athanassoulis, Theodoros Katsaounis, Irene Kyza, Stephen Metcalfe

Abstract

We introduce a new structure preserving, second order in time relaxation-type scheme for approximating solutions of the Schrödinger-Poisson system. More specifically, we use the Crank-Nicolson scheme as a time stepping mechanism, whilst the nonlinearity is handled by means of a relaxation approach in the spirit of [10,11,34] for the nonlinear Schrödinger equation. For the spatial discretisation we use the standard conforming finite element scheme. The resulting scheme is explicit with respect to the nonlinearity, i.e. it requires the solution of a linear system for each time-step, and satisfies discrete versions of the system’s mass conservation and energy balance laws for constant meshes. The scheme is seen to be second order in time. We conclude by presenting some numerical experiments, including an example from cosmology and an example with variable time-steps which demonstrate the effectiveness and robustness of the new scheme.

Keywords

Schrödinger-Poisson system; Energy preserving scheme; Relaxation scheme in time; Finite element method

Citation

  • Journal: Journal of Computational Physics
  • Year: 2023
  • Volume: 490
  • Issue:
  • Pages: 112307
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.jcp.2023.112307

BibTeX

@article{Athanassoulis_2023,
  title={{A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems}},
  volume={490},
  ISSN={0021-9991},
  DOI={10.1016/j.jcp.2023.112307},
  journal={Journal of Computational Physics},
  publisher={Elsevier BV},
  author={Athanassoulis, Agissilaos and Katsaounis, Theodoros and Kyza, Irene and Metcalfe, Stephen},
  year={2023},
  pages={112307}
}

Download the bib file

References

  • ABDALLAH, N. B., MÉHATS, F. & PINAUD, O. ON AN OPEN TRANSIENT SCHRÖDINGER–POISSON SYSTEM. Mathematical Models and Methods in Applied Sciences vol. 15 667–688 (2005) – 10.1142/s0218202505000510
  • Akrivis, G. D., Dougalis, V. A. & Karakashian, O. A. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schr�dinger equation. Numerische Mathematik vol. 59 31–53 (1991) – 10.1007/bf01385769
  • Akrivis, G. D., Dougalis, V. A., Karakashian, O. A. & Mckinney, W. R. Numerical Approximation of Blow-Up of Radially Symmetric Solutions of the Nonlinear Schrödinger Equation. SIAM Journal on Scientific Computing vol. 25 186–212 (2003) – 10.1137/s1064827597332041
  • Akrivis, G. & Li, D. Structure-preserving Gauss methods for the nonlinear Schrödinger equation. Calcolo vol. 58 (2021) – 10.1007/s10092-021-00405-w
  • Arriola, E. R. & Soler, J. Journal of Statistical Physics vol. 103 1069–1105 (2001) – 10.1023/a:1010369224196
  • Auzinger, W., Kassebacher, T., Koch, O. & Thalhammer, M. Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation. ESAIM: Mathematical Modelling and Numerical Analysis vol. 51 1245–1278 (2017) – 10.1051/m2an/2016059
  • Bao, W., Jaksch, D. & Markowich, P. A. Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. Journal of Computational Physics vol. 187 318–342 (2003) – 10.1016/s0021-9991(03)00102-5
  • Bangerth, W., Hartmann, R. & Kanschat, G. deal.II—A general-purpose object-oriented finite element library. ACM Transactions on Mathematical Software vol. 33 24 (2007) – 10.1145/1268776.1268779
  • Bao, W., Mauser, N. J. & Stimming, H. P. Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X<sub>alpha</sub> Model. Communications in Mathematical Sciences vol. 1 809–828 (2003) – 10.4310/cms.2003.v1.n4.a8
  • Besse, C. A Relaxation Scheme for the Nonlinear Schrödinger Equation. SIAM Journal on Numerical Analysis vol. 42 934–952 (2004) – 10.1137/s0036142901396521
  • Besse, C., Descombes, S., Dujardin, G. & Lacroix-Violet, I. Energy-preserving methods for nonlinear Schrödinger equations. IMA Journal of Numerical Analysis vol. 41 618–653 (2020) – 10.1093/imanum/drz067
  • Besse, C., Dujardin, G. & Lacroix-Violet, I. High Order Exponential Integrators for Nonlinear Schrödinger Equations with Application to Rotating Bose–Einstein Condensates. SIAM Journal on Numerical Analysis vol. 55 1387–1411 (2017) – 10.1137/15m1029047
  • Bardos, C., Erdös, L., Golse, F., Mauser, N. & Yau, H.-T. Derivation of the Schrödinger–Poisson equation from the quantum 𝐍-body problem. Comptes Rendus. Mathématique vol. 334 515–520 (2002) – 10.1016/s1631-073x(02)02253-7
  • Berland, H., Islas, A. L. & Schober, C. M. Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation. Journal of Computational Physics vol. 225 284–299 (2007) – 10.1016/j.jcp.2006.11.030
  • Bertrand, P. et al. Classical Vlasov plasma description through quantum numerical methods. Journal of Plasma Physics vol. 23 401–422 (1980) – 10.1017/s002237780002242x
  • Bohun, S., Illner, R., Lange, H. & Zweifel, P. F. Error Estimates for Galerkin Approximations to the Periodic Schrödinger‐Poisson System. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik vol. 76 7–13 (1996) – 10.1002/zamm.19960760103
  • Brezzi, F. & Markowich, P. A. The three‐dimensional wigner‐poisson problem: Existence, uniqueness and approximation. Mathematical Methods in the Applied Sciences vol. 14 35–61 (1991) – 10.1002/mma.1670140103
  • Castella, F. L2 Solutions to the Schrödinger–Poisson System: Existence, Uniqueness, Time Behaviour, and Smoothing Effects. Mathematical Models and Methods in Applied Sciences vol. 07 1051–1083 (1997) – 10.1142/s0218202597000530
  • Cazenave, (2003)
  • Chartier, P., Mauser, N. J., Méhats, F. & Zhang, Y. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete and Continuous Dynamical Systems - Series S vol. 9 1327–1349 (2016) – 10.3934/dcdss.2016053
  • Davies, G. & Widrow, L. M. Test‐Bed Simulations of Collisionless, Self‐Gravitating Systems Using the Schrodinger Method. The Astrophysical Journal vol. 485 484–495 (1997) – 10.1086/304440
  • Delfour, M., Fortin, M. & Payr, G. Finite-difference solutions of a non-linear Schrödinger equation. Journal of Computational Physics vol. 44 277–288 (1981) – 10.1016/0021-9991(81)90052-8
  • Dehghan, M. & Mohammadi, V. A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method. Computer Physics Communications vol. 217 23–34 (2017) – 10.1016/j.cpc.2017.03.012
  • Dehghan, M. & Taleei, A. A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Computer Physics Communications vol. 181 43–51 (2010) – 10.1016/j.cpc.2009.08.015
  • Ehrhardt, M. & Zisowsky, A. Fast calculation of energy and mass preserving solutions of Schrödinger–Poisson systems on unbounded domains. Journal of Computational and Applied Mathematics vol. 187 1–28 (2006) – 10.1016/j.cam.2005.03.026
  • Fei, Z., Pérez-García, V. M. & Vázquez, L. Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Applied Mathematics and Computation vol. 71 165–177 (1995) – 10.1016/0096-3003(94)00152-t
  • Hederi, M., Islas, A. L., Reger, K. & Schober, C. M. Efficiency of exponential time differencing schemes for nonlinear Schrödinger equations. Mathematics and Computers in Simulation vol. 127 101–113 (2016) – 10.1016/j.matcom.2013.05.013
  • Ilati, M. & Dehghan, M. DMLPG method for numerical simulation of soliton collisions in multi-dimensional coupled damped nonlinear Schrödinger system which arises from Bose–Einstein condensates. Applied Mathematics and Computation vol. 346 244–253 (2019) – 10.1016/j.amc.2018.10.016
  • Illner, R., Zweifel, P. F. & Lange, H. Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner–Poisson and Schrödinger‐Poisson systems. Mathematical Methods in the Applied Sciences vol. 17 349–376 (1994) – 10.1002/mma.1670170504
  • Jin, A numerical study of the Gaussian beam methods for Schrödinger-Poisson equations. J. Comput. Appl. Math. (2010)
  • Karner, M. et al. A multi-purpose Schrödinger-Poisson Solver for TCAD applications. Journal of Computational Electronics vol. 6 179–182 (2007) – 10.1007/s10825-006-0077-7
  • Karakashian, O. & Makridakis, C. A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Mathematics of Computation vol. 67 479–499 (1998) – 10.1090/s0025-5718-98-00946-6
  • Karakashian, O. & Makridakis, C. A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method. SIAM Journal on Numerical Analysis vol. 36 1779–1807 (1999) – 10.1137/s0036142997330111
  • Katsaounis, T. & Kyza, I. A Posteriori Error Analysis for Evolution Nonlinear Schrödinger Equations up to the Critical Exponent. SIAM Journal on Numerical Analysis vol. 56 1405–1434 (2018) – 10.1137/16m1108029
  • Kopp, M., Vattis, K. & Skordis, C. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method. Physical Review D vol. 96 (2017) – 10.1103/physrevd.96.123532
  • Lu, T. & Cai, W. A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger–Poisson equations with discontinuous potentials. Journal of Computational and Applied Mathematics vol. 220 588–614 (2008) – 10.1016/j.cam.2007.09.025
  • Lubich, C. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Mathematics of Computation vol. 77 2141–2153 (2008) – 10.1090/s0025-5718-08-02101-7
  • Markowich, (1990)
  • Paredes, A., Olivieri, D. N. & Michinel, H. From optics to dark matter: A review on nonlinear Schrödinger–Poisson systems. Physica D: Nonlinear Phenomena vol. 403 132301 (2020) – 10.1016/j.physd.2019.132301
  • Ringhofer, C. & Soler, J. Discrete Schrödinger-Poisson systems preserving energy and mass. Applied Mathematics Letters vol. 13 27–32 (2000) – 10.1016/s0893-9659(00)00072-0
  • Shukla, P. K. & Eliasson, B. Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Reviews of Modern Physics vol. 83 885–906 (2011) – 10.1103/revmodphys.83.885
  • Thalhammer, M. Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations. SIAM Journal on Numerical Analysis vol. 50 3231–3258 (2012) – 10.1137/120866373
  • Tod, P. & Moroz, I. M. An analytical approach to the Schrödinger-Newton equations. Nonlinearity vol. 12 201–216 (1999) – 10.1088/0951-7715/12/2/002
  • Uhlemann, C., Kopp, M. & Haugg, T. Schrödinger method asN-body double and UV completion of dust. Physical Review D vol. 90 (2014) – 10.1103/physrevd.90.023517
  • Widrow, L. M. & Kaiser, N. Using the Schroedinger Equation to Simulate Collisionless Matter. The Astrophysical Journal vol. 416 L71 (1993) – 10.1086/187073
  • Zhang, Y. & Dong, X. On the computation of ground state and dynamics of Schrödinger–Poisson–Slater system. Journal of Computational Physics vol. 230 2660–2676 (2011) – 10.1016/j.jcp.2010.12.045
  • Zhang, Y. Optimal Error Estimates of Compact Finite Difference Discretizations for the Schrödinger-Poisson System. Communications in Computational Physics vol. 13 1357–1388 (2013) – 10.4208/cicp.251011.270412a
  • Zhang, P., Zheng, Y. & Mauser, N. J. The limit from the Schrödinger‐Poisson to the Vlasov‐Poisson equations with general data in one dimension. Communications on Pure and Applied Mathematics vol. 55 582–632 (2002) – 10.1002/cpa.3017
  • Zouraris, G. E. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis vol. 35 389–405 (2001) – 10.1051/m2an:2001121
  • Zouraris, G. E. Error estimation of the Besse Relaxation Scheme for a semilinear heat equation. ESAIM: Mathematical Modelling and Numerical Analysis vol. 55 301–328 (2021) – 10.1051/m2an/2020077