Authors

James R. Phillips, Farid Amirouche

Abstract

Kane’s dynamical equations are an efficient and widely used method for deriving the equations of motion for multibody systems. Despite their popularity, no publication has appeared which adapts them for use with port-based modelling tools such as bond graphs, linear graphs or port-Hamiltonian theory. In this paper, we present – for scleronomic systems – a momentum form of Kane’s equations, fully compatible with port-based modelling methods. When applied to holonomic systems using coordinate derivatives, the momentum form of Kane’s equations is an efficient alternative to Lagrange’s equations, providing a momentum formulation without the need to assemble and differentiate the system kinetic co-energy function. When applied to holonomic or nonholonomic systems using generalized speeds, a rotational decomposition of the generalized forces leads to a convenient set of matrix equations of motion, for which a system-level multibond graph interpretation is given. Heuristics are provided for selection of generalized speeds which, for systems with open-chain kinematics, produce a block-diagonal mass matrix and reduce the complexity of the equations from order- to order-. For scleronomic systems, the momentum formulation retains all analysis capabilities offered by the original acceleration formulation. Two example problems are solved with the momentum formulation, including the nonholonomic rolling thin disk.

Citation

  • Journal: Mathematical and Computer Modelling of Dynamical Systems
  • Year: 2018
  • Volume: 24
  • Issue: 2
  • Pages: 143–169
  • Publisher: Informa UK Limited
  • DOI: 10.1080/13873954.2017.1385638

BibTeX

@article{Phillips_2017,
  title={{A momentum form of Kane’s equations for scleronomic systems}},
  volume={24},
  ISSN={1744-5051},
  DOI={10.1080/13873954.2017.1385638},
  number={2},
  journal={Mathematical and Computer Modelling of Dynamical Systems},
  publisher={Informa UK Limited},
  author={Phillips, James R. and Amirouche, Farid},
  year={2017},
  pages={143--169}
}

Download the bib file

References

  • Kane, T. R. Dynamics of Nonholonomic Systems. Journal of Applied Mechanics vol. 28 574–578 (1961) – 10.1115/1.3641786
  • Kane, T. R. & Wang, C. F. On the Derivation of Equations of Motion. Journal of the Society for Industrial and Applied Mathematics vol. 13 487–492 (1965) – 10.1137/0113030
  • Kane T.R., Dynamics: theory and Applications (1985)
  • Karnopp D., System Dynamics (2000)
  • Borutzky W., Bond Graph Modeling of Engineering Systems (2010)
  • A geometrical interpretation of Kane’s Equations. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences vol. 436 69–87 (1992) – 10.1098/rspa.1992.0005
  • Wang, L.-S. & Pao, Y.-H. Jourdain’s variational equation and Appell’s equation of motion for nonholonomic dynamical systems. American Journal of Physics vol. 71 72–82 (2002) – 10.1119/1.1514239
  • Layton, R. A. Principles of Analytical System Dynamics. Mechanical Engineering Series (Springer New York, 1998). doi:10.1007/978-1-4612-0597-5 – 10.1007/978-1-4612-0597-5
  • Amirouche F., Fundamentals of Multibody Dynamics: theory and Applications (2007)
  • Huston, R. & Liu, C. Q. Formulas for Dynamic Analysis. (2001) doi:10.1201/9781482273403 – 10.1201/9781482273403
  • Breedveld, P. C. Multibond graph elements in physical systems theory. Journal of the Franklin Institute vol. 319 1–36 (1985) – 10.1016/0016-0032(85)90062-6
  • Karnopp, D. An approach to derivative causality in bond graph models of mechanical systems. Journal of the Franklin Institute vol. 329 65–75 (1992) – 10.1016/0016-0032(92)90096-y
  • Banerjee, A. Order-n formulation of equations of motion with efficient choices of motion variables. Guidance, Navigation, and Control Conference (1994) doi:10.2514/6.1994-3576 – 10.2514/6.1994-3576
  • Anderson, K. S. & Critchley, J. H. Multibody System Dynamics vol. 9 185–212 (2003) – 10.1023/a:1022566107679
  • Gillespie, R. B., Patoglu, V., Hussein, I. I. & Westervelt, E. R. On-Line Symbolic Constraint Embedding for Simulation of Hybrid Dynamical Systems. Multibody System Dynamics vol. 14 387–417 (2005) – 10.1007/s11044-005-0269-0
  • Braun, D. J. & Goldfarb, M. Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Computer Methods in Applied Mechanics and Engineering vol. 198 3151–3160 (2009) – 10.1016/j.cma.2009.05.013
  • García de Jalón, J. & Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems. Mechanical Engineering Series (Springer New York, 1994). doi:10.1007/978-1-4612-2600-0 – 10.1007/978-1-4612-2600-0
  • Bremen K.E., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (1989)
  • Brauchli, H. Mass-orthogonal formulation of equations of motion for multibody systems. ZAMP Zeitschrift f�r angewandte Mathematik und Physik vol. 42 169–182 (1991) – 10.1007/bf00945791
  • Margolis D., ASME Symp. Adv. Automot. Technol. (1989)
  • Greenwood D.T., Advanced Dynamics (2006)