Authors

A. Palha, M. Gerritsma

Abstract

In this work we present a mimetic spectral element discretization for the 2D incompressible Navier–Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured triangular grids. The essential ingredients to achieve this are: (i) a velocity–vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular triangular grids.

Keywords

Energy conserving discretization; Mimetic discretization; Enstrophy conserving discretization; Spectral element method; Incompressible Navier–Stokes equations

Citation

  • Journal: Journal of Computational Physics
  • Year: 2017
  • Volume: 328
  • Issue:
  • Pages: 200–220
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.jcp.2016.10.009

BibTeX

@article{Palha_2017,
  title={{A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier–Stokes equations}},
  volume={328},
  ISSN={0021-9991},
  DOI={10.1016/j.jcp.2016.10.009},
  journal={Journal of Computational Physics},
  publisher={Elsevier BV},
  author={Palha, A. and Gerritsma, M.},
  year={2017},
  pages={200--220}
}

Download the bib file

References

  • Phillips, An example of non-linear computational instability. (1959)
  • Arakawa, A. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. Journal of Computational Physics vol. 1 119–143 (1966) – 10.1016/0021-9991(66)90015-5
  • Harlow, F. H. & Welch, J. E. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. The Physics of Fluids vol. 8 2182–2189 (1965) – 10.1063/1.1761178
  • Arakawa, Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. (1977)
  • Mesinger, Numerical methods used in atmospheric models. (1976)
  • LILLY, D. K. ON THE COMPUTATIONAL STABILITY OF NUMERICAL SOLUTIONS OF TIME-DEPENDENT NON-LINEAR GEOPHYSICAL FLUID DYNAMICS PROBLEMS. Monthly Weather Review vol. 93 11–25 (1965) – 10.1175/1520-0493(1965)093<0011:otcson>2.3.co;2
  • Piacsek, S. A. & Williams, G. P. Conservation properties of convection difference schemes. Journal of Computational Physics vol. 6 392–405 (1970) – 10.1016/0021-9991(70)90038-0
  • Arnold, V. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier vol. 16 319–361 (1966) – 10.5802/aif.233
  • Arnold, V. I. & Khesin, B. A. Topological Methods in Hydrodynamics. Annual Review of Fluid Mechanics vol. 24 145–166 (1992) – 10.1146/annurev.fl.24.010192.001045
  • Majda, (2001)
  • Foias, C., Manley, O., Rosa, R. & Temam, R. Navier-Stokes Equations and Turbulence. (2001) doi:10.1017/cbo9780511546754 – 10.1017/cbo9780511546754
  • Perot, Direct numerical simulation of turbulence on the Connection Machine. (1993)
  • Verstappen, R. W. C. P. & Veldman, A. E. P. Direct numerical simulation of turbulence on a Connection Machine CM-5. Applied Numerical Mathematics vol. 19 147–158 (1995) – 10.1016/0168-9274(95)00022-m
  • LE, H., MOIN, P. & KIM, J. Direct numerical simulation of turbulent flow over abackward-facing step. Journal of Fluid Mechanics vol. 330 349–374 (1997) – 10.1017/s0022112096003941
  • Verstappen, R. W. C. P. & Veldman, A. E. P. Journal of Engineering Mathematics vol. 34 163–179 (1998) – 10.1023/a:1004316430201
  • Verstappen, R. W. C. P. & Veldman, A. E. P. Symmetry-preserving discretization of turbulent flow. Journal of Computational Physics vol. 187 343–368 (2003) – 10.1016/s0021-9991(03)00126-8
  • Mahesh, K., Constantinescu, G. & Moin, P. A numerical method for large-eddy simulation in complex geometries. Journal of Computational Physics vol. 197 215–240 (2004) – 10.1016/j.jcp.2003.11.031
  • Mittal, R. & Moin, P. Suitability of Upwind-Biased Finite Difference Schemes for Large-Eddy Simulation of Turbulent Flows. AIAA Journal vol. 35 1415–1417 (1997) – 10.2514/2.253
  • Benhamadouche, S. & Laurence, D. Global kinetic energy conservation with unstructured meshes. International Journal for Numerical Methods in Fluids vol. 40 561–571 (2002) – 10.1002/fld.303
  • Nagarajan, S., Lele, S. K. & Ferziger, J. H. A robust high-order compact method for large eddy simulation. Journal of Computational Physics vol. 191 392–419 (2003) – 10.1016/s0021-9991(03)00322-x
  • Felten, F. N. & Lund, T. S. Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow. Journal of Computational Physics vol. 215 465–484 (2006) – 10.1016/j.jcp.2005.11.009
  • Ham, Towards time-stable and accurate LES on unstructured grids. (2007)
  • Sadourny, R. The Dynamics of Finite-Difference Models of the Shallow-Water Equations. Journal of the Atmospheric Sciences vol. 32 680–689 (1975) – 10.1175/1520-0469(1975)032<0680:tdofdm>2.0.co;2
  • Sanderse, B. Energy-conserving Runge–Kutta methods for the incompressible Navier–Stokes equations. Journal of Computational Physics vol. 233 100–131 (2013) – 10.1016/j.jcp.2012.07.039
  • Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow. Journal of Computational Physics vol. 143 90–124 (1998) – 10.1006/jcph.1998.5962
  • Wesseling, P., Segal, A. & Kassels, C. G. M. Computing Flows on General Three-Dimensional Nonsmooth Staggered Grids. Journal of Computational Physics vol. 149 333–362 (1999) – 10.1006/jcph.1998.6156
  • Apanovich, Yu. V. & Lyumkis, E. D. Difference schemes for the Navier-Stokes equations on a net consisting of Dirichlet cells. USSR Computational Mathematics and Mathematical Physics vol. 28 57–63 (1988) – 10.1016/0041-5553(88)90143-7
  • Choudhury, S. & Nicolaides, R. A. Discretization of incompressible vorticity–velocity equations on triangular meshes. International Journal for Numerical Methods in Fluids vol. 11 823–833 (1990) – 10.1002/fld.1650110608
  • Perot, B. Conservation Properties of Unstructured Staggered Mesh Schemes. Journal of Computational Physics vol. 159 58–89 (2000) – 10.1006/jcph.2000.6424
  • Mullen, P., Crane, K., Pavlov, D., Tong, Y. & Desbrun, M. Energy-preserving integrators for fluid animation. ACM Transactions on Graphics vol. 28 1–8 (2009) – 10.1145/1531326.1531344
  • Verstappen, R. W. C. P. & Veldman, A. E. P. Journal of Engineering Mathematics vol. 32 143–159 (1997) – 10.1023/a:1004255329158
  • Knikker, R. Study of a staggered fourth‐order compact scheme for unsteady incompressible viscous flows. International Journal for Numerical Methods in Fluids vol. 59 1063–1092 (2008) – 10.1002/fld.1854
  • Kok, J. C. A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids. Journal of Computational Physics vol. 228 6811–6832 (2009) – 10.1016/j.jcp.2009.06.015
  • Vasilyev, O. V. High Order Finite Difference Schemes on Non-uniform Meshes with Good Conservation Properties. Journal of Computational Physics vol. 157 746–761 (2000) – 10.1006/jcph.1999.6398
  • Veldman, A. E. P. & Lam, K.-W. Symmetry-preserving upwind discretization of convection on non-uniform grids. Applied Numerical Mathematics vol. 58 1881–1891 (2008) – 10.1016/j.apnum.2007.11.015
  • van’t Hof, B. & Veldman, A. E. P. Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations. Journal of Computational Physics vol. 231 4723–4744 (2012) – 10.1016/j.jcp.2012.03.005
  • Capuano, F., Coppola, G., Balarac, G. & de Luca, L. Energy preserving turbulent simulations at a reduced computational cost. Journal of Computational Physics vol. 298 480–494 (2015) – 10.1016/j.jcp.2015.06.011
  • Capuano, F., Coppola, G. & de Luca, L. An efficient time advancing strategy for energy-preserving simulations. Journal of Computational Physics vol. 295 209–229 (2015) – 10.1016/j.jcp.2015.03.070
  • Perot, J. B. Discrete Conservation Properties of Unstructured Mesh Schemes. Annual Review of Fluid Mechanics vol. 43 299–318 (2011) – 10.1146/annurev-fluid-122109-160645
  • Tadmor, E. Skew-selfadjoint form for systems of conservation laws. Journal of Mathematical Analysis and Applications vol. 103 428–442 (1984) – 10.1016/0022-247x(84)90139-2
  • Wendroff, B. On Centered Difference Equations for Hyperbolic Systems. Journal of the Society for Industrial and Applied Mathematics vol. 8 549–555 (1960) – 10.1137/0108040
  • Keller, A new difference scheme for parabolic problems. (1971)
  • Keller, H. B. Numerical Methods in Boundary-Layer Theory. Annual Review of Fluid Mechanics vol. 10 417–433 (1978) – 10.1146/annurev.fl.10.010178.002221
  • Croisille, J.-P. Keller’s Box-Scheme for the One-Dimensional Stationary Convection-Diffusion Equation. Computing vol. 68 37–63 (2002) – 10.1007/s006070200002
  • Croisille, J.-P. & Greff, I. An efficient box-scheme for convection–diffusion equations with sharp contrast in the diffusion coefficients. Computers & Fluids vol. 34 461–489 (2005) – 10.1016/j.compfluid.2003.12.003
  • Gustafsson, B. & Khalighi, Y. The Shifted Box Scheme for Scalar Transport Problems. Journal of Scientific Computing vol. 28 319–335 (2006) – 10.1007/s10915-006-9079-7
  • Ranjan, R. & Pantano, C. A collocated method for the incompressible Navier–Stokes equations inspired by the Box scheme. Journal of Computational Physics vol. 232 346–382 (2013) – 10.1016/j.jcp.2012.08.021
  • Ascher, U. M. & McLachlan, R. I. On Symplectic and Multisymplectic Schemes for the KdV Equation. Journal of Scientific Computing vol. 25 83–104 (2005) – 10.1007/s10915-004-4634-6
  • Frank, J., Moore, B. E. & Reich, S. Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law. SIAM Journal on Scientific Computing vol. 28 260–277 (2006) – 10.1137/050628271
  • Perot, J. B. & Subramanian, V. A discrete calculus analysis of the Keller Box scheme and a generalization of the method to arbitrary meshes. Journal of Computational Physics vol. 226 494–508 (2007) – 10.1016/j.jcp.2007.04.015
  • Brezzi, Mixed and Hybrid Finite Element Methods. (1991)
  • Taylor, C. & Hood, P. A numerical solution of the Navier-Stokes equations using the finite element technique. Computers & Fluids vol. 1 73–100 (1973) – 10.1016/0045-7930(73)90027-3
  • Crouzeix, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. Modél. Math. Anal. Numér. (1973)
  • Kopriva, D. A. & Kolias, J. H. A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. Journal of Computational Physics vol. 125 244–261 (1996) – 10.1006/jcph.1996.0091
  • Liu, Y., Shu, C.-W., Tadmor, E. & Zhang, M. Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction. SIAM Journal on Numerical Analysis vol. 45 2442–2467 (2007) – 10.1137/060666974
  • Liu, Y., Shu, C.-W., Tadmor, E. & Zhang, M. L2stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis vol. 42 593–607 (2008) – 10.1051/m2an:2008018
  • Chung, E. & Lee, C. S. A staggered discontinuous Galerkin method for the convection–diffusion equation. Journal of Numerical Mathematics vol. 20 1–32 (2012) – 10.1515/jnum-2012-0001
  • Tavelli, M. & Dumbser, M. A staggered space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations on two-dimensional triangular meshes. Computers & Fluids vol. 119 235–249 (2015) – 10.1016/j.compfluid.2015.07.003
  • Guevremont, G., Habashi, W. G. & Hafez, M. M. Finite element solution of the Navier–Stokes equations by a velocity–vorticity method. International Journal for Numerical Methods in Fluids vol. 10 461–475 (1990) – 10.1002/fld.1650100408
  • Blaisdell, G. A., Spyropoulos, E. T. & Qin, J. H. The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Applied Numerical Mathematics vol. 21 207–219 (1996) – 10.1016/0168-9274(96)00005-0
  • RØNQUIST, E. M. CONVECTION TREATMENT USING SPECTRAL ELEMENTS OF DIFFERENT ORDER. International Journal for Numerical Methods in Fluids vol. 22 241–264 (1996) – 10.1002/(sici)1097-0363(19960229)22:4<241::aid-fld350>3.0.co;2-n
  • Wilhelm, D. & Kleiser, L. Stable and unstable formulations of the convection operator in spectral element simulations. Applied Numerical Mathematics vol. 33 275–280 (2000) – 10.1016/s0168-9274(99)00093-8
  • Liu, J.-G. & Shu, C.-W. A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows. Journal of Computational Physics vol. 160 577–596 (2000) – 10.1006/jcph.2000.6475
  • Bernsen, E., Bokhove, O. & van der Vegt, J. J. W. A (Dis)continuous finite element model for generalized 2D vorticity dynamics. Journal of Computational Physics vol. 211 719–747 (2006) – 10.1016/j.jcp.2005.06.008
  • Rebholz, L. G. An Energy- and Helicity-Conserving Finite Element Scheme for the Navier–Stokes Equations. SIAM Journal on Numerical Analysis vol. 45 1622–1638 (2007) – 10.1137/060651227
  • Olshanskii, M. A. & Rebholz, L. G. Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. Journal of Computational Physics vol. 229 4291–4303 (2010) – 10.1016/j.jcp.2010.02.012
  • Christiansen, S. H., Munthe-Kaas, H. Z. & Owren, B. Topics in structure-preserving discretization. Acta Numerica vol. 20 1–119 (2011)10.1017/s096249291100002x
  • Budd, Geometric Integration and Its Applications. (2003)
  • Hairer, (2006)
  • Tonti, (1975)
  • Dodziuk, J. Finite-Difference Approach to the Hodge Theory of Harmonic Forms. American Journal of Mathematics vol. 98 79 (1976) – 10.2307/2373615
  • Whitney, (1957)
  • Hyman, (1990)
  • Bochev, Principles of mimetic discretizations of differential operators. IMA Vol. Math. Appl. (2006)
  • Hyman, J., Shashkov, M. & Steinberg, S. The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials. Journal of Computational Physics vol. 132 130–148 (1997) – 10.1006/jcph.1996.5633
  • Hyman, J., Morel, J., Shashkov, M. & Steinberg, S. Computational Geosciences vol. 6 333–352 (2002) – 10.1023/a:1021282912658
  • Hyman, J. M. & Steinberg, S. The convergence of mimetic discretization for rough grids. Computers & Mathematics with Applications vol. 47 1565–1610 (2004) – 10.1016/j.camwa.2004.06.008
  • Robidoux, A new method of construction of adjoint gradients and divergences on logically rectangular smooth grids. (1996)
  • Robidoux, (2002)
  • Shashkov, (1996)
  • Steinberg, S. A Discreate Calculus with Applications of High-Order Discretizations to Boundary-Value Problems. Computational Methods in Applied Mathematics vol. 4 228–261 (2004) – 10.2478/cmam-2004-0014
  • Zingano, J. P. & Steinberg, S. L. Error Estimates on Arbitrary Grids for a 2nd-order Mimetic Discretization of Boundary-value Problems for Linear Odes. Computational Methods in Applied Mathematics vol. 9 192–202 (2009) – 10.2478/cmam-2009-0011
  • Robidoux, N. & Steinberg, S. A Discrete Vector Calculus in Tensor Grids. Computational Methods in Applied Mathematics vol. 11 23–66 (2011) – 10.2478/cmam-2011-0002
  • Brezzi, F., Buffa, A. & Lipnikov, K. Mimetic finite differences for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis vol. 43 277–295 (2008) – 10.1051/m2an:2008046
  • Brezzi, F. & Buffa, A. Innovative mimetic discretizations for electromagnetic problems. Journal of Computational and Applied Mathematics vol. 234 1980–1987 (2010) – 10.1016/j.cam.2009.08.049
  • da Veiga, (2014)
  • Zhang, X., Schmidt, D. & Perot, B. Accuracy and Conservation Properties of a Three-Dimensional Unstructured Staggered Mesh Scheme for Fluid Dynamics. Journal of Computational Physics vol. 175 764–791 (2002) – 10.1006/jcph.2001.6973
  • Perot, Mimetic reconstruction of vectors. IMA Vol. Math. Appl. (2006)
  • Perot, J. B. & Subramanian, V. Discrete calculus methods for diffusion. Journal of Computational Physics vol. 224 59–81 (2007) – 10.1016/j.jcp.2006.12.022
  • Perot, J. B. & Subramanian, V. A discrete calculus analysis of the Keller Box scheme and a generalization of the method to arbitrary meshes. Journal of Computational Physics vol. 226 494–508 (2007) – 10.1016/j.jcp.2007.04.015
  • Desbrun,
  • Elcott, S., Tong, Y., Kanso, E., Schröder, P. & Desbrun, M. Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics vol. 26 4 (2007) – 10.1145/1189762.1189766
  • Mullen, P., Crane, K., Pavlov, D., Tong, Y. & Desbrun, M. Energy-preserving integrators for fluid animation. ACM Transactions on Graphics vol. 28 1–8 (2009) – 10.1145/1531326.1531344
  • Pavlov, D. et al. Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena vol. 240 443–458 (2011) – 10.1016/j.physd.2010.10.012
  • Hirani, (2003)
  • Bossavit, Computational electromagnetism and geometry: (1) network equations. J. Jpn. Soc. Appl. Electromagn. (1999)
  • Bossavit, Computational electromagnetism and geometry: (2) network constitutive laws. J. Jpn. Soc. Appl. Electromagn. (1999)
  • Bossavit, Computational electromagnetism and geometry: (3) convergence. J. Jpn. Soc. Appl. Electromagn. (1999)
  • Bossavit, Computational electromagnetism and geometry: (4) from degrees of freedom to fields. J. Jpn. Soc. Appl. Electromagn. (2000)
  • Bossavit, Computational electromagnetism and geometry: (5) the “Galerkin Hodge”. J. Jpn. Soc. Appl. Electromagn. (2000)
  • Arnold, D. N., Boffi, D. & Falk, R. S. QuadrilateralH(div) Finite Elements. SIAM Journal on Numerical Analysis vol. 42 2429–2451 (2005) – 10.1137/s0036142903431924
  • Arnold, D. N., Falk, R. S. & Winther, R. Finite element exterior calculus, homological techniques, and applications. Acta Numerica vol. 15 1–155 (2006) – 10.1017/s0962492906210018
  • Arnold, D., Falk, R. & Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society vol. 47 281–354 (2010) – 10.1090/s0273-0979-10-01278-4
  • Rapetti, F. High order edge elements on simplicial meshes. ESAIM: Mathematical Modelling and Numerical Analysis vol. 41 1001–1020 (2007) – 10.1051/m2an:2007049
  • Rapetti, F. & Bossavit, A. Whitney Forms of Higher Degree. SIAM Journal on Numerical Analysis vol. 47 2369–2386 (2009) – 10.1137/070705489
  • Hiptmair, PIER. (2001)
  • Robidoux,
  • Palha, A., Rebelo, P. P., Hiemstra, R., Kreeft, J. & Gerritsma, M. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. Journal of Computational Physics vol. 257 1394–1422 (2014) – 10.1016/j.jcp.2013.08.005
  • Gerritsma, The geometric basis of numerical methods. (2013)
  • Bouman, A conservative spectral element method for curvilinear domains. (2011)
  • Palha, Spectral element approximation of the Hodge-⋆ operator in curved elements. (2010)
  • Rebelo, Mixed mimetic spectral element method applied to Darcy’s problem. (2014)
  • Palha, Mimetic spectral element advection. (2014)
  • Kreeft, J. & Gerritsma, M. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution. Journal of Computational Physics vol. 240 284–309 (2013) – 10.1016/j.jcp.2012.10.043
  • Palha, A., Koren, B. & Felici, F. A mimetic spectral element solver for the Grad–Shafranov equation. Journal of Computational Physics vol. 316 63–93 (2016) – 10.1016/j.jcp.2016.04.002
  • Gerritsma, Least-squares spectral element method on a staggered grid. (2010)
  • Palha, Mimetic least-squares spectral/hp finite element method for the Poisson equation. (2010)
  • Bochev, P. & Gerritsma, M. A spectral mimetic least-squares method. Computers & Mathematics with Applications vol. 68 1480–1502 (2014) – 10.1016/j.camwa.2014.09.014
  • Gerritsma, M. & Bochev, P. A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition. Computers & Mathematics with Applications vol. 71 2285–2300 (2016) – 10.1016/j.camwa.2016.01.033
  • Bonelle, J., Di Pietro, D. A. & Ern, A. Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes. Computer Aided Geometric Design vols 35–36 27–41 (2015) – 10.1016/j.cagd.2015.03.015
  • Bonelle, J. & Ern, A. Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis vol. 48 553–581 (2014)10.1051/m2an/2013104
  • Bonelle, J. & Ern, A. Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes. IMA Journal of Numerical Analysis vol. 35 1672–1697 (2014) – 10.1093/imanum/dru051
  • Brezzi, F., Falk, R. S. & Donatella Marini, L. Basic principles of mixed Virtual Element Methods. ESAIM: Mathematical Modelling and Numerical Analysis vol. 48 1227–1240 (2014) – 10.1051/m2an/2013138
  • Beirão da Veiga, L., Brezzi, F., Marini, L. D. & Russo, A. The Hitchhiker’s Guide to the Virtual Element Method. Mathematical Models and Methods in Applied Sciences vol. 24 1541–1573 (2014) – 10.1142/s021820251440003x
  • Beirão da Veiga, L., Brezzi, F., Marini, L. D. & Russo, A. Virtual Element Method for general second-order elliptic problems on polygonal meshes. Mathematical Models and Methods in Applied Sciences vol. 26 729–750 (2016) – 10.1142/s0218202516500160
  • da Veiga, H(div) and H(curl) conforming virtual element methods. Numer. Math. (2015)
  • da Veiga,
  • Buffa, Isogeometric analysis: new stable elements for the Stokes equation. Int. J. Numer. Methods Fluids (2010)
  • Evans, J. A. & Hughes, T. J. R. Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. Journal of Computational Physics vol. 241 141–167 (2013) – 10.1016/j.jcp.2013.01.006
  • Hiemstra, R. R., Toshniwal, D., Huijsmans, R. H. M. & Gerritsma, M. I. High order geometric methods with exact conservation properties. Journal of Computational Physics vol. 257 1444–1471 (2014) – 10.1016/j.jcp.2013.09.027
  • Kouranbaeva, S. & Shkoller, S. A variational approach to second-order multisymplectic field theory. Journal of Geometry and Physics vol. 35 333–366 (2000) – 10.1016/s0393-0440(00)00012-7
  • Marsden, J. E. & West, M. Discrete mechanics and variational integrators. Acta Numerica vol. 10 357–514 (2001) – 10.1017/s096249290100006x
  • Kraus, M. & Maj, O. Variational integrators for nonvariational partial differential equations. Physica D: Nonlinear Phenomena vol. 310 37–71 (2015) – 10.1016/j.physd.2015.08.002
  • Zang, T. A. On the rotation and skew-symmetric forms for incompressible flow simulations. Applied Numerical Mathematics vol. 7 27–40 (1991) – 10.1016/0168-9274(91)90102-6
  • Gatski, T. B. Review of incompressible fluid flow computations using the vorticity-velocity formulation. Applied Numerical Mathematics vol. 7 227–239 (1991) – 10.1016/0168-9274(91)90035-x
  • Daube, O. Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique. Journal of Computational Physics vol. 103 402–414 (1992) – 10.1016/0021-9991(92)90411-q
  • Clercx, H. J. H. A Spectral Solver for the Navier–Stokes Equations in the Velocity–Vorticity Formulation for Flows with Two Nonperiodic Directions. Journal of Computational Physics vol. 137 186–211 (1997) – 10.1006/jcph.1997.5799
  • Benzi, M., Olshanskii, M. A., Rebholz, L. G. & Wang, Z. Assessment of a vorticity based solver for the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering vols 247–248 216–225 (2012) – 10.1016/j.cma.2012.07.016
  • Lee, H. K., Olshanskii, M. A. & Rebholz, L. G. On Error Analysis for the 3D Navier–Stokes Equations in Velocity-Vorticity-Helicity Form. SIAM Journal on Numerical Analysis vol. 49 711–732 (2011) – 10.1137/10080124x
  • Cockburn, B., Kanschat, G. & Schötzau, D. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations. Journal of Scientific Computing vol. 31 61–73 (2006) – 10.1007/s10915-006-9107-7
  • Buffa, A., de Falco, C. & Sangalli, G. IsoGeometric Analysis: Stable elements for the 2D Stokes equation. International Journal for Numerical Methods in Fluids vol. 65 1407–1422 (2011) – 10.1002/fld.2337
  • Raviart, A mixed finite element method for 2nd order elliptic problems. (2006)
  • Kirby, Common and unusual finite elements. (2012)
  • Temam, Navier–Stokes Equations. (1977)
  • Duponcheel, M., Orlandi, P. & Winckelmans, G. Time-reversibility of the Euler equations as a benchmark for energy conserving schemes. Journal of Computational Physics vol. 227 8736–8752 (2008) – 10.1016/j.jcp.2008.06.020
  • CARATI, D., WINCKELMANS, G. S. & JEANMART, H. On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. Journal of Fluid Mechanics vol. 441 119–138 (2001) – 10.1017/s0022112001004773
  • Minion, M. L. & Brown, D. L. Performance of Under-resolved Two-Dimensional Incompressible Flow Simulations, II. Journal of Computational Physics vol. 138 734–765 (1997) – 10.1006/jcph.1997.5843
  • Hokpunna, A. & Manhart, M. Compact fourth-order finite volume method for numerical solutions of Navier–Stokes equations on staggered grids. Journal of Computational Physics vol. 229 7545–7570 (2010) – 10.1016/j.jcp.2010.05.042