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Main objective

Simulate complex multiphysics open systems while keeping some intrinsic physical properties such as
the energy/power balance

m Finite Element Method:
— Complex geometries are allowed.
— A wide range of software tools are available.

m Port-Hamiltonian Systems (PHS):
— Keep track of power exchanges throughout the subsystems and with the environment
— Intrinsic properties are encoded in a Stokes-Dirac structure and Hamiltonian function

m Partitioned Finite Element Method (PFEM):
— It translates the Stokes-Dirac structure into a Dirac structure.
— The discrete Hamiltonian satisfies the “discrete” power balance.
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Already many worked out examples (pHs and PFEM):
linear 2D wave PDE

Reissner-Mindlin or Kirchhoff-Love plate PDEs

2D and 3D Maxwell's equations

oEN

2D and 3D heat PDE, with internal energy or entropy as Hamiltonian

]

nonlinear 2D Shallow Water Equation, inviscid or viscous

nonlinear 2D Incompressible Navier-Stokes Equations
nonlinear 2D Allen-Cahn and Cahn-Hilliard PDEs

=

— Apply PFEM to a new class of models: non-local PDEs as implicit pHs:
a 1D example: nonlocal vibrations in a viscoelastic nanorod

a 2D example: the Dzektser seepage model
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A 1D example: nonlocal vibrations in a viscoelastic nanorod
m the nonlocal model as a pHs
m structure-preserving discretization with PFEM
m simulation results with SCRIMP
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A 1D ex: nonlocal vibrations in a viscoelastic nanorod

In [Heidari & Zwart, 2019], the a wave PDE is considered, with a nonlocal constitutive equation
between the stress o and the strain €

el Oe
U_/,L@ —E(G“V‘Tda),

i.e. the stress at a point is related to the strain at all other points in the domain [Eringen, 1983].

The following Hamiltonian is considered

1 2w ow\” 0w \* 2 (0w’
7-[.—2/Q<aw +pA<8t> + upA v + (EA + pa®) 5 ,

where ;1 > 0 is the nonlocal parameter, and € := ,/j is the characteristic length of nonlocal effects.
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the nonlocal model as a pHs

=
Choosing z := (w, pALL upA@ ow N) as energy variables, and denoting

ot otox’ Oz’

100 0 0 a> 0 0 0 0

01000 0 25 0 0 0
E:=[0 010 0f, Q:=[0 0 5 0 0],

000 1 0 0 0 0 EA+ud® 0

00 0 00 0 0 0 0 1

the Hamiltonian H rewrites % = 1 [, 2T ET Qz, with the important algebraic property E'Q = Q 'E.

The dynamics of the system is given by

E:(t) = (J — R)e(t), e=Qz (1)
0o 1 0 0 0 0 0 0 00
-1 0 0 o0 2Z 0 v 0 0 0
J=]10 0 0 -1 1|, R:=|0 0 mEA4+u*> 0 0
0o 0 1 0 0 0 0 0 00
0 2 -1 0 0 0 0 0 0 0
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the nonlocal model as a pHs

The power balance reads:

%’H(t) _ - /Qe(t,m) - Re(t,2)da + [u(t, $)y(t, $)]L. < [u(t, s)y(t, 5)]. )

where u and y stand for boundary control and boundary observation. More precisely, let us recall
ey = %—1: and e5 = N. Therefore the boundary product of the control and the observation must result

in the product between the velocity and the force at the boundary: v = N,y = %—f.

= The descriptor dynamical system is lossy.
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A 1D example: nonlocal vibrations in a viscoelastic nanorod

m structure-preserving discretization with PFEM
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structure-preserving discretization with PFEM

The PFEM strategy

Write the weak formulation;
Apply an appropriate Stokes identity (such that the chosen boundary control u “appears”);

Project on a finite-dimensional space thanks to FEM.

Discretization of the structure and of the constitutive relations are made separately.
The discretized system is:
M, - §70,(t) = D - ¢, (t) + B - u(t),
My L0y = =074,
My - /( ) B ( )a
together with (Ilnear case)

{ M, - ¢,(t) = M= a, (%),
My - e,(t) = My - o, (2)

= in general, PFEM for pHs gives rise to finite-dimensional PH-DAEs involving (quite often) sparse

matrices only, and for which efficient numerical methods can be used
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structure-preserving discretization with PFEM

On the nanorod model as a pHs, we get:

E:(t) = (J—R)e(t)+Bu(t),
Me(t) = Qz(t),
yt) = Bleft).

The algebraic property ETQ = QTE translates into ETM~1Q = QM 'E.
The discrete power balance reads

d

(1) = —e(t) 'Re(®) +u(t) "y(t) < ut) "y(),

and is the discrete counterpart of (2).
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A 1D example: nonlocal vibrations in a viscoelastic nanorod

m simulation results with SCRIMP
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simulation results with SCRIMP

Difference between the local model (¢ = 0.001), and the nonlocal model (¢ = 0.01)

= More about SCRIMP environment: https://g-haine.github.io/scrimp/
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simulation results with SCRIMP

Role of non-local parameter pu: = 0.1, 4 =10.5 and p = 2.
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A 2D example: the Dzektser seepage model
m the nonlocal model as a pHs
m structure-preserving discretization with PFEM
m simulation results with SCRIMP

IFAC W.C., Yokohama 11/25

Matignon (ISAE, LCIS) PFEM 4 Implicit pHs



A 2D example: the Dzektser seepage model

From Dzektser, E.S. (1972): Generalization of the equation of motion of ground waters with free
surface. Dokl. Akad. Nauk SSSR, 202(5), 1031-1033.

Control 1 } Control
(Boundary flow) i (Boundary flow)

Figure: Underground water seepage model
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A 2D example: the Dzektser seepage model

Let us define hy > 0 the mean hydraulic head, p the coefficient of free porosity, k the permeability of
the medium, ¢y and ¢, the quantities for feeding the flow through its base and free surface.

The evolution of the hydraulic head hq is governed by the following implicit PDE:

€0 + €q

(1—52A)88i—aAho—bA2h + —25,

where ¢ : f is the characteristic length of the nonlocal effect, a = fho, and b = 652a are the

adimensional damping parameters

In the sequel we will consider ¢y = ¢, = 0, and a control at the boundary of the 2D horizontal domain.

Matignon (ISAE, LCIS) PFEM 4 Implicit pHs IFAC W.C., Yokohama 13 /25



A 2D example: the Dzektser seepage model

= Topcrasaas 3 (20) H w3 (23) u npemeGperas TpoN3BeeHAAMA IPOH3BON-
HEIX KAK BeAMYMHAME BEICIIET0 HOPSAKA MAIOCTH, TOMYIHM

podhe kgt ( Bho Bho ) 2 [hﬂ zg: L ( Pho | Ohe )] "

& ot 2%k \ ozt + “dyat 6p° 8z 0
a on B (o 3ho &y + e,
7 + Ty [ho Ty o ( P + By 0z* )] <. (24)

Ecan B (24) npemefpeus TpeThHMU H TETBEDPTHIMH IPOH3BOJHBIMU H CIHTATH
HAIOP He 3aBUCHMEIM OT Z, TO HOAYYHM ypasHenne DyccHmecKa.

Ecam nuHeapnsoBaTh ypaBHeHIe (233, TO JUIAl OHOMEPHOIO caydas uinT-
panmm GymeM mMerb

Oho KRy | @ [0k By o8 o aﬂhu] g+ 8
at =T[E(-a?* 6p° azs) 2% opar |t b @)

o rae .hD — ocpe;melmbm no t nx Harmp

Note that the minus sign in front of the Laplacian operator is to be found in eq (24) of [Dzektser,
1972], and cited as such in e.g. [Perevozhikova and Manakova, (2021)].

However, in several related works, it has been transformed into a plus sign, giving rise to a singularity,
since in this case the unbounded differential operator has a nonzero kernel, a mathematical artifact

which is not based on any physical ground.
Matignon (ISAE, LCIS) PFEM 4 Implicit pHs IFAC W.C., Yokohama 14 /25




the nonlocal model as a pHs

Let us introduce a classical Hamiltonian in nonlocal mechanics:
1
H = 5/ he? + < ||grad(ho) |2 (4)
Q

see e.g. ASTER Code, a simulation environment for EDF (Electricité De France).

The power balance reads:

d
== [aleadt)® - [ b+ [ wiuos [ wfw ©)
dt Q Q o0 o0

with appropriate collocated boundary controls and observations.

The boundary controls uy consist of the flux u; := (agrad(hy) — bgrad(Ahy)) - n, the pressure
L . . _ 5] 0
uy, := grad(ho) - m and the pressure derivative dyu, = grad (%) - n.
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the nonlocal model as a pHs

The lossy dynamical system can be reformulated in the following way, making use of extra
dissipation ports:

(1—e2A)2k 0 div —A ho
grad(hy) =|grad 0 0 agrad(hg) | . (6)
Ahg A 0 0 b Ahg

In (6), the Laplacian operator in front of the time derivative d;hq is very reminiscent of a similar
situation for the numerical treatment of the Incompressible Navier-Stokes equations, studied e.g. in
[Haine and Matignon, 2021]. Indeed in this latter case, minus the Laplacian operator was included in
the constitutive equations relating the vorticity w and the stream function .

The appearance of the time derivative of the boundary control is related to the index 2 of the
underlying Differential Algebraic Equation (DAE), see e.g. [Mehrmann and Unger, 2023] and
references therein.
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A 2D example: the Dzektser seepage model

m structure-preserving discretization with PFEM
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structure-preserving discretization with PFEM

With a mass matrix given by M.

da ho

M f grad
1\/[ 0

o

o' w2
0 0

Matignon (ISAE, LCIS)

:= diag(M; + 2K, My, M), the finite-dimensional pHs reads:

QO Bf 0 EZBPJ Qf
J Cgrad + 0 0 0 Up )
en 0 Bp2 0 J\Zu,
Egrad — Ca 0 igrad ,
EAn 0 Cy i A
0 Yy Bf 0 0 hy
0 y = 0 0 B/
Ip D,2 grad
M2/ \y, 2B, 0 0 en

IFAC W.C., Yokohama
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structure-preserving discretization with PFEM

The discrete Hamiltonian is defined by:

1 1
5 (9 + = leradhd* = 5 (b Maho + %o Kho).

d._
H.—2

The discrete power balance reads:

d d, 1
ﬁrf{d = dt(2 (hOTMlhO + hO £ KI’L()) (7)
d
= —a fgrad [ igrad - biz M, iA + §Z BP,Q U, + h(;r Bf Uy + 52&3 Bp,1 %va (8)
< yy My )

= the finite-dimensional pHs is also lossy.
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A 2D example: the Dzektser seepage model

m simulation results with SCRIMP
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simulation results with SCRIMP

Evolution of Hamiltonian terms with £ = 0.3

S I ey R —— hydraulichead |~ e=mefrmeme—ma=-k
non local hydraulic head
10 —— Hamiltonian
—— fygrad.egrad
8 —— fd.ea
n —— yf.uf atSouth
E f.uf
o] yf.uf atNorth
b= 67 Balance
o
=
S
£ 4
£
-}
T
2
AT
Va
04
2
T T T T T T
0 2 4 6 8 10
time t

Figure: T'=10, dt = 0.1, a = 0.01, b = 0.0001, € = 0.3
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simulation results with SCRIMP

Evolution of Hamiltonian terms with ¢ = 1.0

80
—— hydraulic head
E 60 4 non local hydraulic head
E —— Hamiltonian
E —— grad hg port
§ ap{ — Ahoport
E —— Control at South
2 Control at North
—-- Balance
20+
04 =
T T T T T T
0 2 4 6 8 10

timet

Figure: T'=10, dt = 0.1, a = 0.01, b = 0.0001, ¢ = 1.0
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simulation results with SCRIMP

= More about SCRIMP environment: https://g-haine.github.io/scrimp/
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Conclusion, Outlook & Bibliography
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Conclusion, Outlook & Bibliography

PFEM provides a systematic way to discretize a large class of port-Hamiltonian systems in a
structure-preserving manner.

Furthermore, dissipative systems can easily be tackled by PFEM (with additional DAEs).

The method enjoys:
® a mimetic power balance and modularity;
m a well-known and robust theory of FE;
m low requirement on the choices of FE families;
m specialized numerical linear algebra for sparse matrices;
[

the wide range of FE libraries.
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Outlook: pros and cons of the two formulations (1/2

implicit vs explicit formulation computational time

—— implicit formulation
explicit formulation

time (s)

100 4

FEM step size

In [Heidari & Zwart, 2019], a second Hamiltonian functional is proposed, involving G a symmetric
integral operator: it gives rise to a pH-ODE. The compact operator GG is making explicit the implicit
part (1 —p %) of the original pH-DAE formulation.

= Applying PFEM leads to a G matrix which is dense, and no more sparse, as the discrete
counterpart of the GG operator: thus, one has to deal with an increased computational burden.

Matignon (ISAE, LCIS) PFEM 4 Implicit pHs IFAC W.C., Yokohama 23 /25



Outlook: pros and cons of the two formulations (2/2

The difference between the explicit formulation, and the implicit formulation comes from the
associated boundary conditions.

= Taking them into account should prove possible, thanks to the Stokes-Lagrange framework,
following e.g. [van der Schaft & Maschke, 2018] or [Maschke & van der Schaft, 2023].
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Outlook: a parameterized family of nonlocal models

The appearance of the particular I — £2 A operator in both the implicit models delt with so far is
strongly linked to the choice of the nonlocal kernel, of the form exp(—||z||/¢), see [Eringen, 1983].

= What kind of implicit models would appear with the choice of other nonlocal kernels? Could a
hierarchy of such models or families be built?
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