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Main objective

General purpose
Simulate complex multiphysics open systems while keeping some intrinsic physical properties such as
the energy/power balance

Finite Element Method:
→ Complex geometries are allowed.
→ A wide range of software tools are available.

Port-Hamiltonian Systems (PHS):
→ Keep track of power exchanges throughout the subsystems and with the environment
→ Intrinsic properties are encoded in a Stokes-Dirac structure and Hamiltonian function

Partitioned Finite Element Method (PFEM):
→ It translates the Stokes-Dirac structure into a Dirac structure.
→ The discrete Hamiltonian satisfies the “discrete” power balance.
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Main objective

Already many worked out examples (pHs and PFEM):
1 linear 2D wave PDE
2 Reissner-Mindlin or Kirchhoff-Love plate PDEs
3 2D and 3D Maxwell’s equations
4 2D and 3D heat PDE, with internal energy or entropy as Hamiltonian
5 nonlinear 2D Shallow Water Equation, inviscid or viscous
6 nonlinear 2D Incompressible Navier-Stokes Equations
7 nonlinear 2D Allen-Cahn and Cahn-Hilliard PDEs

=⇒ Apply PFEM to a new class of models: non-local PDEs as implicit pHs:
1 a 1D example: nonlocal vibrations in a viscoelastic nanorod
2 a 2D example: the Dzektser seepage model
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A 1D ex: nonlocal vibrations in a viscoelastic nanorod

In [Heidari & Zwart, 2019], the a wave PDE is considered, with a nonlocal constitutive equation
between the stress σ and the strain ε

σ − µ∂
2σ

∂x2 = E(ε+ τd
∂ε

∂t
) ,

i.e. the stress at a point is related to the strain at all other points in the domain [Eringen, 1983].

The following Hamiltonian is considered

H := 1
2

∫
Ω

(
a2w2 + ρA

(
∂w

∂t

)2
+ µρA

(
∂2w

∂t∂x

)2

+
(
EA+ µa2)(∂w

∂x

)2
)
,

where µ > 0 is the nonlocal parameter, and ε := √µ is the characteristic length of nonlocal effects.

Matignon (ISAE, LCIS) PFEM 4 Implicit pHs IFAC W.C., Yokohama 5 / 25



the nonlocal model as a pHs
Choosing z :=

(
w, ρA∂w

∂t , µρA ∂2w
∂t∂x ,

∂w
∂x , N

)>
as energy variables, and denoting

E :=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , Q :=


a2 0 0 0 0
0 1

ρA
0 0 0

0 0 1
µρA

0 0
0 0 0 EA+ µa2 0
0 0 0 0 1

 ,

the Hamiltonian H rewrites H = 1
2
∫

Ω z
>E>Qz, with the important algebraic property E>Q = Q>E.

The dynamics of the system is given by

Eż(t) = (J −R)e(t), e = Qz (1)

J :=


0 1 0 0 0

−1 0 0 0 ∂
∂x

0 0 0 −1 1
0 0 1 0 0
0 ∂

∂x
−1 0 0

 , R :=


0 0 0 0 0
0 b2 0 0 0
0 0 τdEA+ µb2 0 0
0 0 0 0 0
0 0 0 0 0

 .
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the nonlocal model as a pHs

The power balance reads:

d
dtH(t) = −

∫
Ω
e(t, x) ·Re(t, x)dx+ [u(t, s)y(t, s)]`0 ,≤ [u(t, s)y(t, s)]`0 , (2)

where u and y stand for boundary control and boundary observation. More precisely, let us recall
e2 = ∂w

∂t and e5 = N . Therefore the boundary product of the control and the observation must result
in the product between the velocity and the force at the boundary: u = N, y = ∂w

∂t .

⇒ The descriptor dynamical system is lossy.
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structure-preserving discretization with PFEM
The PFEM strategy

1 Write the weak formulation;
2 Apply an appropriate Stokes identity (such that the chosen boundary control u “appears”);
3 Project on a finite-dimensional space thanks to FEM.

Discretization of the structure and of the constitutive relations are made separately.

The discretized system is: 
Mq · d

dtαq(t) = D · ep(t) +B · u(t),
Mp · d

dtαp(t) = −D> · eq(t),
M∂ · y(t) = B> · eq(t),

together with (linear case){
Mq · eq(t) = M

T
· αq(t),

Mp · ep(t) = M 1
ρ
· αp(t)

=⇒ in general, PFEM for pHs gives rise to finite-dimensional PH-DAEs involving (quite often) sparse
matrices only, and for which efficient numerical methods can be used.
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structure-preserving discretization with PFEM

On the nanorod model as a pHs, we get:
Eż(t) = (J−R) e(t) + Bu(t),

Me(t) = Qz(t),
y(t) = B>e(t).

(3)

The algebraic property E>Q = Q>E translates into E>M−1Q = QM−1E.

The discrete power balance reads

d
dtH

d(t) = −e(t)>Re(t) + u(t)>y(t) ≤ u(t)>y(t),

and is the discrete counterpart of (2).
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simulation results with SCRIMP

Difference between the local model (µ = 0.001), and the nonlocal model (µ = 0.01)

=⇒ More about SCRIMP environment: https://g-haine.github.io/scrimp/
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simulation results with SCRIMP

Role of non-local parameter µ: µ = 0.1, µ = 0.5 and µ = 2.
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A 2D example: the Dzektser seepage model
From Dzektser, E.S. (1972): Generalization of the equation of motion of ground waters with free
surface. Dokl. Akad. Nauk SSSR, 202(5), 1031–1033.

Hydraulic head h(x, y)

x
y

Control
(Boundary flow)

Control
(Boundary flow)

Figure: Underground water seepage model
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A 2D example: the Dzektser seepage model

Let us define h̄0 > 0 the mean hydraulic head, µ the coefficient of free porosity, k the permeability of
the medium, ε0 and εa the quantities for feeding the flow through its base and free surface.

The evolution of the hydraulic head h0 is governed by the following implicit PDE:

(1− ε2∆) ∂h0

∂t
= a∆h0 − b∆2h0 + ε0 + εa

µ
β,

where ε := h̄0√
2β is the characteristic length of the nonlocal effect, a = k

µ h̄0, and b = h̄0
2

6β2 a are the
adimensional damping parameters

In the sequel we will consider ε0 = εa = 0, and a control at the boundary of the 2D horizontal domain.
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A 2D example: the Dzektser seepage model

Note that the minus sign in front of the Laplacian operator is to be found in eq (24) of [Dzektser,
1972], and cited as such in e.g. [Perevozhikova and Manakova, (2021)].
However, in several related works, it has been transformed into a plus sign, giving rise to a singularity,
since in this case the unbounded differential operator has a nonzero kernel, a mathematical artifact
which is not based on any physical ground.
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the nonlocal model as a pHs

Let us introduce a classical Hamiltonian in nonlocal mechanics:

H = 1
2

∫
Ω
h0

2 + ε2 ‖grad(h0)‖2. (4)

see e.g. ASTER Code, a simulation environment for EDF (Electricité De France).

The power balance reads:

d
dtH = −

∫
Ω
a ‖grad(h0)‖2 −

∫
Ω
b (∆h0)2 +

∫
∂Ω

u>∂ y∂ ≤
∫
∂Ω

u>∂ y∂ (5)

with appropriate collocated boundary controls and observations.

The boundary controls u∂ consist of the flux uf := (a grad(h0)− b grad(∆h0)) · n, the pressure
up := grad(h0) · n and the pressure derivative ∂tup = grad

(
∂h0
∂t

)
· n.
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the nonlocal model as a pHs

The lossy dynamical system can be reformulated in the following way, making use of extra
dissipation ports: (1− ε2∆)∂h0

∂t
grad(h0)

∆h0

 =

 0 div −∆
grad 0 0

∆ 0 0

 h0
a grad(h0)
b∆h0

 . (6)

In (6), the Laplacian operator in front of the time derivative ∂th0 is very reminiscent of a similar
situation for the numerical treatment of the Incompressible Navier-Stokes equations, studied e.g. in
[Haine and Matignon, 2021]. Indeed in this latter case, minus the Laplacian operator was included in
the constitutive equations relating the vorticity ω and the stream function ψ.

The appearance of the time derivative of the boundary control is related to the index 2 of the
underlying Differential Algebraic Equation (DAE), see e.g. [Mehrmann and Unger, 2023] and
references therein.
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structure-preserving discretization with PFEM

With a mass matrix given by Mε := diag(M1 + ε2K,Mφ,M2), the finite-dimensional pHs reads:
Mε


d
dth0
fgrad
f∆

 = J

 h0
egrad
e∆

+

Bf 0 ε2Bp,1

0 0 0
0 Bp,2 0


 uf

up
d
dtup

,
(

Mφ 0
0 M2

)(
egrad
e∆

)
=
(

Ca 0
0 Cb

)(
fgrad
f∆

)
,

M∂
f 0 0

0 M∂
p 0

0 0 M∂
p


 y

f

y
p

ydtp

 =

 B>f 0 0
0 0 B>p,2

ε2B>p,1 0 0

 h0
egrad
e∆

 .
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structure-preserving discretization with PFEM

The discrete Hamiltonian is defined by:

Hd := 1
2

∫
Ω

(hd0)2 + ε2‖gradhd0‖2 = 1
2(h0

>M1h0 + ε2h0
>Kh0).

The discrete power balance reads:

d

dt
Hd = d

dt
(1
2(h0

>M1h0 + h0
>ε2Kh0) (7)

= −a f>grad Mφ fgrad − b f
>
∆ M2 f∆ + e>∆ Bp,2 up + h>0 Bf uf + ε2h>0 Bp,1

d

dt
up, (8)

≤ y>
∂

M∂ u∂ (9)

=⇒ the finite-dimensional pHs is also lossy.
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simulation results with SCRIMP

Figure: T = 10, dt = 0.1, a = 0.01, b = 0.0001, ε = 0.3
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simulation results with SCRIMP

Figure: T = 10, dt = 0.1, a = 0.01, b = 0.0001, ε = 1.0
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simulation results with SCRIMP

=⇒ More about SCRIMP environment: https://g-haine.github.io/scrimp/

Matignon (ISAE, LCIS) PFEM 4 Implicit pHs IFAC W.C., Yokohama 21 / 25



Outline

1 Main objective

2 A 1D example: nonlocal vibrations in a viscoelastic nanorod

3 A 2D example: the Dzektser seepage model

4 Conclusion, Outlook & Bibliography

Matignon (ISAE, LCIS) PFEM 4 Implicit pHs IFAC W.C., Yokohama 21 / 25



Conclusion, Outlook & Bibliography

PFEM provides a systematic way to discretize a large class of port-Hamiltonian systems in a
structure-preserving manner.

Furthermore, dissipative systems can easily be tackled by PFEM (with additional DAEs).

The method enjoys:
a mimetic power balance and modularity;
a well-known and robust theory of FE;
low requirement on the choices of FE families;
specialized numerical linear algebra for sparse matrices;
the wide range of FE libraries.
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Outlook: pros and cons of the two formulations (1/2)

In [Heidari & Zwart, 2019], a second Hamiltonian functional is proposed, involving G a symmetric
integral operator: it gives rise to a pH-ODE. The compact operator G is making explicit the implicit
part (1− µ d2

dx2 ) of the original pH-DAE formulation.

⇒ Applying PFEM leads to a G matrix which is dense, and no more sparse, as the discrete
counterpart of the G operator: thus, one has to deal with an increased computational burden.
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Outlook: pros and cons of the two formulations (2/2)

The difference between the explicit formulation, and the implicit formulation comes from the
associated boundary conditions.
=⇒ Taking them into account should prove possible, thanks to the Stokes-Lagrange framework,
following e.g. [van der Schaft & Maschke, 2018] or [Maschke & van der Schaft, 2023].
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Outlook: a parameterized family of nonlocal models

The appearance of the particular I − ε2 ∆ operator in both the implicit models delt with so far is
strongly linked to the choice of the nonlocal kernel, of the form exp(−‖x‖/ε), see [Eringen, 1983].

=⇒ What kind of implicit models would appear with the choice of other nonlocal kernels? Could a
hierarchy of such models or families be built?
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