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Introduction

Aim

Recast the ‘vorticity–stream formulation’ of the 2D incompressible Navier-Stokes equations as a
port-Hamiltonian system;
Compare the ‘vorticity–stream’ and ‘velocity–pressure’ formulations;
Apply the structure-preserving spatial-discretization Partitioned Finite Element Method (PFEM);
Investigate numerical simulations with comparison against the lid-driven cavity benchmarks.

Major differences with previous PFEM applications

Modulated Stokes-Dirac structure;
Differential constitutive relation (in space).
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Isentropic Newtonian fluids
Conservation of mass:

∂tρ(t,x) + div (ρ(t,x)v(t,x)) = 0,

where ρ is the mass density and v is the particle velocity, at time t and point x.

Linear momentum evolution (for a Newtonian fluid):

ρ (∂t + v · grad) v = −grad(P ) + µ∆v + (λ+ µ) grad (div (v)) ,

where P is the static pressure, µ the dynamic viscosity and λ+ 2
3µ the bulk viscosity.

The latter is neglected under Stokes assumption: λ = − 2
3µ.

Using −∆ = curl curl− grad div:

ρ ∂tv = −ρ (v · grad)v − grad(P )− µ︸︷︷︸
µc

curl (curl (v)) + (λ+ 2µ)︸ ︷︷ ︸
µd= 4

3µ

grad (div (v)) .
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Mora et al. IFAC-WC (2020)

Hamiltonian: H(ρ,v) := 1
2

∫
Ω
ρ ‖v‖2 +

∫
Ω
ρ e(ρ), where e is the internal energy density.

With density ρ and velocity v as energy variables, the co-energy variables are:
eρ := δρH = 1

2 ‖v‖
2 + P

ρ = h(ρ,v), the enthalpy,
ev := δρvH = v, the velocity.

Port-Hamiltonian system (when supplemented with boundary controls and collocated observations):
∂tρ
ρ ∂tv
f c
fd

 =


0 −div (ρ ·) 0 0

−ρgrad ω ∧ · −curl grad
0 curl 0 0
0 div 0 0



eρ
ev
ec
ed

 ,

eρ = h, f c := ω = curl (v) ,
ev = v, fd := div (v) ,

ec = µcf c, ed = µdfd.

Power balance:
d
dtH = −

∫
Ω
µd f

2
d −

∫
Ω
µc f

2
c +

∫
∂Ω

[(µd div (v)− ρ eρ) ev · n+ µc ω · (ev ∧ n)] .
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Incompressible and rotational fluids
Velocity–pressure formulation of incompressible flow is a particular case.
Incompressibility  ρ ≡ ρ0 and div (v) = 0, thus:

∂tρ
ρ0 ∂tv
f c
0

 =


0 −div (ρ ·) 0 0

−ρgrad ω ∧ · −curl grad
0 curl 0 0
0 div 0 0



eρ
ev
ec
ed

 ,

eρ = h, f c := ω = curl (v) ,
ev = v, fd := div (v) ,

ec = µcf c, ed = −p− 1
2 ‖v‖

2
,

The Lagrange multiplier ed is the opposite of the total pressure (it is no more thermodynamic).

The Hamiltonian is now the kinetic energy:

H(v) := 1
2

∫
Ω
ρ0 ‖v‖2 ,

satisfying the power balance:

d
dtH = −

∫
Ω
µc f

2
c +

∫
∂Ω

[ed ev · n+ µcω · (ev ∧ n)] .

The available boundary controls are the normal and tangential components of v: ev · n and ev ∧ n.
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Incompressible and rotational fluids

Theorem.
In 2D, if Ω is simply connected:

∀v ∈
(
L2(Ω)

)2
, div (v) = 0, ∃!ψ ∈ H1(Ω),

such that v = grad⊥ (ψ) :=
(
∂yψ
−∂xψ

)
.

ψ is called the stream function: level curves of ψ are tangent to the vector field v.

Consequences on the curl operator, the vorticity ω becomes a scalar field ω:

ω := curl

v1
v2
0

 =

 0
0

∂xv2 − ∂yv1

 =

0
0
ω

  curl2D

(
v1
v2

)
:= ∂xv2 − ∂yv1 = ω,

−∆ = curl curl  −∆ = curl2D grad⊥

The integration by parts then reads:∫
Ω

curl2D (v) w =
∫

Ω
v ·grad⊥ (w)+

∫
∂Ω

(Rv) ·n γ0(w), curl2D and grad⊥ are formal adjoints!

where R is the rotation of angle −π2 in the plane.
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Incompressible and rotational fluids
Recall the linear momentum evolution (with ρ ≡ ρ0 and div (v) = 0):

ρ0 (∂t + v · grad) v = −grad(P ) + µ∆v.

The pressure P , as a Lagrange multiplier of the incompressibility constraint, is difficult to characterize.

Vorticity–stream function formulation gets rid of P by taking the curl2D of the above equation:

ρ0 ∂tω = div
(
ω grad⊥ (ψ)

)
︸ ︷︷ ︸

J(ω)ψ

−µc curl2D

(
grad⊥ (ω)

)
︸ ︷︷ ︸

µc ∆ω

, using

curl2D grad ≡ 0,
(v · grad) = grad

(
‖v‖2

2

)
+ ω ∧ v,

curl2D

(
ω ∧ grad⊥ (ψ)

)
= J(ω)ψ.

Remark that J(ω) is formally skew-symmetric (since grad · grad⊥ ≡ 0).

The Hamiltonian H(ω) = 1
2

∫
Ω
ρ0 ‖v‖2, with ω as energy variable, leads to the co-energy

variable (Olver, 1993):
eω := δρ0

ω H = ψ.
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Incompressible and rotational fluids
Thanks to −∆ = div grad = curl2D grad⊥ and ω = −∆ψ:

ρ0 ∂tω = J(ω)ψ − µc
(

curl2D grad⊥
)2

(ψ) .

Dissipative pHs under the ‘J −R’ form, with R = µc

(
curl2D grad⊥

)2
= µc ∆2 the bi-Laplacian.

Adding resistive ports (together with suitable boundary ports), the pHs can be rewritten:(
ρ0 ∂tω
fc

)
=
[

J(ω) −curl2D grad⊥

curl2D grad⊥ 0

](
eω
ec

)
,

eω = ψ, fc = ω
ec = µcfc,

allowing for the definition of a (modulated by the energy variable ω) Stokes-Dirac structure.

Why curl2D grad⊥ over div grad? Because

ω︷ ︸︸ ︷
curl2D grad⊥ ψ︸ ︷︷ ︸

v

, while
ω︷ ︸︸ ︷

div gradψ︸ ︷︷ ︸
???

...

Power balance:
d
dtH = −

∫
Ω
µc f

2
c +

∫
∂Ω

[
ω eω grad⊥ (eω) · n+ µc (eω grad (ω) · n− ω grad (eω) · n)

]
.
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A formal abstract class of distributed pHs
The energy variables α;
The Hamiltonian H(α(t));
The co-energy variables eα := δαH assumed to be given by Lα;
The structure operator J , formally skew-symmetric ;
The resistive/dissipative operator R = GSG? and its related flow and effort fR and eR;
The explicit control operator Bexp (given by an operator γexp, e.g. a boundary trace);
The implicit control operator Bimp (given by an operator γimp, e.g. a boundary trace);
The explicit input uexp and the explicit collocated output yexp;
The implicit input uimp and the implicit collocated output yimp.

Energy storage port→

Resistive port→

Boundary ports→

Constitutive relations→


∂tα(t)
fR(t)
−yexp(t)
uimp(t)

 =


J G
−G? 0 Bexp −Bimp

−B?exp
B?imp

0 0
0 0




eα(t)
eR(t)
uexp(t)
−yimp(t)

 ,

eα = Lα, eR = SfR,

satisfying an abstract Green’s formula (formally):
〈Jeα +GeR,φ〉 = −〈eα, Jφ〉+ 〈eR, G?φ〉+

〈
γexpeα, B

?
expφ

〉
+
〈
γimpeα, B

?
impφ

〉
.
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Co-energy formulation and strategy
The linear constitutive relations can be taken into account inside the structure as follows:

Energy storage port→

Resistive port→

Boundary ports→


L−1∂teα(t)
S−1eR(t)
−yexp(t)
uimp(t)

 =


J G
−G? 0 Bexp −Bimp

−B?exp
B?imp

0 0
0 0




eα(t)
eR(t)
uexp(t)
−yimp(t)

 ,

Remark: taking the constitutive relations into account on the right-hand side (energy formulation)
would raise numerical difficulties (such as matrix inversions).

The Partitioned Finite Element Method:
1 Write the variational formulation of the co-energy formulation;
2 Apply Green’s formula on a partition of the system, in order to make the explicit control and the

implicit observation appear;
3 Use conforming mixed finite element spaces of approximation.

Remark: explicit and implicit components in Green’s formula are often exchangeable. It depends on
the partition of the system, and has an influence on the finite element choices.
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Application to the vorticity–stream function formulation

The co-energy formulation is arduous: the constitutive relation ω = −∆ψ = −∆eω is differential!

(
−ρ0 ∆∂teω
µ−1
c ec

)
=
[

div
(
ω grad⊥·

)
−curl2D grad⊥

curl2D grad⊥ 0

](
eω
ec

)
,

grad⊥ (eω) · n = un, yn = γ0 (ωeω) ,
grad (eω) · n = uτ , yτ = −γ0 (ec) ,
uimp = γ0 (eω) , yimp = grad (ec) · n.

The weak form:

−〈ρ0 ∂t∆eω, φ〉 =
〈

div
(
ω
(
grad⊥eω

))
, φ
〉

−
〈

curl2D

(
grad⊥ (ec)

)
, φ
〉
,〈

µ−1
c ec, ξ

〉
=

〈
curl2D

(
grad⊥ (eω)

)
, ξ
〉
,

〈uimp, θimp〉 = 〈γ0 (eω) , θimp〉 ,
〈yτ , θτ 〉 = 〈−γ0 (ec) , θτ 〉 ,
〈yn, θn〉 = 〈γ0 (ωeω) , θn〉 .
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Application to the vorticity–stream function formulation

Integration by parts for each second order differential operator, using Rgrad⊥ = −grad:〈
div
(
ω grad⊥ (eω)

)
, φ
〉

= −
〈
µ−1
c ec grad⊥ (eω) ,grad (φ)

〉
+
〈
un, γ0

(
µ−1
c ec φ

)〉
,

−
〈

curl2D

(
grad⊥ (ec)

)
, φ
〉

= −
〈
grad⊥ (ec) ,grad⊥ (φ)

〉
+ 〈yimp, γ0 (φ)〉 ,

〈
curl2D

(
grad⊥ (eω)

)
, ξ
〉

=
〈
grad⊥ (eω) ,grad⊥ (ξ)

〉
− 〈uτ , γ0 (ξ)〉 .

The new term compare to usual linear continuous constitutive relations:

−〈ρ0 ∂t∆eω, φ〉 = 〈ρ0 grad (∂teω) ,grad (φ)〉 − 〈∂tuτ , γ0 (ρ0 φ)〉 .

Numerically, the time derivative of the tangent control is required!
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Application to the vorticity–stream function formulation
Variables with the same index are projected on the same finite-dimensional space:

eapω (t,x) =
Nω∑
j=1

ejω(t)φj(x) = Φ>(x) · eω(t),

eapc (t,x) =
Nc∑
`=1

e`c(t) ξ`(x) = Ξ>(x) · ec(t),

uapimp(t,x) =
Nimp∑
n=1

unimp(t) θnimp(x) = Θ>imp(x) · uimp(t),

yapimp(t,x) =
Nimp∑
n=1

ynimp(t) θnimp(x) = Θ>imp(x) · yimp(t),

uapτ (t,x)u = Θ>τ (x) · uτ (t), yapτ (t,x) = Θ>τ (x) · y
τ
(t),

∂tu
ap
τ (t,x)u = Θ>τ (x) · d

dtuτ (t),
(
ydt
τ

)ap (t,x) = Θ>τ (x) · ydt
τ

(t),

uapn (t,x) = Θ>n(x) · un(t), yapn (t,x) = Θ>n(x) · y
n

(t).
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Application to the vorticity–stream function formulation

Diag


Mρ0

Mµ−1
c

Mimp
Mτ

Mρ0
τ

Mn





d
dteω(t)
ec(t)
uimp(t)
−y

τ
(t)

−ydt
τ

(t)
−y

n
(t)

 =



Jω −G −Bimp 0 Bτ,dt Bn
G> 0 0 −Bτ 0 0
B>imp 0 0 0 0 0

0 B>τ 0 0 0 0
−B>τ,dt 0 0 0 0 0
−B>n 0 0 0 0 0





eω(t)
ec(t)
−yimp(t)
uτ (t)
d
dtuτ (t)
un(t)

 ,

(Mρ0)i,j =
∫

Ω
grad

(
φj
)
· ρ0 grad

(
φi
)
,

(
Mµ−1

c

)
k,`

=
∫

Ω
ξ` µ−1

c ξk,

(Mimp)m,n =
∫
∂Ω
θnimp θ

m
imp, (Mτ )p,q =

∫
∂Ω
θqτ θ

p
τ , (Mρ0

τ )p,q =
∫
∂Ω
θqτ ρ0 θ

p
τ , (Mn)r,s =

∫
∂Ω
θsn θ

r
n,

(Jω)i,j = −
∫

Ω
ω grad⊥

(
φj
)
· grad

(
φi
)
, (G)i,` =

∫
Ω

grad⊥
(
ξ`
)
· grad⊥

(
φi
)
,

(Bimp)i,n =
∫
∂Ω
θnimp γ0

(
φi
)
, (Bn)i,s =

∫
∂Ω
θsn γ0

(
φi
)
,

(Bτ )k,q =
∫
∂Ω
θqτ γ0

(
ξk
)
, (Bτ,dt)i,q =

∫
∂Ω
θqτ γ0

(
φi
)
.
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Application to the vorticity–stream function formulation
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Simulations: The lid-driven cavity benchmarks

SCRIMP

Simulation and ContRol of Interactions in Multi-Physics

Actual developers: F. Monteghetti, A. Bendimerad-
Hohl, G. Haine

Former developers: A. Brugnoli, A. Serhani, X. Vasseur

Python programming language;
GMSH - mesh generator;
FEniCS - finite element library;
multiphenics - mixed FE for FEniCS;
PETSc TS - time integration of DAEs.

Benchmarks from http://www.zetacomp.com

uτ = un = 0

u
τ

=
u
n

=
0

u
τ

=
u
n

=
0

uτ = 1, un = 0
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Simulations: The lid-driven cavity benchmarks

µc = 10−2 (∼ Reynolds 102)

P2 Lagrange elements for eω = ψ;
P1 Lagrange elements for ec = ω;
P1 Lagrange elements at the boundary;
1 863 vertices, about 10 000 dofs;
Backward Euler time scheme.
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Simulations: The lid-driven cavity benchmarks

µc = 2.5 ∗ 10−3 (∼ Reynolds 4 ∗ 102)

P2 Lagrange elements for eω = ψ;
P1 Lagrange elements for ec = ω;
P1 Lagrange elements at the boundary;
7 209 vertices, about 40 000 dofs;
Backward Euler time scheme.
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Simulations: The lid-driven cavity benchmarks

µc = 10−3 (∼ Reynolds 103)
Upper-right corner x10

y

P3 Lagrange elements for eω = ψ;
P2 Lagrange elements for ec = ω;
P1 Lagrange elements at the boundary;
28 745 vertices, about 360 000 dofs;
Backward Euler time scheme.
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Conclusion and perspectives

Summary

Successful port-Hamiltonian formulation of the vorticity–stream function formulation of a 2D
isentropic and incompressible viscous fluid flow:

Modulated Stokes-Dirac structure (non-linearity);
Differential (in space) dissipative operator R ∼ ∆2;
Differential (in space) constitutive relation −∆;

Structure-preserving discretization;
Efficient simulations compare against celebrated CFD benchmarks.

Further works

Study the efficiency of the discretised vorticity–stream function formulation against the usual
velocity–pressure formulation;
Reduce the viscosity parameter (∼ increase the Reynolds numbers);
Investigate fluid stabilization thanks to the pHs formulation.
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PFEM application to the velocity–pressure formulation
The co-energy formulation:ρ0 ∂tev
µ−1
c ec
uimp

 =

µ−1
c ec ∧ · −curl grad
curl 0 0
div 0 0

 ev
ec
−yimp

 ,

ev · n = γn (ev) = un, yn = γ0 (yimp) ,
ev ∧ n = γτ (ev) = uτ , yτ = γ0 (ec) ,
uimp = 0, yimp = p+ 1

2 ‖v‖
2
.

The weak form:
〈ρ0 ∂tev,φ〉 =

〈
µ−1
c ec ∧ ev,φ

〉
−〈curl (ec) ,φ〉 + 〈grad (−yimp) ,φ〉 ,〈

µ−1
c ec, ξ

〉
= 〈curl (ev) , ξ〉 ,

〈uimp, θimp〉 = 〈div (ev) , θimp〉 ,
〈yτ ,θτ 〉 = 〈γ0 (ec) ,θτ 〉 ,
〈yn, θn〉 = 〈γ0 (yimp) , θn〉 .

Integration by parts of the second and third lines:
〈ρ0 ∂tev,φ〉 =

〈
µ−1
c ec ∧ ev,φ

〉
−〈curl (ec) ,φ〉 + 〈grad (−yimp) ,φ〉 ,〈

µ−1
c ec, ξ

〉
= 〈ev, curl (ξ)〉 + 〈uτ ,γ0 (ξ)〉 ,

〈uimp, θimp〉 = −〈ev,grad (θimp)〉 + 〈un, γ0 (θimp)〉 ,
〈yτ ,θτ 〉 = 〈γ0 (ec) ,θτ 〉 ,
〈yn, θn〉 = 〈γ0 (yimp) , θn〉 .
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PFEM application to the velocity–pressure formulation
Variables with the same index are projected on the same finite element bases:

eapv (t,x) =
∑Nv

j ejv(t)φj(x) = Φ>(x) · ev(t), eapc (t,x) = Ξ>(x) · ec(t),
uapimp(t,x) = Θ>imp(x) · uimp(t), uapτ (t,x) = Θ>τ (x) · uτ (t), uapn (t,x) = Θ>n(x) · un(t),
yapimp(t,x) = Θ>imp(x) · yimp(t), yapτ (t,x) = Θ>τ (x) · y

τ
(t), yapn (t,x) = Θ>n(x) · y

n
(t),

Diag
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Jω −C G 0 0
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

ev(t)
ec(t)
−yimp(t)
uτ (t)
un(t)

 ,

(Mρ0)i,j =
∫

Ω
φj · ρ0φ

i,
(
Mµ−1

c

)
k,`

=
∫

Ω
ξ` · µ−1

c ξ
k, (Mimp)m,n =

∫
Ω
θnimp θ

m
imp,

(Mτ )p,q =
∫
∂Ω
θqτ · θ

p
τ , (Mn)r,s =

∫
∂Ω
θsn θ

r
n,

(Jω)i,j =
∫

Ω
µ−1
c eapc ·

(
φj ∧ φi

)
, (C)i,` =

∫
Ω

curl
(
ξ`
)
· φi, (G)i,n =

∫
Ω

grad
(
θnimp

)
· φi,

(Bτ )k,q =
∫
∂Ω
θqτ · γ0

(
ξk
)
, (Bn)m,s =

∫
∂Ω
θsnγ0

(
θmimp

)
.
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