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Introduction

m Recast the ‘vorticity—stream formulation' of the 2D incompressible Navier-Stokes equations as a
port-Hamiltonian system;

m Compare the ‘vorticity—stream' and ‘velocity—pressure' formulations;

m Apply the structure-preserving spatial-discretization Partitioned Finite Element Method (PFEM);

m Investigate numerical simulations with comparison against the lid-driven cavity benchmarks.
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Introduction

m Recast the ‘vorticity—stream formulation' of the 2D incompressible Navier-Stokes equations as a
port-Hamiltonian system;

m Compare the ‘vorticity—stream' and ‘velocity—pressure' formulations;

m Apply the structure-preserving spatial-discretization Partitioned Finite Element Method (PFEM);

m Investigate numerical simulations with comparison against the lid-driven cavity benchmarks.

Major differences with previous PFEM applications

m Modulated Stokes-Dirac structure;
m Differential constitutive relation (in space).
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Isentropic Newtonian fluids

Conservation of mass:

Op(t, ) + div (p(t, ) v(t, x)) = 0,

where p is the mass density and v is the particle velocity, at time ¢ and point .
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Isentropic Newtonian fluids

Conservation of mass:

Op(t, ) + div (p(t, ) v(t, x)) = 0,

where p is the mass density and v is the particle velocity, at time ¢ and point .

Linear momentum evolution (for a Newtonian fluid):

p (0 +v-grad) v = —grad(P) + p Av + (A + p) grad (div (v)),

where P is the static pressure, p the dynamic viscosity and A + %,u the bulk viscosity.

The latter is neglected under Stokes assumption: \ = f%u.
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Isentropic Newtonian fluids

Conservation of mass:

Op(t, ) + div (p(t, ) v(t, x)) = 0,

where p is the mass density and v is the particle velocity, at time ¢ and point .

Linear momentum evolution (for a Newtonian fluid):

p (0 +v-grad) v = —grad(P) + p Av + (A + p) grad (div (v)),

where P is the static pressure, p the dynamic viscosity and A + %,u the bulk viscosity.

The latter is neglected under Stokes assumption: \ = f%u.

Using —A = curlcurl — grad div:

pOv = —p (v -grad) v — grad(P) — \/ﬁ/ curl (curl (v)) + (A + 2p) grad (div (v)) .

e /m:%u

Haine, Matignon (ISAE) INSE as pHs: velocity versus vorticity LHMNLC21, Berlin (Hybrid)



Modelling as a port-Hamiltonian system
m Compressible and rotational fluids
m Incompressible and rotational fluids
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Mora et al. IFAC-WC (2020

1
Hamiltonian: H(p,v) := 5/ pllv]? —|—/ pe(p), where e is the internal energy density.
Q Q
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Mora et al. IFAC-WC (2020

1
Hamiltonian: H(p,v) := 5/ pllv]? +/ pe(p), where e is the internal energy density.
Q Q

With density p and velocity v as energy variables, the co-energy variables are:
€p:=0,H =13 ||vH2 + £ = h(p,v), the enthalpy,
ey :=05H = v, the vefocity.
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Mora et al. IFAC-WC (2020

1
Hamiltonian: H(p,v) := = o|® + e(p), where e is the internal energy density.
P 2 /o P o pelp

With density p and velocity v as energy variables, the co-energy variables are:
€p:=0,H =13 ||vH2 + £ = h(p,v), the enthalpy,
ey :=05H = v, the vefocity.

J

Port-Hamiltonian system (when supplemented with boundary controls and collocated observations):

Orp 0 —div(p-) 0 0 ep e, = h, foi=w=curl(v),
pOw | |—pgrad WA - —curl grad| | e, ey =, fa:=div (v),

fe | 0 curl 0 0 e |’

fa 0 div 0 0 eq e.=(fo ed=llafd
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Mora et al. IFAC-WC (2020

1
Hamiltonian: H(p,v) := = o|® + e(p), where e is the internal energy density.
P 2 /o P o pelp

With density p and velocity v as energy variables, the co-energy variables are:
€p:=0,H =13 ||vH2 + £ = h(p,v), the enthalpy,
ey :=05H = v, the vefocity.

J

Port-Hamiltonian system (when supplemented with boundary controls and collocated observations):

Orp 0 —div(p-) 0 0 ep e, = h, foi=w=curl(v),
pOw | |—pgrad WA - —curl grad| | e, ey =, fa:=div (v),

fe | 0 curl 0 0 e |’

fa 0 div 0 0 eq e.=(fo ed=llafd

Power ballance:
—H = _/ Hd f(? - He f?""/ [(:u({div(v) _pep) €y -TL-I—/,L(Vf(AJ'(ev/\’I’L)].
dt Q Q 0
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Modelling as a port-Hamiltonian system

m Incompressible and rotational fluids
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Incompressible and rotational fluids

Velocity—pressure formulation of incompressible flow is a particular case.
Incompressibility ~~ p = py and div (v) = 0, thus:

Op 0 —div (p-) 0 0 ep e, =h, foi=w=curl(v),
poOw | |—pgrad WA - —curl grad €y €y, =, fa :==div (v),

fe 0 curl 0 0 e. |’

0 0 div 0 0 ea) ec=jfe ea=-p—3|v

The Lagrange multiplier e; is the opposite of the total pressure (it is no more thermodynamic).
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Incompressible and rotational fluids

Velocity—pressure formulation of incompressible flow is a particular case.
Incompressibility ~~ p = py and div (v) = 0, thus:

Op 0 —div (p-) 0 0 ep e, =h, foi=w=curl(v),
poOw | |—pgrad WA - —curl grad €y €y, =, fa :==div (v),

fe 0 curl 0 0 e. |’

0 0 div 0 0 ed ec=pefo €1=-p—3 Hv”‘z7

The Lagrange multiplier e; is the opposite of the total pressure (it is no more thermodynamic).
The Hamiltonian is now the kinetic energy:

1
Hw) =5 [ mlol,
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Incompressible and rotational fluids

Velocity—pressure formulation of incompressible flow is a particular case.
Incompressibility ~~ p = py and div (v) = 0, thus:

Op 0 —div (p-) 0 0 ep e, =h, foi=w=curl(v),
poOw | |—pgrad WA - —curl grad €y €y, =, fa :==div (v),
fe o 0 curl 0 0 e. |’
0 0 div 0 0 ed ec=pefo €1=-p—3 Hv”‘z7

The Lagrange multiplier e; is the opposite of the total pressure (it is no more thermodynamic).
The Hamiltonian is now the kinetic energy:

1
Hw) =5 [ mlol,

satisfying the power balance:

d
—H=- ,u(.,fi—«—/ [ed€y -1+ 1w - (€, AM)].
dt Q o9

The available boundary controls are the normal and tangential components of v: e, -1 and e, A n.
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Incompressible and rotational fluids

N

Theorem.
In 2D, if €2 is simply connected:

instantaneous local
velocity vectors

Vo e (L3(Q))°, div(v) = 0, 3y € HY(Q),
such that v = grad™ (¢) := (_83’1/} ) .

1 is called the stream function: level curves of ¥ are tangent to the vector field v.
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Incompressible and rotational fluids

N

Theorem.
In 2D, if €2 is simply connected:

instantaneous local
velocity vectors

Vo e (L3(Q))°, div(v) = 0, 3y € HY(Q),
such that v = grad™ (¢) := (_83’1/} ) .

1 is called the stream function: level curves of ¥ are tangent to the vector field v.

\. J

Consequences on the curl operator, the vorticity w becomes a scalar field w:

1 0 0 U1 o _ _
w = curl vy _ 0 _ 0 CUI"IQD <U2) = 8;’02 8y1}1 = W,
0 Ozv2 — Oy1 w —A =curlcurl ~ —A = curlyp grad™®
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Incompressible and rotational fluids

N

instantaneous local
velocity vectors

Theorem.
In 2D, if €2 is simply connected:

Vo e (L3(Q))°, div(v) = 0, 3y € HY(Q),
such that v = grad™ (¢) := (_83’1/} ) .

1 is called the stream function: level curves of ¥ are tangent to the vector field v.

\.

Consequences on the curl operator, the vorticity w becomes a scalar field w:

vy 0 0 v\ ._ _ _
w:=curl [v | = 0 =[0] ~ curlyp (vg) = Oav2 — Oyv1 = w,
0 Ozv2 — Oy1 w —A =curlcurl ~ —A = curlyp grad™®

The integration by parts then reads:

/ curlep (v) w = / v-grad™ (w)—|—/ (Rv) -nyo(w), curlyp and grad™ are formal adjoints!
Q Q a0

where R is the rotation of angle —7 in the plane.

7/21
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Incompressible and rotational fluids

Recall the linear momentum evolution (with p = p; and div (v) = 0):
po (0r + v - grad) v = —grad(P) + p Av.

The pressure P, as a Lagrange multiplier of the incompressibility constraint, is difficult to characterize.
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Incompressible and rotational fluids

Recall the linear momentum evolution (with p = p; and div (v) = 0):
po (0r + v - grad) v = —grad(P) + p Av.

The pressure P, as a Lagrange multiplier of the incompressibility constraint, is difficult to characterize.
Vorticity—stream function formulation gets rid of P by taking the curlop of the above equation:

curlop grad = 0,

llv]I*

po Oyw = div (u grad™® (w)) — i curlap (gradl (w)), using (v - grad) = grad ( 2
curlop (w A grad™® (1/1)) = J(w) .

N—

+wAwv,

J(w) 9 pe Aw

Remark that J(w) is formally skew-symmetric (since grad - grad®t = 0).
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Incompressible and rotational fluids

Recall the linear momentum evolution (with p = p; and div (v) = 0):
po (0r + v - grad) v = —grad(P) + p Av.

The pressure P, as a Lagrange multiplier of the incompressibility constraint, is difficult to characterize.
Vorticity—stream function formulation gets rid of P by taking the curlop of the above equation:

curlop grad = 0,

llv]I*

po Oyw = div (u grad™® (w)) — i curlap (gradl (w)), using (v - grad) = grad ( 2
curlop (w A grad™® (1/1)) = J(w) .

N—

+wAwv,

J(w) 9 pe Aw

Remark that J(w) is formally skew-symmetric (since grad - grad®t = 0).

1
The Hamiltonian H(w) = f/ 00 H'u||2 with w as energy variable, leads to the co-energy
Q

2
variable (Olver, 1993):
ew = 0°H = 1.
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Incompressible and rotational fluids

Thanks to —A = divgrad = curlyp grad® and w = —Aq:
12
po Opw = J(w)h — pi. (CuI'lgD grad ) (¥) .

2
Dissipative pHs under the ‘J — R’ form, with R = /.. (curlgD gradl) = /1. A? the bi-Laplacian.
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Incompressible and rotational fluids

Thanks to —A = divgrad = curlyp grad® and w = —Aq:
12
po Opw = J(w)h — pi. (CuI'lgD grad ) ().

2
Dissipative pHs under the ‘J — R’ form, with R = /.. (curlgD gradl) = /1. A? the bi-Laplacian.
Adding resistive ports (together with suitable boundary ports), the pHs can be rewritten:

<p0 8tw> _ [ J(w) —curlap gradL] <ew> €w = 1, fe=w

fe curlyp grad™ 0 €c €c = flcfes

allowing for the definition of a (modulated by the energy variable w) Stokes-Dirac structure.
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Incompressible and rotational fluids

Thanks to —A = divgrad = curlyp grad® and w = —Aq:
12
po Opw = J(w)h — pi. (CuI'lgD grad ) ().

2
Dissipative pHs under the ‘J — R’ form, with R = /.. (curlgD gradl) = /1. A? the bi-Laplacian.
Adding resistive ports (together with suitable boundary ports), the pHs can be rewritten:

<p0 8tw> _ [ J(w) —curlap gradL] <ew> €w = 1, fe=w

fe curlyp grad™ 0 €c €c = flcfes

allowing for the definition of a (modulated by the energy variable w) Stokes-Dirac structure.

Why curlop grad™® over div grad?
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Incompressible and rotational fluids

Thanks to —A = divgrad = curlyp grad® and w = —Aq:
12
po Opw = J(w)h — pi. (CuI'lgD grad ) ().

2
Dissipative pHs under the ‘J — R’ form, with R = /.. (curlgD gradl) = /1. A? the bi-Laplacian.
Adding resistive ports (together with suitable boundary ports), the pHs can be rewritten:

<p0 8tw> _ [ J(w) —curlap gradL] <ew> €w = 1, fe=w

fe curlyp grad™ 0 €c €c = flcfes

allowing for the definition of a (modulated by the energy variable w) Stokes-Dirac structure.

w w

—— —_—
Why curlop grad™® over div grad? Because curlop grad™ ¢, while div grad ...
—_—— N——
v 777
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Incompressible and rotational fluids

Thanks to —A = divgrad = curlyp grad® and w = —Aq:
12
po Opw = J(w)h — pi. (CuI'lgD grad ) ().

2
Dissipative pHs under the ‘J — R’ form, with R = /.. (curlgD gradl) = /1. A? the bi-Laplacian.
Adding resistive ports (together with suitable boundary ports), the pHs can be rewritten:

<p0 8tw> _ [ J(w) —curlap gradL] <ew> €w = 1, fe=w

fe curlyp grad™ 0 €c €c = flcfes

allowing for the definition of a (modulated by the energy variable w) Stokes-Dirac structure.
w

——

w

—_—
Why curlop grad™® over div grad? Because curlop grad™ ¢, while div grad ...
—_—— N——
v 777

Power balance:
—H = f/ fe f2 + / [w e grad® (ey) - m + 1. (e, grad (w) - n — wgrad (e,,) - n)} .
dt Q o9
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Structure-preserving discretisation in 2D
m Strategy of discretization
m Application to the vorticity—stream function formulation
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A formal abstract class of distributed pHs

m The energy variables «;

m The Hamiltonian 7{(«a(t));

m The co-energy variables e, := §,H assumed to be given by Lo

m The structure operator J, formally skew-symmetric;

m The resistive/dissipative operator R = GSG* and its related flow and effort f and eg;
m The explicit control operator By, (given by an operator vexp, €.8. a boundary trace);

m The implicit control operator Bi,,, (given by an operator imp, €.8. a boundary trace);
m The explicit input u.y, and the explicit collocated output y.yp;

m The implicit input u;,,;, and the implicit collocated output y;y,.

Energy storage port — 6t04 (t) J G B B €En (t)
exp ~ Pimp
Resistive port — 'fR(t) — 7G** o O ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 6 R(t) ,,,,, ,
Bound —Yexp (t> Bexp : 0 0 ueXP(t)
oundary ports — uimp t) Bi*mp 0 0 ~Yimp (t)
Constitutive relations — Ea = La, eR = Sva

satisfying an abstract Green’s formula (formally):
<Jea + Geg, ¢> = <ea7 J¢> + <6R7 G*¢> + <'76xpeou ngp¢> + <7impeaa Bl*mp¢> .
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Co-energy formulation and strategy

The linear constitutive relations can be taken into account inside the structure as follows:

Energy storage port — L _1875 €a (t) J G B —_B. €a <t)
Resisti . S 16R(t) -G~ 0 @37 i eR(t)
esistive port — |l = | kT N bl
P yexp (t) ngp 0 0 ueXp (t)
Boundary ports — Wimp (t) Bi*mp 0 0 —Yimp (t)

Remark: taking the constitutive relations into account on the right-hand side (energy formulation)
would raise numerical difficulties (such as matrix inversions).
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Co-energy formulation and strategy

The linear constitutive relations can be taken into account inside the structure as follows:

Energy storage port — L _lat €a (t) J G B _ B €a (t)
Resisti . S 16R(t) -G~ 0 @37 i eR(t)
esistive port — |l = ||vo000s00088p5000000000500500050900005090000500 || | loonenansEabedhoans ,
g Yexp(t) Bh, 0 0 U (1)
Boundary ports — Wimp (t) Bi*mp 0 0 Yimp (t)

Remark: taking the constitutive relations into account on the right-hand side (energy formulation)
would raise numerical difficulties (such as matrix inversions).

The Partitioned Finite Element Method:
1 Write the variational formulation of the co-energy formulation;

2 Apply Green's formula on a partition of the system, in order to make the explicit control and the
implicit observation appear;

3 Use conforming mixed finite element spaces of approximation.

Remark: explicit and implicit components in Green's formula are often exchangeable. It depends on
the partition of the system, and has an influence on the finite element choices.
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Structure-preserving discretisation in 2D

m Application to the vorticity—stream function formulation
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Application to the vorticity—stream function formulation

The co-energy formulation is arduous: the constitutive relation w = —Ay = —Ae,, is differential!
1L _ _
—po Adey, div (w grad*) —curlop grad™® | /e, grad™ () 1 = tn, yn =0 (Weu),
-1 = N , grad (ew) N =Ur, Yr = —70 (f)c )
He ™ €c curlyp grad 0 Ee

Uimp = Y0 (€w) , Yimp = grad (ec) - n.
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Application to the vorticity—stream function formulation

The co-energy formulation is arduous: the constitutive relation w = —Ay = —Ae,, is differential!

1 _ _
—po Adey, div (w grad*) —curlop grad™® | /e, grad™ () 1 = tn, yn =0 (Weu),
/1716 = n e s grad(ew)'n:uray‘r:_'yo (f)c ,
c c curlop grad 0 ¢ Uimp = Y0 (@w) ) Yimp = grad (()L .n.

The weak form:

—{py OrAe,, ¢y = (div (w (gradLew)) , O — <cur12D (gradL (ec)) ,¢> ,
< Pc,§> curlap (grad ) €Y,
(Uimp Oimp) = {70 (€w)  Oimp) »
<y'r> 07‘> = <_'YO (ec) 797 s
<yn7 9n> = <'70 (wew) 79n> .
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Application to the vorticity—stream function formulation

Integration by parts for each second order differential operator, using R grad- = —grad:

(div (wgrad® () ,0) = = (1. 'cograd® (c.) grad () + (un, %0 (1 e 0)),

- <cur12D (gradl‘ (ep)> ,¢> =- <gradj' (ec),grad" (¢)> + (Yimp> 70 (@)} 5

(curlap (grad* (c.)) ) = (grad” (c.) grad" (§)) = (ur, 70 (£)).
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Application to the vorticity—stream function formulation

Integration by parts for each second order differential operator, using R grad- = —grad:
(div (wgrad® () ,0) = = (1. 'cograd® (c.) grad () + (un, %0 (1 e 0)),
~ (curlap (grad* (c.)) @) = — (grad* (c.) ,grad* (6)) + (vimp, 70 (9))
<cur12D (gradL (ew)) ,§> = <gradL (o), grad™ (§)> — (ur,v0 (£)) .

The new term compare to usual linear continuous constitutive relations:

- </)(l 01 Aey,, ¢> = </’0 grad (515%) ,grad (¢)> - <8tu‘r7 Yo (/)t) ¢)> .

Numerically, the time derivative of the tangent control is required!
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Application to the vorticity—stream function formulation

Variables with the same index are projected on the same finite-dimensional space:

Ny,

eP (t, @) = Zeg(t) ¢ (@) =" () eu(t),
J:VC

e (t,x) =) eb(t) () =2 () - eo(t),
=1
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Application to the vorticity—stream function formulation

Variables with the same index are projected on the same finite-dimensional space:

Ny,
e (t,m) =Y el(t)¢(x) =@ () - eu(t),
=1
J N
eP(tx) =) e(t)€'(@) == (@) - ec(t),
(=1
Nimp
Uﬁﬁp(t, CL‘) = Z u;nmp(t) ognp(m) = ®Inp(x) 2imp(t)v
n=1
Nimp
ylanp;p(h 33) - Z y?mp(t) egnp(m) = @Inp(w) yimp(t>7
n=1
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Application to the vorticity—stream function formulation

Variables with the same index are projected on the same finite-dimensional space:

N,
el (t,x) = Zﬁi(t) ¢ (x) =@ (2)- cu(t),
J:vc
eP(tx) =) e(t)€'(@) == (@) - ec(t),
(=1
Nimp
u?np;p(tﬂ CL‘) = Z uinmp(t) ognp(m) = ®Inp(m) : 2imp(t)v
N
yiarﬁp(m 33) = Z y?mp(t) eﬁnp(m) = @Inp(w) : yimp(t>7
uP (tx)u = 0] (@) - u.(t), Yt ®) = 05 () -y (1),
O (t,x)u = 0. (x) - %QT(t)7 (y?t)ap (t,x) = O] () 'ijt(t)v
upP (t, @) = O, (@) - up(t), yil(t,®) = 04 () -y, (b).
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Application to the vorticity—stream function formulation

M, | et G" 0 0o -B. 0 0 e, (t)

- (1) B, 0 0 0 0 0| -v,..@®
. imp 1mp — 1imp 1mp
Diag | "\ —u (1 o Bl o0 0 0 0 u (t) |’

My || @ ] =Bl 00 00 0 0| u ()

Mn _Ln(t) —BI 0 0 0 0 0 un(t)
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Application to the vorticity—stream function formulation

M/’() %gw(t) Jw _G _Bimp
M e.(t) G’ 0 0
o () B/ 0 0
. imp =Zimp _ imp
Diag ‘v | [ —w0 | =] o BI o
My || =@ | BL, 0 o
Mn _Ln(t) —BI 0 0

(M/m)iy]’ = Agrad (¢]) * Po

(Mimp)m)n = /89 ai?rnp eiTnp7 (MT)p,q =
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Application to the vorticity—stream function formulation

M, ] [den Jo =G =By 0 Bra Bal /e, (t)

M, e.(t) G' 0 0 -B, 0 0 e.(t)
Mg | | wep® | | By 0 0 0 0 O | | =Ymp®
Diag | "\ O 7] o B[ 0 0 0 0 w(t) |’

lez() 7g7't (t) _B;l':_gt O O 0 0 O glt ET (t)

Mn _Ln(t) _Bn 0 0 0 0 0 un(t)

(M), = [ grad () - grad (o). (M), = [ e

> Q ¢ k4 Q

(M), = / o, 0, (M) = / brov, (ML), = / 01 0,07, (M), , = / 0,07,
oN oN o0 o

2

(Jo)ij = —/ngradJ‘ (¢7) - grad (¢") (G)iy= / grad= (g‘z) . grad™® (¢),
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Application to the vorticity—stream function formulation

M/)() %Ew(t) J‘:’l_ -G _Bimp 0 BT»dt B, gw(t)

M, e G 0 0 -B, 0 0 e.(t)
Mg | | wep® | | By 0 0 0 0 O | | =Ymp®
Diag | "\ O 7] o B[ 0 0 0 0 w(t) |’

M || =) -B/y, 0 0 0 0 0 Su (1)

J.r
Mn _in(t) —B 0 0 0 0 0 un(t)
(M), = [ grad () - grad (o). (M) = [en e
> Q ¢ k4 Q

(M), = / o, 0, (M) = / brov, (ML), = / 01 0,07, (M), , = / 0,07,
oN oN o0 o

(Jo)ij = —/ngradJ‘ (¢7) - grad (¢") (G)iy= / grad= (§12) . grad™® (¢),

Q
(Bimp)i n = / almp ’YO (¢Z) (Bn)i7s = /(‘BQ 0:1, 70 (QSZ) )
vy /9ﬂ0 , Bra, = [ 0230 (5.
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Simulations: The lid-driven cavity benchmarks
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Simulations: The lid-driven cavity benchmarks

SCRIMP

Simulation and ContRol of Interactions in Multi-Physics

Actual developers: F. Monteghetti, A. Bendimerad-
Hohl, G. Haine

Former developers: A. Brugnoli, A. Serhani, X. Vasseur
Python programming language;

FEniCS - finite element library;
multiphenics - mixed FE for FEniCS;
m PETSc TS - time integration of DAEs.
Benchmarks from http://www.zetacomp.com

=
m GMSH - mesh generator;
=
=
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Simulations: The lid-driven cavity benchmarks

SCRIMP

Simulation and ContRol of Interactions in Multi-Physics

Actual developers: F. Monteghetti, A. Bendimerad-
Hohl, G. Haine

Former developers: A. Brugnoli, A. Serhani, X. Vasseur

Python programming language;
GMSH - mesh generator;

FEniCS - finite element library;
multiphenics - mixed FE for FEniCS;
m PETSc TS - time integration of DAEs.

Benchmarks from http://www.zetacomp.com
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Simulations: The lid-driven cavity benchmarks

He = 1072 (N Reynolds 102)

Homitonian versusfime.

Time (slops)

P2 Lagrange elements for e, = 1/;
P! Lagrange elements for e, = w;
P! Lagrange elements at the boundary;
1 863 vertices, about 10 000 dofs;

Backward Euler time scheme.
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Simulations: The lid-driven cavity benchmarks

/1. = 2.5 %1073 (~ Reynolds 4 x 10?)

Homitonian versusfime.

“time (iops)

m P2 Lagrange elements for e, = v;
m P! Lagrange elements for ¢, = w;
m P! Lagrange elements at the boundary;
m 7 209 vertices, about 40 000 dofs;

m Backward Euler time scheme.
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Simulations: The lid-driven cavity benchmarks

He = 1073 (N Reynolds ].03)

Upper-right corner x10
Y

P3 Lagrange elements for e, = 1;

P? Lagrange elements for e, = w;

P! Lagrange elements at the boundary;
28 745 vertices, about 360 000 dofs;
Backward Euler time scheme.
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Conclusion and perspectives
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Conclusion and perspectives

m Successful port-Hamiltonian formulation of the vorticity—stream function formulation of a 2D
isentropic and incompressible viscous fluid flow:

m Modulated Stokes-Dirac structure (non-linearity);
m Differential (in space) dissipative operator R ~ A?;
m Differential (in space) constitutive relation —A;

m Structure-preserving discretization;

m Efficient simulations compare against celebrated CFD benchmarks.

Further works

m Study the efficiency of the discretised vorticity—stream function formulation against the usual
velocity—pressure formulation;

m Reduce the viscosity parameter (~ increase the Reynolds numbers);

m Investigate fluid stabilization thanks to the pHs formulation.
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PFEM application to the velocity—pressure formulation

The co-energy formulation:

e. , ey AN =", (ev) =Ur, Yr = %o (60)7

00 Oy /1,;1 e.N- —curl grad
potee | = curl 0 0
2

uimp:()a ylmp:p—’—%HvH .

div 0 0

( € ) €y M ="n(€r) =Un, Yn =" Yimp)

Uimp —Yimp

The weak form:

</)() atevv ¢> </47 €c N\ ey, d)> - <curl (ec) ) ¢> + (grad (_yimp) ) ¢> >
(1. ec, &) = (curl(ey) &),
<u1mp» 1mp> (div (ev), 1mp>
(yr,07) = (v0(ec),07),
(U, n) = <70 (Yimp) + n) -
Integration by parts of the second and third lines:
</)() ate'm ¢)> = <:“r’, : ec N\ €y, ¢> - <curl (ec) ) ¢> + (grad (_yimp) 7¢> ’
(1" ec, &) = (ew,curl (§)) + (ur, 70 (§))

<uimp7 eimp> - <ev7 grad (eimp)> + <’U/n7 Yo (eimp)> )
(Yr,0:) = (vo(ec),0r),
<yn7 9n> = <'70 (yimp) 79n> .
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PFEM application to the velocity—pressure formulation

Variables with the same index are projected on the same finite element bases

e (t,@) =37 (1) (@) = @ () - eu(t),  e(t@) =E(2)- cc(t),
1mp(t m) @Inp(m) ' Qimp(t)a ’u’gp(tv :B) = 8;_;(33) : ﬂq—(t)7 unp(t :E) @I(az) : ﬂn(t)a
Vimp (6 ®) = O () -y, (1), yiP(t @) = O, (x) -y (1), Pt z) = O, (@) -y, (1),
M/M %ﬁv (t) J“-’ -C G 0 0 [ (t)
M, e, (t) c’ 0 0 B, 0 e (t)
Dlag Mimp ulmp(t) - 7GT 0 0 0 Bn _yimp(t) )
M., —y_(t) 0o -Bl o 0 0 u, (t)
M, | \-y, () 0 0o -B' 0 o0 u,, (t)
_ 1 7 o £ —1 &k n m
(M/)l])i’j - \/Qqu : /)()¢ ) (M“( 1)k’£ = QE * e 5 (Mimp)m’n \/Qelmp Hlmp,
(Me)yq = [ 0707 Ma)yy= | 0nbn,
o0
@)y = [0 e (@76, (€)= [ cur (ef) ~ / grad (0f,,) - '
Q Q Q

q:AQ0$'7O(£k)7 )im.s /en% o)
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