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Main Objective

Simulate a coupled heat-wave system by using the Partitioned Finite Element Method, and investigate
the long-time behaviour of the approximated solution.
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Main Objective

Aim:
Simulate a coupled heat-wave system by using the Partitioned Finite Element Method, and investigate
the long-time behaviour of the approximated solution.

m Finite Element Method:
— Complex geometries are allowed.
— A wide range of implementation tools are available.

m Port-Hamiltonian Systems (PHS):
— Model “energy” exchanges between simpler open subsystems.
— The power balance is encoded in a Stokes-Dirac structure.

m Partitioned Finite Element Method (PFEM):
— It translates the Stokes-Dirac structure into a Dirac structure.
— The discrete Hamiltonian satisfies the “discrete” power balance.
A Partitioned Finite Element Method for Power-Preserving Discretization of Open Systems of
Conservation Laws

Cardoso-Ribeiro F.L., Matignon D. and Lefévre L.
IMA Journal of Mathematical Control and Information, 38(2):493-533, (2020)

GSI'21, Paris
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Linear Port-Hamiltonian Systems (PHS

= The energy variables @ (vector field);
= The Hamiltonian #(d (t)) (quadratic functional);
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Linear Port-Hamiltonian Systems (PHS

= The energy variables @ (vector field);

= The Hamiltonian #(d (t)) (quadratic functional);

= The co-energy variables € := 637 (vector field),
~~ the variational derivative of H w.r.t 3;

m The constitutive operator Q (linear and positive-definite): ?3 = QE;
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Linear Port-Hamiltonian Systems (PHS

= The energy variables @ (vector field);
= The Hamiltonian #(d (t)) (quadratic functional);
= The co-energy variables € := 637 (vector field),
~~ the variational derivative of H w.r.t 3;
The constitutive operator () (linear and positive-definite): 22 =0Q
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R = GSG* (linear and S positive-definite);
The control operator B (linear);
The input u and the collocated output y (boundary scalar fields).

a;
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Linear Port-Hamiltonian Systems (PHS

= The energy variables @ (vector field);

= The Hamiltonian #(d (t)) (quadratic functional);

= The co-energy variables € := 637 (vector field),
~~ the variational derivative of H w.r.t 3;

The constitutive operator () (linear and positive-definite): ez =Qd;

|
m The structure operator J (linear and formally skew-symmetric);
m The resistive/dissipative operator R = GSG* (linear and S positive-definite);
m The control operator B (linear);
m The input u and the collocated output y (boundary scalar fields).
Q' 0 0] [ae=1) J -G B][e=z()
0 St o|l| @r@)|=]|G 0 o0f]|€rl
o o0 I|| —y@ —B* 0 0| | u®

Lossy Power Balance
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The simplified, linearised “fluid—structure” model (Zhang and Zuazua, 2007)
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System and configurations

Fl FQ

in 1_\in
Y Qs
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System and configurations

?) = 0, ?EQL
Z) = 0, @ely,
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System and configurations
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OT(t, @) — AT(t, o)
{ T(t, @)
Onw(t, @) — Aw(t, @)
{ w(t, @)

PFEM 4 a coupled heat-wave system

0, ?6917
0, #ely,
0, @€,
0, Zels,
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System and configurations

Fl FQ
heat int wave int
Ql Q2

. T, ®)—AT(t,Z) = 0, e,
Heat: { Tt,2Z) = 0, Zely,
_ Opw(t, @) — Aw(t,®) = 0, @ ey,
Wave: { wt, @) = 0, T ey,
Transmission: Tt ®) = owuw(t, &), Z € i,
ansmission: 05 T(t, @) = -0z w(t, @), T €T,
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System and configurations

— AT(t, ) 0, e,

T(t,?) = 0, Zely,

_ Opw(t, @) — Aw(t, ) = 0, T e,

Wave: { wt, @) = 0, Tely,

o Tt ®) = owuw(t, &), Z € iy,

Transmission: {8R1T(t,?) B faﬁ;w(t,?), ?Grim,
T, %) = To(®), ZecQi,
Initial data: w(0,Z) = wo(Z), T ey,
ow(0, ) = w(Z), X e
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System and configurations

Fl FQ
int 1nt
heat wave
0 Qo
. oOT(t,T) — AT(t, %) =
Heat: { T(t,?) _
_ Opw(t, @) — Aw(t, ) = 0, T e,
Wave: { wt, @) = 0, Tely,

T ] . T(ta ?) = atw(ta ?)7 ? € Finta
ransmission: 07, T(t, @) = —0z,w(t, ), T €T,

T(O, ?) To(?), ? S Ql,
Initial data: w(0,Z) = wo(Z), T ey,
ow(0, ) = w(Z), X e

Geometric Control Condition (GCC):

All characteristics of the wave equation must encountered €24 in finite time.
Haine, Matignon (ISAE)
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Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction
Zhang X. and Zuazua E.
Archive for Rational Mechanics and Analysis, 184(1):49-120, (2007)

Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.
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Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction
Zhang X. and Zuazua E.
Archive for Rational Mechanics and Analysis, 184(1):49-120, (2007)

Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

Strong stability (Zhang and Zuazua 2007)

m Every solution is strongly stable (to zero if I'; is non-empty, to a constant solution otherwise).
m The rate of decay is never exponential nor uniform;

m If the GCC holds: the decay is polynomial;

m If the GCC fails: the decay is logarithmic.
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Known decays

Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction
Zhang X. and Zuazua E.
Archive for Rational Mechanics and Analysis, 184(1):49-120, (2007)

Well-posedness (Zhang and Zuazua 2007)

For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

Strong stability (Zhang and Zuazua 2007)

m Every solution is strongly stable (to zero if I'; is non-empty, to a constant solution otherwise).
m The rate of decay is never exponential nor uniform;

m If the GCC holds: the decay is polynomial;

m If the GCC fails: the decay is logarithmic.

Remark
In our numerical simulations, the initial data are such that the constant solution is the null solution.
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Fluid: the heat equation as a PHS

Hamiltonian: #7(T) := 3 [ |T(t,?)|2d?.
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Fluid: the heat equation as a PHS
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Resistive port: f z = —VT and € = Jo (heat flux).

Constitutive relation: Fourier's law (with thermal conductivity = 1) € g = ?R.
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Fluid: the heat equation as a PHS

Hamiltonian: #7(T) := 3 [ |T(t,?)|2d?.
Energy and co-energy variables: a7 =T and e, := §,,.Hr = T (temperature).
Resistive port: f z = —VT and € = Jo (heat flux).

Constitutive relation: Fourier's law (with thermal conductivity = 1) € g = ?R.

PHS formulation (co-energy):
0T 0 —div| (T
Jo -V 0 Jo )’
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Fluid: the heat equation as a PHS

Hamiltonian: #7(T) := 3 [ |T(t,?)|2d?.
Energy and co-energy variables: a7 =T and e, := §,,.Hr = T (temperature).
Resistive port: f z = —VT and € = Jo (heat flux).

Constitutive relation: Fourier's law (with thermal conductivity = 1) € g = ?R.
PHS formulation (co-energy):
0 —div| (T
-V 0 Jg )’

Boundary ports:

—Jot,Z) - T(®) =ui(t, ), i(t,Z)=T(tT), YVt>0, @ € i,
{ Tt,Z)=0, yrt,@)=—Jot, @) (&), Vi>0,2 eTl).
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FIuid' the heat equation as a PHS

Hamiltonian: 77 (T) := § [, |T(t, @) RES
Energy and co- energy variables: ar =T and eq,. := 8o Hr = T (temperature).

Resistive port: f z = —VT and € = Jo (heat flux).
Constitutive relation: Fourier's law (with thermal conductivity = 1) € g = 73.

PHS formulation (co-energy):
0 —div| (T
-V 0 Jg )’

Boundary ports:

_JQ(t7?) ! ﬁl(?) = ul(tv )7 yl(t ?) (t ?) Vit> 07 ? S 1—‘inta
{ Tt Z)=0, ypt, @)= —JQ(t,?) T (F), Vt>0, 7 el

Lossy Power Balance

st == Jo, 19a11* + (w1, 1)

1 1 .
H™2(Ding),H 2 (Tint)
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Structure: the wave equation as a PHS

Hamiltonian: ,,(0;w, Vw) := %fszg ‘&gw(t,?)’2 + HVw(t,?)sz?.
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Structure: the wave equation as a PHS

Hamiltonian: ,,(0;w, Vw) := %fszg ‘&gw(t,?)’z + HVw(t,?)sz?.
Energy and co-energy variables:
o 8tw) and ?ng = 6a>w7-[w = (

o 6t’LU
Cw =\ v

Vw) (velocity-stress).
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Structure: the wave equation as a PHS

Hamiltonian: ,,(0;w, Vw) := %fszg ‘&gw(t,?)’z + HVw(t,?)sz?.
Energy and co-energy variables:
— Oyw and ?E’w = (5a>w7-[w — (@w

Yw

() - 2 %18

a, =
Vuw
PHS formulation (co-energy):

) (velocity-stress).
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Structure: the wave equation as a PHS

Hamiltonian: ,,(0;w, Vw) := %fszg ‘&gw(t,?)’z + HVw(t,?)sz?.
Energy and co-energy variables:

qy = Ouw and ?Eg =0g Hw = (
vw w w

PHS formulation (co-energy):

6t’LU
Vw

(“)t (3tw) o 0 div 8t’w
o(Vw)) |V 0| \Vw)’
Boundary ports:

dw(t, @) =us(t, @),  ya(t, @) = Vw(t,®) - TWo(Z), YVt>0, T €,
{ dw(t, @) =0, yult,®)=Vwlt, @) Ha(®), Vt>0, 2 el

) (velocity-stress).
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Structure: the wave equation as a PHS

Hamiltonian: ,,(0;w, Vw) := %fszg ‘@w(t,?)’z + HVw(t,?)sz?.
Energy and co-energy variables:
— Oyw and ?E)w = (5a>w7-[w — (@w

Yw

() - 2 %18

a, =
Vw
PHS formulation (co-energy):

) (velocity-stress).

Boundary ports:

6Z),  yt, @) =Vuw(t, ®) (), Vi>0, T € iy,
dw(t, @) =0, yult,®)=Vwlt, @) Ha(®), Vt>0, 2 el
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Coupling: transmission condition

Gyrator interconnection on ['j;:

u (@) = —yo(t, @),  ux(t, @) =1 (t, @), Vt>0, T €Dy
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Coupling: transmission condition

Gyrator interconnection on ['j;:
ul(t, ?) = —yg(t, ?), U,Q(t7 ?) = yl(t, ?), Vt> 0, ? S Fint-

The total Hamiltonian of the coupled Heat-Wave system is given by:

H(T, dyw, V) = %/ |T(t,7)|2dz?+%/Q oyw(t, @)| + ||Vw(t, @)||* dZ .

Q

Hr How
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Coupling: transmission condition

Gyrator interconnection on ['j;:
ul(t, ?) = —yg(t, ?), U,Q(t7 ?) = yl(t, ?), Vt> 0, ? S Fint-

The total Hamiltonian of the coupled Heat-Wave system is given by:

H(T, dyw, V) = %/ |T(t,7)|2dz?+%/Q oyw(t, @)| + ||Vw(t, @)||* dZ .

Q

Hr How

Dissipative Power Balance

I = SHr+EH,
- le |JQ|2 + <U17yl>H7%(Fim)’H%(Fim) AF <y2’u2>H’%(Fint),H%(Fim)
= —Jo, | Jql* - <y2’y1>H’%(Fmt),H%(Fim) +{y2,y1) -
= _fgl |JQ|2~

1
(Tint),H 2 (Ting)

N=
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Partitioned Finite Element Method (PFEM)
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Partitioned Finite Element Method (PFEM

3 steps: Weak formulation — Stokes identity — FEM
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Partitioned Finite Element Method (PFEM

3 steps: Weak formulation — Stokes identity — FEM

Weak formulation:
For all test functions v, 7@ on 1, Uy, 710 on Qs and vy on I'jy:

<6tT UT>L2(Q )y = < div (JQ) UT>L2(Q1) ’
Heat: <JQ7 7Q>L2(Q < VT, ?Q>
<'U67 y1> Tint <U‘9’ T> Tine 2

L2(Q,)"
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Partitioned Finite Element Method (PFEM

3 steps: Weak formulation — Stokes identity — FEM

Weak formulation:
For all test functions v, 7@ on 1, Uy, 710 on Qs and vy on I'jy:

<6tT UT>L2(Q )y = < div (JQ) UT>L2(Q1) ’
Heat: <JQ7 7Q>L2(Q < VT, ?Q>
<'U67 y1> Tint <U‘9’ T> Tine 2

L2(Q,)"

(0:(0yw), vu) 120,y = (div (VW) , vw) 120, »
Wave: <8t(Vw) T >L2 % <V8tw,7

<y27U8> int <V'LU n27U8>r

w LZ(QQ) ?

int

Haine, Matignon (ISAE) PFEM 4 a coupled heat-wave system GSI'21, Paris



Partitioned Finite Element Method (PFEM

3 steps: Weak formulation — Stokes identity — FEM

Weak formulation:
For all test functions v, 7@ on 1, Uy, 710 on Qs and vy on I'jy:

<6tT UT>L2(Q )y = < div (JQ) UT>L2(Q1) ’
Heat: <JQ7 7Q>L2(Q < VT, ?Q>
<'U67 y1> Tint <U‘9’ T> Tine 2

L2(Q,)"

(0:(0yw), vu) 120,y = (div (VW) , vw) 120, »
Wave: <8t(Vw) T >L2 % <V8tw,7

<y27U8> int <V'LU n27U8>r

{ (ur,v0)p,,, =~ {y2,v0)r,,, ,

<Uavu2>1‘. - <U87y1>1‘

int

w LZ(QQ) ?

int

Gyrator:

int
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Partitioned Finite Element Method (PFEM

Stokes (Green) identity:

(0T, vr) 120,y = (J@s VUT) 1200y — <JQ ~n1,va> - <JQ 'n1,’Ua> ,
N—— S~——
Heat: uy Tint yr I
(Ja, 7Q>L2(Ql) = (-VT, 7Q>L2(Ql) J
<Ua, y1>Fmt = <va’T>Fmt ’
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Partitioned Finite Element Method (PFEM

Stokes (Green) identity:

(0T, vr) 120,y = (J@s VUT) 1200y — <JQ ~n1,va> - <JQ 'n1,’Ua> ,
N—— S~——
Heat: uy Tint yr I
(Ja, 7Q>L2(Ql) = (-VT, 7Q>L2(Ql) J
<Ua, y1>Fmt = <va’T>Fmt ’

(0u(Orw), vw) 20,y = (div (VW) , vw) 120, ;
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w2 Ting 0 Iy

<y2a v8>Fmt = <V’LU N2, Ua)Fmt ’
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Partitioned Finite Element Method (PFEM

Stokes (Green) identity:

(0T, vr) 120,y = (J@s VUT) 1200y — <JQ ~n1,va> - <JQ 'n1,’Ua> ,
N—— S~——
Heat: uy Tint yr I
(Ja, 7Q>L2(Ql) = (-VT, 7Q>L2(Ql) J
<Ua, y1>Fmt = <va’T>Fmt ’

(0u(Orw), vw) 20,y = (div (VW) , vw) 120, ;

Wave: <at(vw)’7w>wmz><3tw’diV(?w>>L2<ng)+<va’@> +<v8@f3> ’

w2 Ting 0 Iy

<y2a v8>Fmt = <V’LU N2, Ua)Fmt ’

Gyrator: (ur,v9)p,, = — (Y2, v0)r,, »
<U87 'U/2>ri“t - <’Ua, y1>F

int
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Partitioned Finite Element Method (PFEM

Stokes (Green) identity:

(0T, vr) 120,y = (J@s VUT) 1200y — <JQ ~n1,va> - <JQ 'n1,’Ua> ,
—— ——
Heat: uy Tint yr I
<JQa 7Q>L2(Ql) = <*VT’ 7Q>L2(Ql) ’
(va,y1)r,, = (o, ). A Warning: T=0o0nT,.

(0u(Orw), vw) 20,y = (div (VW) , vw) 120, ;
Wave: { (V). T u)ao,) = (O =div (Vo)) oo, + <Ua’@> : <va’@> ’

w2 Ting 0 Iy

<y2a v8>Fmt = <V’LU N2, Ua)Fmt ’

Gyrator: (ur,v9)p,, = — (Y2, v0)r,, »
<U87 'U/2>ri“t - <’Ua, y1>F

int
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Partitioned Finite Element Method (PFEM

Projection on finite element basis: (fik“t)lngNrim for uy & us & y1 & yso and

— —
(pihici<ne  (Whi<icng (Epicwsne, (@i<i<n, (¥i<icn, (ER)1<k<ne,
JQ 0& T 6tw Vw 0& w
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Partitioned Finite Element Method (PFEM

Projection on finite element basis: (fiknt)lngNri . for uy & us & y1 & yso and

%

(Pih<isne (Piicisng  (E)ick<ne,  (93)1<i<n, (E)?)lgism (ER)1<k<nr,
Jo 0& yr Oyw Vw 0 & Yo
M, 0 0 0 47 0 D1 B B1 nt| (T
Heat: 0 Ml 0 0 ']7(2 _ 7D1r 0 0 Jﬁ
0 0 Mlmd,l 0 0 _BlT 0 0 yr ’
0 0 0 ]\f[int Y1 BImt 0 0 E

(D1)ji = Jq, ¢1 Vi e RN *Ne - (By)jp = —
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Partitioned Finite Element Method (PFEM

Projection on finite element basis: (fik“t)lngNrim for uy & us & y1 & yso and

— —
(Pih<isne (Pihcisng (Ei)ick<ne, (©1i<i<n, (Picien, (ER)i<k<nr,
Jo 0& yr Oyw Vw 0 & Yo
M; 0 0 0 47 0 D B B1 nt | (T
Heat: | M, 0 0 Jo|_|-bL 0 0 Jo
0 0 Mpax O 0 -Bf 0 0 yr |’
0 0 0 Ml \=u1 Bl 0 0 uy
(Dl fQ ¢1 VQD] RNTXNQ? (Bl)j7k = - fF1 gllc 70(90]1) € RNTXNFla Bl,int € RNTXNFint'
My 0 0 0 ) 0 D, 0 0 dw
0 M, 0 0o || 4vw ~-DJ 0 By Bauwl| |Vuw
Wave 2 dt — 2 . ,
0 0 Afbndyg 0 —Yw 0 —32 0 0 0 ’
0 0 0 ]\/Iint _7/2 0 _B;—,int 0 0 Uz
%
(D2)j: = fsz2 div(v7)es € RN Na - (By) ;i fm fk -ng € RNoNM - By 5y € RNo Vi,

GSI'21, Paris
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Partitioned Finite Element Method (PFEM

Projection on finite element basis: (fik“t)lngNrim for uy & us & y1 & yso and

— —
(Pih<isne (Pihcisng (Ei)ick<ne, (©1i<i<n, (Picien, (ER)i<k<nr,
Jo 0& yr Oyw Vw 0 & Yo
M; 0 0 0 47 0 D B B1 nt | (T
Heat: | 0 M1 0 0 ||Je|_|-Pf o0 o0 Jo
' 0 0 Mpax O 0 -Bf 0 0 yr |’
0 0 0 Ml \=u1 Bl 0 0 uy
(Dl fQ ¢1 VQD] RNTXNQ? (Bl)j7k = - fF1 gllc 70(90]1) € RNTXNFla Bl,int € RNTXNFint'
My 0 0 0 ) 0 D, 0 0 dw
0 M, 0 0o || 4vw ~-DJ 0 By Bauwl| |Vuw
Wave: 2 dt — 2 - ,
0 0 Afbndyg 0 —Yw 0 —32 0 0 0 ’
0 0 0 ]\/Iint _7/2 0 _B;—,int 0 0 Uz
%
(D2 4. fﬂ le ’(/J ) RN XN BQ gk ng fk ‘Mo € RNaxNr, BQ int € RNa*XNr

Gyrator. M ing Uy = — Mt Y2, Mt Uy = A[int Y-

GSI'21, Paris

Haine, Matignon (ISAE) PFEM 4 a coupled heat-wave system



Partitioned Finite Element Method (PFEM

Let C := Bl,intj\/fi;%BQT,im the gyrator interconnection matrix.

My @l O D, 0 -C B 0]/T
M 1 Jo -D] 0 0 0 0 0 Jo
. M, Sow| _[ 0 0 0 Dy 0 0] |dw
Diag M2 %@ | o7 0 —-DJ 0 0 Bs Yw
Mbnd,l 0 _BI 0 0 0 0 0 yr
Mypdg2l \ —Yw 0 0 0 -B; 0 0 0
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Partitioned Finite Element Method (PFEM

Let C := Bl,intj\/fi;%BQT,im the gyrator interconnection matrix.

Ml %I 0 Dl 0 —C Bl 0 I
M, Jo o] 0 0o 0o o offdJ
My | [ Z9w| 0 0 0 Dy 0 0]]|dw
Diag M, dYw |71 C¢T 0 -DJ 0 0 B |Vw
Mo 0 -B{ 0 0 0 0 0ffuyr
Mpnd,2 Yw 0 0 0 -By; 0 0 0

Discrete Lossy Power Balance

The discrete Hamiltonian 4% is defined as the continuous Hamiltonian 7 evaluated in the
approximated solution.

d

SHAT, B, Yw) = ~Jg M1 Jq.
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Numerical simulations
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Switching €, and 29, four cases are covered.
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Hamiltonian decays

Hamiltonian vs time (log-log), Circles Hamiltonian vs time (log-log), L-shape
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Conclusion
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Conclusion and Further Works

A numerical validation of the interest of PHS has been performed:
m The long-time behaviour is as expected at the discrete level,

m The simulation process is intrinsically object oriented.

To go further:

m Choice for the finite elements families?
m Symplectic time scheme? A DAE!!!
m Structure-preserving model reduction?
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