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Main Objective
Aim:
Simulate a coupled heat-wave system by using the Partitioned Finite Element Method, and investigate
the long-time behaviour of the approximated solution.

Finite Element Method:
→ Complex geometries are allowed.
→ A wide range of implementation tools are available.
Port-Hamiltonian Systems (PHS):
→ Model “energy” exchanges between simpler open subsystems.
→ The power balance is encoded in a Stokes-Dirac structure.
Partitioned Finite Element Method (PFEM):
→ It translates the Stokes-Dirac structure into a Dirac structure.
→ The discrete Hamiltonian satisfies the “discrete” power balance.

A Partitioned Finite Element Method for Power-Preserving Discretization of Open Systems of
Conservation Laws
Cardoso-Ribeiro F.L., Matignon D. and Lefèvre L.
IMA Journal of Mathematical Control and Information, 38(2):493–533, (2020)
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Linear Port-Hamiltonian Systems (PHS)
The energy variables −→α (vector field);
The Hamiltonian H(−→α (t)) (quadratic functional);

The co-energy variables −→e −→α := δ−→αH (vector field),
 the variational derivative of H w.r.t −→α ;

The constitutive operator Q (linear and positive-definite): −→e −→α = Q−→α ;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R = GSG∗ (linear and S positive-definite);
The control operator B (linear);
The input u and the collocated output y (boundary scalar fields).Q−1 0 0

0 S−1 0
0 0 I

∂t−→e −→α (t)
−→e R(t)
−y(t)

 =

 J −G B
G∗ 0 0
−B∗ 0 0

−→e −→α (t)
−→e R(t)
u(t)

 .
Lossy Power Balance

d
dtH(−→α (t)) = −

〈
RQ−→α (t), Q−→α (t)

〉
J

+ 〈u(t),y(t)〉B ≤ 〈u(t),y(t)〉B .
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System and configurations

wave
Ω2

heat
Ω1

Γ1

Γint heat
Ω1

wave
Ω2

Γ2

Γint heat
Ω1

wave
Ω2

Γ1 Γ2
Γint

Heat:
{
∂tT (t,−→x )−∆T (t,−→x ) = 0, −→x ∈ Ω1,

T (t,−→x ) = 0, −→x ∈ Γ1,

Wave:
{
∂ttw(t,−→x )−∆w(t,−→x ) = 0, −→x ∈ Ω2,

w(t,−→x ) = 0, −→x ∈ Γ2,

Transmission:
{

T (t,−→x ) = ∂tw(t,−→x ), −→x ∈ Γint,
∂−→n 1T (t,−→x ) = −∂−→n 2w(t,−→x ), −→x ∈ Γint,

Initial data:

 T (0,−→x ) = T0(−→x ), −→x ∈ Ω1,
w(0,−→x ) = w0(−→x ), −→x ∈ Ω2,

∂tw(0,−→x ) = w1(−→x ), −→x ∈ Ω2.

Geometric Control Condition (GCC):
All characteristics of the wave equation must encountered Ω1 in finite time.
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Known decays
Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction
Zhang X. and Zuazua E.
Archive for Rational Mechanics and Analysis, 184(1):49–120, (2007)

Well-posedness (Zhang and Zuazua 2007)
For any smooth enough initial data, there exists a unique solution to the coupled Heat-Wave system.

Strong stability (Zhang and Zuazua 2007)

Every solution is strongly stable (to zero if Γ2 is non-empty, to a constant solution otherwise).
The rate of decay is never exponential nor uniform;
If the GCC holds: the decay is polynomial;
If the GCC fails: the decay is logarithmic.

Remark
In our numerical simulations, the initial data are such that the constant solution is the null solution.
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Fluid: the heat equation as a PHS
Hamiltonian: HT (T ) := 1

2
∫

Ω1

∣∣T (t,−→x )
∣∣2 d−→x .

Energy and co-energy variables: αT = T and eαT
:= δαT

HT = T (temperature).
Resistive port:

−→
f R = −∇T and −→e R = JQ (heat flux).

Constitutive relation: Fourier’s law (with thermal conductivity ≡ 1) −→e R =
−→
f R.

PHS formulation (co-energy): (
∂tT
JQ

)
=

[
0 −div
−∇ 0

](
T
JQ

)
,

Boundary ports:{
−JQ(t,−→x ) · −→n 1(−→x ) = u1(t,−→x ), y1(t,−→x ) = T (t,−→x ), ∀ t > 0, −→x ∈ Γint,

T (t,−→x ) = 0, yT (t,−→x ) = −JQ(t,−→x ) · −→n 1(−→x ), ∀ t > 0, −→x ∈ Γ1.

Lossy Power Balance

d
dtHT = −

∫
Ω1
‖JQ‖2 + 〈u1,y1〉

H− 1
2 (Γint),H

1
2 (Γint)

.
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f R = −∇T and −→e R = JQ (heat flux).

Constitutive relation: Fourier’s law (with thermal conductivity ≡ 1) −→e R =
−→
f R.

PHS formulation (co-energy): (
∂tT
JQ

)
=

[
0 −div
−∇ 0

](
T
JQ

)
,

Boundary ports:{
−JQ(t,−→x ) · −→n 1(−→x ) = u1(t,−→x ), y1(t,−→x ) = T (t,−→x ), ∀ t > 0, −→x ∈ Γint,

T (t,−→x ) = 0, yT (t,−→x ) = −JQ(t,−→x ) · −→n 1(−→x ), ∀ t > 0, −→x ∈ Γ1.

Lossy Power Balance

d
dtHT = −

∫
Ω1
‖JQ‖2 + 〈u1,y1〉

H− 1
2 (Γint),H

1
2 (Γint)

.
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Structure: the wave equation as a PHS
Hamiltonian: Hw(∂tw,∇w) := 1

2
∫

Ω2

∣∣∂tw(t,−→x )
∣∣2 +

∥∥∇w(t,−→x )
∥∥2 d−→x .

Energy and co-energy variables:
−→αw =

(
∂tw
∇w

)
and −→e −→αw

:= δ−→αw
Hw =

(
∂tw
∇w

)
(velocity–stress).

PHS formulation (co-energy): (
∂t(∂tw)
∂t(∇w)

)
=

[
0 div
∇ 0

](
∂tw
∇w

)
,

Boundary ports:{
∂tw(t,−→x ) = u2(t,−→x ), y2(t,−→x ) = ∇w(t,−→x ) · −→n 2(−→x ), ∀ t > 0, −→x ∈ Γint,

∂tw(t,−→x ) = 0, yw(t,−→x ) = ∇w(t,−→x ) · −→n 2(−→x ), ∀ t > 0, −→x ∈ Γ2.

Lossless Power Balance

d
dtHw = 〈y2,u2〉

H− 1
2 (Γint),H

1
2 (Γint)

.
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Coupling: transmission condition
Gyrator interconnection on Γint:

u1(t,−→x ) = −y2(t,−→x ), u2(t,−→x ) = y1(t,−→x ), ∀ t > 0, −→x ∈ Γint.

The total Hamiltonian of the coupled Heat-Wave system is given by:

H(T, ∂tw,∇w) := 1
2

∫
Ω1

∣∣T (t,−→x )
∣∣2 d−→x︸ ︷︷ ︸

HT

+ 1
2

∫
Ω2

∣∣∂tw(t,−→x )
∣∣2 +

∥∥∇w(t,−→x )
∥∥2 d−→x︸ ︷︷ ︸

Hw

.

Dissipative Power Balance

d
dtH = d

dtHT + d
dtHw

= −
∫

Ω1
|JQ|2 + 〈u1,y1〉

H− 1
2 (Γint),H

1
2 (Γint)

+ 〈y2,u2〉
H− 1

2 (Γint),H
1
2 (Γint)

= −
∫

Ω1
|JQ|2 − 〈y2,y1〉

H− 1
2 (Γint),H

1
2 (Γint)

+ 〈y2,y1〉
H− 1

2 (Γint),H
1
2 (Γint)

= −
∫

Ω1
|JQ|2 .
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Partitioned Finite Element Method (PFEM)

3 steps: Weak formulation – Stokes identity – FEM

Weak formulation:
For all test functions vT , −→v Q on Ω1, vw, −→v w on Ω2 and v∂ on Γint:

Heat:


〈∂tT, vT 〉L2(Ω1) = 〈−div (JQ) , vT 〉L2(Ω1) ,〈
JQ,
−→v Q

〉
L2(Ω1) =

〈
−∇T,−→v Q

〉
L2(Ω1) ,

〈v∂ ,y1〉Γint
= 〈v∂ , T 〉Γint

,

Wave:


〈∂t(∂tw), vw〉L2(Ω2) = 〈div (∇w) , vw〉L2(Ω2) ,〈
∂t(∇w),−→v w

〉
L2(Ω2) =

〈
∇∂tw,−→v w

〉
L2(Ω2) ,

〈y2, v∂〉Γint
= 〈∇w · n2, v∂〉Γint

,

Gyrator:
{
〈u1, v∂〉Γint

= −〈y2, v∂〉Γint
,

〈v∂ ,u2〉Γint
= 〈v∂ ,y1〉Γint

.
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Partitioned Finite Element Method (PFEM)
Stokes (Green) identity:

Heat:


〈∂tT, vT 〉L2(Ω1) = 〈JQ,∇vT 〉L2(Ω1) −

〈
JQ · n1︸ ︷︷ ︸
u1

, v∂

〉
Γint

−

〈
JQ · n1︸ ︷︷ ︸
yT

, v∂

〉
Γ1

,

〈
JQ,
−→v Q

〉
L2(Ω1) =

〈
−∇T,−→v Q

〉
L2(Ω1) ,

〈v∂ ,y1〉Γint
= 〈v∂ , T 〉Γint

,

o Warning: T ≡ 0 on Γ1.

Wave:


〈∂t(∂tw), vw〉L2(Ω2) = 〈div (∇w) , vw〉L2(Ω2) ,〈
∂t(∇w),−→v w

〉
L2(Ω2) =

〈
∂tw,−div

(−→v w)〉L2(Ω2) +
〈
v∂ , ∂tw︸︷︷︸

u2

〉
Γint

+
〈
v∂ , ∂tw︸︷︷︸

0

〉
Γ2

,

〈y2, v∂〉Γint
= 〈∇w · n2, v∂〉Γint

,

Gyrator:
{
〈u1, v∂〉Γint

= −〈y2, v∂〉Γint
,
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.
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Partitioned Finite Element Method (PFEM)
Projection on finite element basis: (ξint

k )1≤k≤NΓint
for u1 & u2 & y1 & y2 and

(ϕ1
j )1≤j≤NT

(
−→
ψ 1
i )1≤i≤NQ

(ξ1
k)1≤k≤NΓ1

(ϕ2
j )1≤j≤Np

(
−→
ψ 2
i )1≤i≤Nq

(ξ2
k)1≤k≤NΓ2

T JQ 0 & yT ∂tw ∇w 0 & yw

Heat:


M1 0 0 0
0 −→

M1 0 0
0 0 M bnd,1 0
0 0 0 M int




d
dtT
JQ
0
−y1

 =


0 D1 B1 B1,int
−D>1 0 0 0
−B>1 0 0 0
−B>1,int 0 0 0



T
JQ
yT
u1

 ,

(D1)j,i =
∫

Ω1

−→
ψ 1
i · ∇ϕ1

j ∈ RNT×NQ , (B1)j,k = −
∫

Γ1
ξ1
k γ0(ϕ1

j ) ∈ RNT×NΓ1 , B1,int ∈ RNT×NΓint .

Wave:


M2 0 0 0
0 −→

M2 0 0
0 0 M bnd,2 0
0 0 0 M int




d
dt∂tw
d
dt∇w
−yw
−y2

 =


0 D2 0 0
−D>2 0 B2 B2,int

0 −B>2 0 0
0 −B>2,int 0 0



∂tw
∇w
0
u2

 ,

(D2)j,i =
∫

Ω2
div(
−→
ψ 2
i )ϕ2

j ∈ RNp×Nq , (B2)j,k =
∫

Γ2
ξ2
k

−→
ψ 2
j ) · n2 ∈ RNq×NΓ2 , B2,int ∈ RNq×NΓint .

Gyrator: M int u1 = −M int y2, M int u2 = M int y1.
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Partitioned Finite Element Method (PFEM)

Let C := B1,intM
−1
intB

>
2,int the gyrator interconnection matrix.

Diag



M1−→
M1
M2−→
M2

M bnd,1
M bnd,2





d
dtT
JQ

d
dt∂tw
d
dt∇w

0
−yw

 =


0 D1 0 −C B1 0
−D>1 0 0 0 0 0

0 0 0 D2 0 0
C> 0 −D>2 0 0 B2
−B>1 0 0 0 0 0

0 0 0 −B>2 0 0





T
JQ
∂tw
∇w
yT
0



Discrete Lossy Power Balance
The discrete Hamiltonian Hd is defined as the continuous Hamiltonian H evaluated in the
approximated solution.

d
dtH

d(T , ∂tw,∇w) = −JQ>
−→
M1JQ.
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Configurations

Switching Ω1 and Ω2, four cases are covered.

Haine, Matignon (ISAE) PFEM 4 a coupled heat-wave system GSI’21, Paris 14 / 21



Hamiltonian decays
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GCC holds, Γ1 6= ∅ and Γ2 = ∅
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GCC fails, Γ1 = ∅ and Γ2 6= ∅
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Conclusion and Further Works

To sum up:
A numerical validation of the interest of PHS has been performed:

The long-time behaviour is as expected at the discrete level;
The simulation process is intrinsically object oriented.

To go further:

Choice for the finite elements families?
Symplectic time scheme? o DAE !!!
Structure-preserving model reduction?
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