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The 1D piston problem

Output
/\ /\
Input I T
0 S S5 Ss L
S1,S53: inert compressible viscous fluids; Sa: inert rigid body; Arrows: interactions.
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The 1D piston problem

Output
/\ /\
Input I T
0 S S5 Ss L
S1,S53: inert compressible viscous fluids; Sa: inert rigid body; Arrows: interactions.

Notations:
p: mass density; v: particle velocity; p := pv: linear momentum;
o stress tensor; u: internal energy density; Jq: heat flux;
s: entropy density; T local temperature; b= % reciprocal temperature;
m: local pressure; V2 volume (length); Js 1= Il - entropy flux;

Y= % (00,0 — J,0,T + V)¢ irreversible entropy production.
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Axiomatics:
m Conservation of mass: d¢p = —0,(pv);

m Conservation of linear momentum: 9;p = —9,(pv) + 9. (0);

I

m Conservation of internal energy: 0;(u) = —0y(uv) + 00, (v) — 02 (J,),
m Gibb's formula: du =T ds — 7 dV + Zm dn;, S = ps.

= pu;
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Axiomatics:
m Conservation of mass: d¢p = —0,(pv);
m Conservation of linear momentum: 0;p = —9,.(pv) + 0, (0);
m Conservation of internal energy: 0;(u) = —0y(uv) + 00, (v) — 02 (J,), = pu;

m Gibb's formula: du =T ds — 7 dV + Zm dn;, S = ps.

Context & comportemental laws (equations of state):
m 1D domain: V := (a, b);
m No chemical reactions is to be found in the system (inert media): p; = 0;
Dulong-Petit model: v = C',T, (’, isochoric heat capacity.
Fourier's law for heat condution: J, = —kV(T);

|

]

m For fluids Sy, S3, stress tensors are of the form: vo,v — m;

m ldeal gas law: 7V = nRT, where n is the amount of substance and % the universal gas constant;
|

For the rigid So, the stress tensor is: o = 0 (Hooke's law with null elasticity modulus).
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Port-Hamiltonian systems

m The energy variables « (vector field);
m The Hamiltonian 7 (a(t)) (positive functional);
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Port-Hamiltonian systems

m The energy variables o (vector field);

m The Hamiltonian 7 (a(t)) (positive functional);

m The co-energy variables e, := d,# (vector field),
~~ the variational derivative of H w.r.t o;
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Port-Hamiltonian systems

The energy variables « (vector field);
The Hamiltonian #(«(t)) (positive functional);
The co-energy variables e,, := §,H (vector field),
~~ the variational derivative of H w.r.t o;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
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Port-Hamiltonian systems

The energy variables « (vector field);
The Hamiltonian #(«(t)) (positive functional);
The co-energy variables e,, := §,H (vector field),
~~ the variational derivative of H w.r.t «;
m The structure operator J (linear and formally skew-symmetric);
m The resistive/dissipative operator R (linear and positive);
m The control operator B (linear);
m The input u and the collocated output y (boundary fields);
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Port-Hamiltonian systems

m The energy variables « (vector field);
The Hamiltonian #(«(t)) (positive functional);
The co-energy variables e,, := §,H (vector field),
~~ the variational derivative of H w.r.t o;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
The control operator B (linear);
The input u and the collocated output y (boundary fields);
The dynamical system:

{ dat) = (J — R) ealt) + Bu(t),
y(t) = B*eq(t).
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Port-Hamiltonian systems

m The energy variables « (vector field);
The Hamiltonian #(«(t)) (positive functional);
The co-energy variables e,, := §,H (vector field),
~~ the variational derivative of H w.r.t o;
The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
The control operator B (linear);
The input u and the collocated output y (boundary fields);
The dynamical system:

{ dat) = (J — R) ealt) + Bu(t),
y(t) = B*eq(t).

Lossy Power Balance: L (a(t)) = — (Rea(t), ea(t)) ;4 (ut), y(t) g < (u(t),y(t)) g -

/\ Although the underlying geometry is well-determined with the above equation,
constitutive relations between o and e, are also needed to solve the system!
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Port-Hamiltonian systems

= The effort space & (Hilbert space) and e := (eq, eg, 'u,)T;
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Port-Hamiltonian systems

= The effort space & (Hilbert space) and e := (eq, eg, 'u,)T;
m The flow space F := &’ and f := (i, [, —y)T;
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Port-Hamiltonian systems

= The effort space & (Hilbert space) and e := (eq, eg, 'u,)T;
m The flow space F := &’ and f := (i, [, —y)T;

J —-I B
m The extended structure operator 7 := I 0 0
-B* 0 0
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Port-Hamiltonian systems

= The effort space & (Hilbert space) and e := (eq, eg, 'u,)T;
m The flow space F := &’ and f := (i, [, —y)T;

J —-I B
m The extended structure operator 7 := I 0 0
-B* 0 0

m The Bond space 5B := F x &, with symmetrized bilinear product:

(£, =02
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Port-Hamiltonian systems

= The effort space & (Hilbert space) and e := (eq, eg, 'u,)T;
m The flow space F := &’ and f := (i, [, —y)T;

J —-I B
m The extended structure operator 7 := I 0 0
-B* 0 0

m The Bond space 5B := F x &, with symmetrized bilinear product:

()], =02

m The dissipative constitutive relation ez = Rfg;
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Port-Hamiltonian systems

= The effort space & (Hilbert space) and e := (eq, eg, 'u,)T;
m The flow space F := &’ and f := (i, [, —y)T;

J —-I B
m The extended structure operator 7 := I 0 0
-B* 0 0

m The Bond space 5B := F x &, with symmetrized bilinear product:

()], =02

m The dissipative constitutive relation ez = Rfg;

Theorem
If 7 € L(£1,F) is closed, densely defined and: <‘761,62>]__’5 =— <jeg,el>]_.7£ for all eq,es € &1,
then D := Graph (J) C B is a Dirac structure, i.e. DI*] = D with:

wae{(es] [ (@)}
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Port-Hamiltonian systems

(f(t),et) e =0, V(f(t),e(t)) €D, Vt>0.
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Port-Hamiltonian systems

(F(t),e(®)) rp =0, V(F(t),e(t) €D, V>0,

Let (0:cx, f g, —y,ea,eR,u)T be in D. Adding egr = RfR: the lossy power balance is satisfied!
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Port-Hamiltonian systems

N

(f(t),et) e =0, V(f(t),e(t)) €D, Vt>0.

Let (0:cx, f g, —y,ea,eR,u)T be in D. Adding egr = RfR: the lossy power balance is satisfied!

Flow/effort representation generalizes the above state representation with J — R, and this allows
an easy way to interconnect sub-systems, thanks to algebraic constraints aside from the structure!
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Port-Hamiltonian systems

(ft),e(t))re =0, V(f(t),e(t)) €D, Vt>0.

Let (0:cx, f g, —y,ea,eR,u)T be in D. Adding egr = RfR: the lossy power balance is satisfied!

N

Flow/effort representation generalizes the above state representation with J — R, and this allows
an easy way to interconnect sub-systems, thanks to algebraic constraints aside from the structure!

. J

Main result

= An underlying Dirac structure containing the power balance is constructed for both the
kinetic and internal energies of S7, S5 and S3.

m The six resulting systems are interconnected to obtain a direct modelling of the 1D piston
problem as a port-Hamiltonian system with algebraic constraints.

m An interesting feature is that this modelling keeps the geometric structure of conservation
laws apart from the comportemental laws: the constitutive relations.
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Modelling the 1D piston
m Kinetic energy
m Internal energy
m One sub-system
m The 1D piston problem
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1 b(t) p2 (t, 3?)
Kinetic energy as Hamiltonian:  #(p, p) := 5/ o) dx, with p and p as energy variables.
a(t) P\LT
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1 b(t) pQ(t 3?)
Kinetic energy as Hamiltonian:  #(p, p) / "~ dz, with p and p as energy variables.
a

- 2 awy ot )
Co-energy variables: e, :=0,H; = P_ v, the particle velocity,
p? v? . , .
e, =0, Hp = T2 =5 the flux in the so-called Burgers' equation.
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1 [t® p2(t, )
Kinetic energy as Hamiltonian:  #(p, p) := 5/ dx, with p and p as energy variables.
a

w Pt z)
Co-energy variables: e, :=0,H; = P_ v, the particle velocity,
P2 02

e, =0,Hyp= ——, the flux in the so-called Burgers' equation.

202 2
Power balance: From the transport theorem:

d b(t) a 1'® b(t) o)
*Hk(pa /0) = [/)(t,;L‘)’U(t,:L‘)]a(t) - p(t,:L‘)f:L' + [v(t,w)a(t,x)]a(t) 7/ 8I/U(t? x)o(t,a:)dx.
dt —_— dt a(t) [ — a(t)

Moving boundary Loss in thermal domain

Injection—rejection Force applied
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1 [t® p2(t, )
Kinetic energy as Hamiltonian:  #(p, p) := 5/ dx, with p and p as energy variables.
a

w Pt z)
Co-energy variables: e, :=0,H; = P_ v, the particle velocity,
P2 02

e, =0,Hyp= ——, the flux in the so-called Burgers' equation.

202 2
Power balance: From the transport theorem:

d b(t) a 1'® b(t) o)
*Hk(pa /0) = [/)(t,;L‘)’U(t,:L‘)]a(t) - p(t,:L‘)f:L' + [v(t,w)a(t,x)]a(t) 7/ 8I/U(t? x)o(t,a:)dx.
dt —_— dt a(t) [ — a(t)

Moving boundary Loss in thermal domain

Injection—rejection Force applied

. . d
This rewrites: &Hk(]% p) = <uT7yT>R2 =+ <u0'7y0'>]R2 - <ax7/'a U>L2(a(t)7b(t)) 3
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1 b(t) pQ(t 3?)
Kinetic energy as Hamiltonian:  #(p, p) / "~ dz, with p and p as energy variables.
a

T2 w Pt z)
Co-energy variables: e, :=0,H; = P_ v, the particle velocity,
P2 02
e, =0, Hp = T2 =5 the flux in the so-called Burgers' equation.

Power balance: From the transport theorem:

d b(t) da 1'® b(t) o)

SHp,p) = [plt, D)ot D) — [p(t, w)dta} +[o(t, 2)o ()]0 — / dyu(t, 2)o(t, z)de

—_— a(t) [ — a(t)

Injection—rejection Force applied

Moving boundary Loss in thermal domain

. . d
This rewrites: &Hk(]% p) = <uT7yT>R2 =+ <u0'7y0'>]R2 - <ax7/'a U>L2(a(t)7b(t)) 3

ua(t) = (_U(t7 a(t))> U(t7 b(t)))T y yd(t) =7 (”U(t,.’L’)) = (’U(t,a(t)), U(tv b(t)))T ,
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b(t) t
Kinetic energy as Hamiltonian:  #(p, p) := / P, m)d with p and p as energy variables.
2 Jowy plt )
Co-energy variables: e, :=0,H; = P_ v, the particle velocity,
P2 02
e, =0, Hp = T2 =5 the flux in the so-called Burgers' equation.

Power balance: From the transport theorem:

d b(t) a 1'® b(t) o)

S, 0) = lolt 2ol D] ~ [p(t %ﬁ} + [o(t,2)o (t, )Y — / d,v(t,2)o(t,x)da

—_— at) S———— Ja(t)

Injection—rejection Force applied

Moving boundary Loss in thermal domain

This rewrites: %Hk(p, p) = (Ur, Yr)gz + (Uo, Yo )z — (Ox0, 0>L2(a(t)7b(t)) ,
uq(t) = (~o(t,a(t), ot,b()) Yo (t) =0 (v(t,2)) = (u(t.a(t)), v(t, b)),
up(t) = NELOIIE

(=p(t, a(®)v(t, a(t)) + pt, a(t)) galt), p(t,b(E)o(t,b(t)) — p(t, b(t
un(t) _%( Mm)) ( 1,v2(t,2a(t))’ _1r2(t,2b(t)))T
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-
Flows and efforts: fr = (5};0, Op, —0zv, Ozv, Oy (%), —Yo, —yr> ,

5 T
. v 0
€k = ( v, 2 pv, g, P, Us, ur) .
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.

Flows and efforts: fr = (&p, Op, —0zv, Ozv, Oy (%) , —Yo, —yr) ,
.

€k = ( v, _%7 pv, g, P, Us, ur) .

Extended structure operator:

0 0 -0, 9, 0 ¢ 0
0 0 0 0 -9, 0 ~¢ 15 € L (R% H ' (a,b)), adjoint of 7o,
-9, 0 0O 0 0 0 0
Te=1| 0. 0 o o0 0 0 0],
0 -9, 0 0 0 0 0 H~'(a,b) dual of Hi(a,b) := ker (7o),
- 0 0O 0 0 0 0 w.r.t. L%(a,b).
0 —w O 0 0 0 0

IFAC-V 2020
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Kinetic energy

T
Flows and efforts: fr:= (&p, Op, —0zv, Ozv, Oy (17) y Yo, —yr) )
€k = ( v, _§7 pv, g, PU, Uy, ur)

Extended structure operator:

0 0 -8, 9 0 % 0
0 0 0 0 -9, 0 ~¢ 15 € L (R% H ' (a,b)), adjoint of 7o,
-0y 0 0 0 0 0 O
Tk =1 0 0 0 0 0 0 0],
0 -0, O 0 0 0 O H~(a,b) dual of Hj(a,b) := ker (o),
% 0 0 0 0 0 0 w.rt. L2(a,b).
0 —% 0 0 0 0 0

Let &k := (H(a (t),b(t))) (R )2 i 2
&k = (L*(a(?), b(t))) (]RQ) i (8’“)’ (L2 (a(t), b(t))) (R%))",  BF:=F* x &,
then Dy, := Graph(Jg) is an underlying Dlrac structure of 7{;, on B*.

1D Piston Problem
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Modelling the 1D piston

m Internal energy
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Internal energy

b(t)
Internal energy as Hamiltonian: 7,(5, p) := / u(5(t, z))dx, with s and p as energy variables.
a(t)
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Internal energy

b(t)
Internal energy as Hamiltonian: 7,(5, p) := / u(5(t, z))dx, with s and p as energy variables.
a(t)
Co-energy variables: e; := §5H, =T, the local temperature,
e, = 0,Hy = u, the internal energy density.
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Internal energy

b(t)
Internal energy as Hamiltonian: 7,(5, p) := / u(5(t, z))dx, with s and p as energy variables.
a(t)
Co-energy variables: e; := §5H, =T, the local temperature,
e, = 0,Hy = u, the internal energy density.

Power balance: From the transport theorem:

d _ _ da 1" _ b(t) b(t) 2
&"Hu(s,p) = {u(t’w)dtl} = [ut, 2)v(t, 2)] i — ot 2]y + / Opv(t,z)o(t, z)dz .
a(t) a(t)

) ~ ~  Injection-rejection Heating—coolin . M .
Moving boundary ) ) & € Gain from kinetic domain
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Internal energy

b(t)
Internal energy as Hamiltonian: 7,(5, p) := / u(5(t, z))dx, with s and p as energy variables.
a(t)
Co-energy variables: e; := §5H, =T, the local temperature,
e, = 0,Hy = u, the internal energy density.

Power balance: From the transport theorem:

d _ _ da 1" _ b(t) b(t) 2
&"Hu(s,p) = {u(t’w)dtl} = [ut, 2)v(t, 2)] i — ot 2]y + / Opv(t,z)o(t, z)dz .
a(t) a(t)

) ~ ~  Injection-rejection Heating—coolin . M .
Moving boundary ) ) & € Gain from kinetic domain

. : d_, SO
This rewrites: &H“(S’p) = — (U, Yy )ge + (Us, Ys)pz + (020, 0) r2(0(1) (1) -
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Internal energy

b(t)
Internal energy as Hamiltonian: 7,(5, p) := / u(5(t, z))dx, with s and p as energy variables.
a(t)
Co-energy variables: e; := §5H, =T, the local temperature,
e, = 0,Hy = u, the internal energy density.

Power balance: From the transport theorem:

d _ _ da 1" _ b(t) b(t) 2
&"Hu(s,p) = {u(t’w)dtl} = [ut, 2)v(t, 2)] i — ot 2]y + / Opv(t,z)o(t, z)dz .
a(t) a(t)

) ~ ~  Injection-rejection Heating—coolin . M .
Moving boundary ) ) & € Gain from kinetic domain

This rewrites: %Hu(E, p) == (Ur, Yp)ge + (Us; Ys)pz + (020, 0) 24 (1) 01)) -
uS(t) =" (T(t,:l,')) = (T(t7 a(t))v T(t7 b(t)))T ) yS(t) = (JS(t’ a(t))v _JS(t’ b(t)))T )
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Internal energy

b(t)
Internal energy as Hamiltonian: 7,(5, p) := / u(5(t, z))dx, with s and p as energy variables.
a(t)
Co-energy variables: e; := §5H, =T, the local temperature,
e, = 0,Hy = u, the internal energy density.

Power balance: From the transport theorem:

d _ _ da 1" _ b(t) b(t) 2
&"Hu(s,p) = {u(t’w)dtl} = [ut, 2)v(t, 2)] i — ot 2]y + / Opv(t,z)o(t, z)dz .
a(t) a(t)

) ~ ~  Injection-rejection Heating—coolin . M .
Moving boundary ) ) & € Gain from kinetic domain

This rewrites: %Hu(E, p) == (Ur, Yp)ge + (Us; Ys)pz + (020, 0) 24 (1) 01)) -

ug(t) =0 (T(t,2)) = (T(t,alt), T(t,b(1) ys(t) == (Jult,a(t)), —Js(t,b(1)) ",

G, (1) == (p(t, a(t))v(t, a(t)) — plt, alt) Salt), —p(t, b))t b(E)) + plt, () Lb(1)) " = —urlt),
U, (1) =0 (u) = (u(t,at), ult,b(t))" .
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Internal energy

Flows and efforts: fr= (05, O, —0.T, —0,T, =T, —0yu, wus, *@)T,
_ T
ey = ( T, u, Sv, Js, >, Uy, —Ys, uT)
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Internal energy

Flows and efforts: fr= (05, O, —0.T, —0,T, =T, —0yu, wus, —yT)T,
_ T
€k = ( Ta U, SU, JS7 E, pUs —Ys, uT)
Extended structure operator:

0
0
-0,
-9,

[eRelelelale =N

[=Relelelel=l=N

2

8
8

ocCoococooy o
8

Tu =

oCpoococoo

coocococo o~
coocoococoo
coocococozx o

0 —
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Internal energy

Flows and efforts: fr= (05, O, —0.T, —0,T, =T, —0yu, wus, *%)T,
_ T
€k = ( Ta U, SU, Jsv 27 pUs —Ys, uT)
Extended structure operator:

0 0
0 0
-0, O
-0, O
0

0

0

[eRelelelale =N

[=Relelelel=l=N

2

8
8

ocCoococooy o
8

coocococo o~
coocoococoo
coocococozx o

Theorem
Let &% := (H(a(t),b()))° x (R%)?,

gu = (L2(a(t), b(®))° x (R2)?,  F*:= (&%) = (L*(alt),b(t)))° x (R?)?, B*:= Fu x &¥,
then D,, := Graph(7,) is an underlying Dirac structure of }, on B“.
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Modelling the 1D piston

m One sub-system
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One sub-system

Interconnection on a sub-system: Hg,(p,s, p) := Hi(p, p) + Hu(S, p) is the total energy in S;.
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One sub-system

Interconnection on a sub-system: Hg,(p,s, p) := Hi(p, p) + Hu(S, p) is the total energy in S;.

Power balance:

d ~ ~
aHSi (p, 3, p) = (o, yo>R2 + <u7’7 Yr — yr>R2 + <U5, ys>R2 , thanks to u, = —u,.

The total energy of the closed system is conservative, as expected. ]
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One sub-system

Interconnection on a sub-system: Hg,(p,s, p) := Hi(p, p) + Hu(S, p) is the total energy in S;.

Power balance:

d ~ ~
aHSi (p, 3, p) = (o, yo>R2 + <u7’7 Yr — y,)Rz + <U5, ys>R2 , thanks to u, = —u,.

The total energy of the closed system is conservative, as expected. ]

Remark: v, — Y, = (u + %) is the Dirichlet trace of the total energy density.
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One sub-system

Extended structure operator on a (a(t), b(t)), for each fixed t > 0:

Oyp = Oyp by Lagrange multiplier =

Ohp 0 0 -0, & 0 + 0 0 0 0 v

9 0 0 0 0 -8 0 L= 0 0 v

—Opv -9 0 0 0 0 0 0 0 0 0 o

Oy & 0 0 0 0 0 0 0 0 0 0 o
a, (7) 0 -8, 0 0 0 0 0 0 —I2 0 o

—y, % 0 0 0 0 0 0 0 0 0 Uy

. 0 =% 0 0 0 0 0 0 0 -l uy

PE 0 0 -9 -8, I 0 - 0 0 0 0 T

ap | 0 0 0 0 0 -9 0 I 0 0 u

-9,T -0, 0 0 0 0 0 0 0 0 0 0 sv

—a,T 0 9, 0 0 0 0 0 0 0 0 0 0 A

_7 I 0 0 0 0 0 0 0 0 0 0 s

—Oyu 0 -0, 0 0 0 0 0 0 0 I 0 pv

. % 0 0 0 0 0 0 0 0 0 0 —y,

-7 0 =% 0 0 0 0 0 0 0 0 -l i,

0 (0 [, 00 0 0 0) (0 I, 000 0 0 0) ut 2| =i
0 0 0 00 Iz 0 0 00 000 ~Ir2 0 0 0 0o | p=pv
0 0 0 00 0 0 Ig 000 000 0 0 I 0 ) uy=—i,

Remark: The Lagrange multiplier for 0;p = O;p is the total energy density u + g
In orange: Sign errors in the proceeding.
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Modelling the 1D piston

m The 1D piston problem
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The 1D piston problem

Interconnection of S;,Ss, and S3 on (ag,a3) = (0, L):
Assuming no matter exchange between sub-systems, neither between S35 and the environment, and:

m thermodynamical equilibrium:  J, 1(¢,a1(t)) = —Jg2(t,a1(t)), Jg.2(t,a2(t)) = —Jg.3(t, az(t));
m mechanical equilibrium: o1(t,a1(t)) = —oa(t,a1(t)), o2(t,as(t)) = —o3(t, az(t));

m internal boundary velocities only driven by the matter:
vi(t,ai(t)) = va(t,ai(t) = dear(t), wva(t,a2(t)) = vs(t, a2(t)) = diaz(t).
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Assuming no matter exchange between sub-systems, neither between S35 and the environment, and:

m thermodynamical equilibrium:  J, 1(¢,a1(t)) = —Jg2(t,a1(t)), Jg.2(t,a2(t)) = —Jg.3(t, az(t));
m mechanical equilibrium: o1(t,a1(t)) = —oa(t,a1(t)), o2(t,as(t)) = —o3(t, az(t));

m internal boundary velocities only driven by the matter:
vi(t,ai(t)) = va(t,ai(t) = dear(t), wva(t,a2(t)) = vs(t, a2(t)) = diaz(t).

Power balance: Hro := Hs, +Hs, + Hs,-
’012(t, 0)
2

d
&HTot = pP1 (t, O)Ul(t, 0) ( + ’LL(t, 0)) — 01 (t7 0) U1 (t, 0) — qul(t, 0) + qug(t L) .
—_— ——

Injection—rejection Pressure Heating—cooling
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The 1D piston problem

Interconnection of S;,Ss, and S3 on (ag,a3) = (0, L):
Assuming no matter exchange between sub-systems, neither between S35 and the environment, and:

m thermodynamical equilibrium:  J, 1(¢,a1(t)) = —Jg2(t,a1(t)), Jg.2(t,a2(t)) = —Jg.3(t, az(t));
m mechanical equilibrium: o1(t,a1(t)) = —oa(t,a1(t)), o2(t,as(t)) = —o3(t, az(t));

m internal boundary velocities only driven by the matter:
vi(t,ai(t)) = va(t,ai(t) = dear(t), wva(t,a2(t)) = vs(t, a2(t)) = diaz(t).

Power balance: Hro := Hs, +Hs, + Hs,-

d v12(¢,0
*/HTot = pl(t,O)Ul(t, 0) M + ’LL(t,O) — 01(t70) ’Ul(t,O) — qul(t,O) + qug(LL) .
dt —_— 2 ——

Injection—rejection Pressure Heating—cooling

Extended structure operator:
It is constructed thanks to the above contextual assumptions by writing the interactions in terms of
equalities between inputs w and ouputs y.
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The 1D piston problem

With the additional hypotheses (in order to close the system with constitutive relations):

m fluids S7 and S3 are ideal Newtonian gas: 0; = 1;0,0; — # 1=1,2;
m solid Sy is rigid: / o2 =0;
m the heat transferts follow Fourier's law: Jgi=—N0T;,1=1,2,3;
m the Dulong-Petit model is valid: w; =CLupili, i=1,2,3;
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With the additional hypotheses (in order to close the system with constitutive relations):

m fluids S7 and S3 are ideal Newtonian gas: 0; = 1;0,0; — # 1=1,2;
m solid Sy is rigid: / o2 =0;
m the heat transferts follow Fourier's law: Jgi=—N0T;,1=1,2,3;
m the Dulong-Petit model is valid: w; =CLupili, i=1,2,3;
Op1 = —0z(p1v1), (0,a1),
dp1vr = =0p(prv1?) + Oy (m@gg(v]) - %) : (0,a1),
Cu10e(piTh) = —0(CoapiTy) + (1/1695(1)1) — %) 0z (v1) + 02 (X10:(T1)), (0,a1),
p20tvs = *(”UQ)zax(Pz), (ah az),
Coop20¢(Ts) = =0, (Ch 2p2T2) + 02 (1202(13)), (a1,az),
Orpz = —0:(p3v3), (a2, L),
Dip3vs = =04 (pavs®) + 0y (V:sam(%’s) - %) ) (a2, L),
CosulpsTs) = =0u(CoapsTs) + (1304 (vs) — 223 ) 0, (v3) + 04 (\s0a(T5)) , (a2, L),
@ boundary conditions.

1

Remark: n" is a part of the injection—rejection control as it modifies the amount of substance in 5!
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Conclusion
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Conclusion

We propose a new approach for the modelling of the 1D piston problem, as interconnected
port-Hamiltonian systems. This allows:

m meaningful physical quantities;
m the construction of an algebraic structure encoding the power balance: a Dirac structure;

m the postponment of equations of state (Fourier's law, Newtonian fluids, ideal gas, rigid solid,
Dulong-Petit model) at the end of the process.

Further works:

m structure-preserving discretization taking advantage of the knowledge of the Dirac structure;

m 2D and 3D models, with chemical reactions.

Thank you for your attention!
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