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The 1D piston problem

•
0

• • •
LS1 S2 S3

Input

Output

S1, S3: inert compressible viscous fluids; S2: inert rigid body; Arrows: interactions.

Notations:

ρ: mass density; v: particle velocity; p := ρv: linear momentum;
σ: stress tensor; u: internal energy density; Jq: heat flux;
s: entropy density; T : local temperature; β := 1

T : reciprocal temperature;
π: local pressure; V : volume (length); Js := 1

T Jq: entropy flux;

Σ := 1
T

(
σ∂xv − Js∂xT + π d

dtV
)
: irreversible entropy production.
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Physics
Axiomatics:

Conservation of mass: ∂tρ = −∂x(ρv);
Conservation of linear momentum: ∂tp = −∂x(pv) + ∂x(σ);
Conservation of internal energy: ∂t(ū) = −∂x(ūv) + σ∂x(v)− ∂x(Jq), ū := ρu;

Gibb’s formula: dū = T ds̄− π dV +
∑
i

µi dni, s̄ := ρs.

Context & comportemental laws (equations of state):
1D domain: V := (a, b);
No chemical reactions is to be found in the system (inert media): µi ≡ 0;
Dulong-Petit model: u = CvT , Cv isochoric heat capacity.
Fourier’s law for heat condution: Jq = −k∇(T );
For fluids S1, S3, stress tensors are of the form: ν∂xv − π;
Ideal gas law: πV = nRT , where n is the amount of substance and R the universal gas constant;
For the rigid S2, the stress tensor is: σ ≡ 0 (Hooke’s law with null elasticity modulus).
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Port-Hamiltonian systems
The energy variables α (vector field);
The Hamiltonian H(α(t)) (positive functional);

The co-energy variables eα := δαH (vector field),
 the variational derivative of H w.r.t α;

The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
The control operator B (linear);
The input u and the collocated output y (boundary fields);
The dynamical system: {

∂tα(t) = (J −R) eα(t) +Bu(t),
y(t) = B∗eα(t).

Lossy Power Balance: d
dtH(α(t)) = −〈Reα(t), eα(t)〉J+〈u(t),y(t)〉B ≤ 〈u(t),y(t)〉B .

/!\ Although the underlying geometry is well-determined with the above equation,
constitutive relations between α and eα are also needed to solve the system!
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Port-Hamiltonian systems
The effort space E (Hilbert space) and e :=

(
eα, eR, u

)>;

The flow space F := E ′ and f :=
(
∂tα, fR, −y

)>;
The extended structure operator J :=

 J −I B
I 0 0
−B∗ 0 0

;

The Bond space B := F × E , with symmetrized bilinear product:[(
f1

e1

)
,

(
f2

e2

)]
B

:=
〈
f1, e2〉

F,E +
〈
f2, e1〉

F,E ;

The dissipative constitutive relation eR = RfR;

Theorem
If J ∈ L(E1,F) is closed, densely defined and:

〈
J e1, e2〉

F,E = −
〈
J e2, e1〉

F,E for all e1, e2 ∈ E1,
then D := Graph (J ) ⊂ B is a Dirac structure, i.e. D[⊥] = D with:

D[⊥] :=
{(

f
e

)
∈ B

∣∣∣∣∣
[(
f
e

)
,

(
f̃
ẽ

)]
B

= 0, ∀
(
f̃
ẽ

)
∈ D

}
.
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Port-Hamiltonian systems

〈f(t), e(t)〉F,E = 0, ∀
(
f(t), e(t)

)
∈ D, ∀t ≥ 0.

Let (∂tα,fR,−y, eα, eR,u)> be in D. Adding eR = RfR: the lossy power balance is satisfied!

Flow/effort representation generalizes the above state representation with J−R, and this allows
an easy way to interconnect sub-systems, thanks to algebraic constraints aside from the structure!

Main result

An underlying Dirac structure containing the power balance is constructed for both the
kinetic and internal energies of S1, S2 and S3.
The six resulting systems are interconnected to obtain a direct modelling of the 1D piston
problem as a port-Hamiltonian system with algebraic constraints.
An interesting feature is that this modelling keeps the geometric structure of conservation
laws apart from the comportemental laws: the constitutive relations.
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Kinetic energy
Kinetic energy as Hamiltonian: Hk(p, ρ) := 1

2

∫ b(t)

a(t)

p2(t, x)
ρ(t, x) dx, with p and ρ as energy variables.

Co-energy variables: ep := δpHk = p

ρ
= v, the particle velocity,

eρ := δρHk = − p2

2ρ2 = −v
2

2 , the flux in the so-called Burgers’ equation.

Power balance: From the transport theorem:

d
dtHk(p, ρ) = [ρ(t, x)v(t, x)]b(t)a(t)︸ ︷︷ ︸

Injection–rejection

−
[
ρ(t, x) d

dtx
]b(t)
a(t)︸ ︷︷ ︸

Moving boundary

+ [v(t, x)σ(t, x)]b(t)a(t)︸ ︷︷ ︸
Force applied

−
∫ b(t)

a(t)
∂xv(t, x)σ(t, x)dx︸ ︷︷ ︸

Loss in thermal domain

.

This rewrites: d
dtHk(p, ρ) = 〈ur,yr〉R2 + 〈uσ,yσ〉R2 − 〈∂xv, σ〉L2(a(t),b(t)) ,

uσ(t) :=
(
−σ(t, a(t)), σ(t, b(t))

)>
, yσ(t) := γ0 (v(t, x)) =

(
v(t, a(t)), v(t, b(t))

)>
,

ur(t) :=
(
−ρ(t, a(t))v(t, a(t)) + ρ(t, a(t)) d

dta(t), ρ(t, b(t))v(t, b(t))− ρ(t, b(t)) d
dtb(t)

)>
,

yr(t) := γ0

(
−v

2(t,x)
2

)
=
(
− v

2(t,a(t))
2 , −v

2(t,b(t))
2

)>
.
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Kinetic energy

Flows and efforts: fk :=
(
∂tp, ∂tρ, −∂xv, ∂xv, ∂x

(
v2

2

)
, −yσ, −yr

)>
,

ek :=
(

v, −v
2

2 , pv, σ, ρv, uσ, ur

)>
.

Extended structure operator:

J k :=



0 0 −∂x ∂x 0 γ∗0 0
0 0 0 0 −∂x 0 γ∗0
−∂x 0 0 0 0 0 0
∂x 0 0 0 0 0 0
0 −∂x 0 0 0 0 0
−γ0 0 0 0 0 0 0

0 −γ0 0 0 0 0 0


,

γ∗0 ∈ L
(
R2, H−1(a, b)

)
, adjoint of γ0,

H−1(a, b) dual of H1
0 (a, b) := ker (γ0),

w.r.t. L2(a, b).

Theorem
Let Ek1 :=

(
H1(a(t), b(t))

)5 ×
(
R2)2,

Ek :=
(
L2(a(t), b(t))

)5 ×
(
R2)2, Fk :=

(
Ek
)′ =

(
L2(a(t), b(t))

)5 ×
(
R2)2, Bk := Fk × Ek,

then Dk := Graph(J k) is an underlying Dirac structure of Hk on Bk.
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Internal energy

Internal energy as Hamiltonian: Hu(s, ρ) :=
∫ b(t)

a(t)
u(s(t, x))dx, with s and ρ as energy variables.

Co-energy variables: es := δsHu = T , the local temperature,
eρ := δρHu = u, the internal energy density.

Power balance: From the transport theorem:

d
dtHu(s, ρ) =

[
u(t, x) d

dtx
]b(t)
a(t)︸ ︷︷ ︸

Moving boundary

− [u(t, x)v(t, x)]b(t)a(t)︸ ︷︷ ︸
Injection–rejection

− [Jq(t, x)]b(t)a(t)︸ ︷︷ ︸
Heating–cooling

+
∫ b(t)

a(t)
∂xv(t, x)σ(t, x)dx︸ ︷︷ ︸

Gain from kinetic domain

.

This rewrites: d
dtHu(s, ρ) = −〈ũr, ỹr〉R2 + 〈us,ys〉R2 + 〈∂xv, σ〉L2(a(t),b(t)) ,

us(t) := γ0 (T (t, x)) =
(
T (t, a(t)), T (t, b(t))

)>
, ys(t) :=

(
Js(t, a(t)), −Js(t, b(t))

)>
,

ũr(t) :=
(
ρ(t, a(t))v(t, a(t))− ρ(t, a(t)) d

dta(t), −ρ(t, b(t))v(t, b(t)) + ρ(t, b(t)) d
dtb(t)

)> = −ur(t),
ỹr(t) := γ0 (u) =

(
u(t, a(t)), u(t, b(t))

)>
.
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Internal energy
Flows and efforts: fk :=

(
∂ts, ∂tρ, −∂xT , −∂xT , −T , −∂xu, us, −ỹr

)>
,

ek :=
(
T , u, sv, Js, Σ, ρv, −ys, ũr

)>
.

Extended structure operator:

J u :=



0 0 −∂x −∂x I 0 −γ∗0 0
0 0 0 0 0 −∂x 0 γ∗0
−∂x 0 0 0 0 0 0 0
−∂x 0 0 0 0 0 0 0
−I 0 0 0 0 0 0 0
0 −∂x 0 0 0 0 0 0
γ0 0 0 0 0 0 0 0
0 −γ0 0 0 0 0 0 0


.

Theorem
Let Eu1 :=

(
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)>
,

ek :=
(
T , u, sv, Js, Σ, ρv, −ys, ũr

)>
.

Extended structure operator:

J u :=



0 0 −∂x −∂x I 0 −γ∗0 0
0 0 0 0 0 −∂x 0 γ∗0
−∂x 0 0 0 0 0 0 0
−∂x 0 0 0 0 0 0 0
−I 0 0 0 0 0 0 0
0 −∂x 0 0 0 0 0 0
γ0 0 0 0 0 0 0 0
0 −γ0 0 0 0 0 0 0


.

Theorem
Let Eu1 :=

(
H1(a(t), b(t))

)6 ×
(
R2)2,

Eu :=
(
L2(a(t), b(t))

)6 ×
(
R2)2, Fu := (Eu)′ =

(
L2(a(t), b(t))

)6 ×
(
R2)2, Bu := Fu × Eu,

then Du := Graph(J u) is an underlying Dirac structure of Hu on Bu.

Treton, Haine, Matignon (ISAE) 1D Piston Problem IFAC-V 2020 11 / 16



Outline

1 Introduction

2 Modelling the 1D piston
Kinetic energy
Internal energy
One sub-system
The 1D piston problem

3 Conclusion

Treton, Haine, Matignon (ISAE) 1D Piston Problem IFAC-V 2020 11 / 16



One sub-system

Interconnection on a sub-system: HSi
(p, s, ρ) := Hk(p, ρ) +Hu(s, ρ) is the total energy in Si.

Power balance:
d
dtHSi(p, s, ρ) = 〈uσ,yσ〉R2 + 〈ur,yr − ỹr〉R2 + 〈us,ys〉R2 , thanks to ur = −ũr.

The total energy of the closed system is conservative, as expected.

Remark: yr − ỹr = γ0

(
u+ v2

2

)
is the Dirichlet trace of the total energy density.
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One sub-system
Extended structure operator on a (a(t), b(t)), for each fixed t ≥ 0:

∂tρ = ∂tρ by Lagrange multiplier ��

∂tp
∂tρ
−∂xv
∂xv

∂x

(
v2

2

)
−yσ
−yr
∂ts
∂tρ
−∂xT
−∂xT
−T
−∂xu
us
−ỹr

0
0
0



=





0 0 −∂x ∂x 0 γ∗0 0
0 0 0 0 −∂x 0 γ∗0
−∂x 0 0 0 0 0 0
∂x 0 0 0 0 0 0
0 −∂x 0 0 0 0 0
−γ0 0 0 0 0 0 0

0 −γ0 0 0 0 0 0


0



0 0 0
IL2 0 0
0 0 0
0 0 0
0 −IL2 0
0 0 0
0 0 −IR2



0



0 0 −∂x −∂x I 0 −γ∗0 0
0 0 0 0 0 −∂x 0 γ∗0
−∂x 0 0 0 0 0 0 0
−∂x 0 0 0 0 0 0 0
−I 0 0 0 0 0 0 0
0 −∂x 0 0 0 0 0 0
γ0 0 0 0 0 0 0 0
0 −γ0 0 0 0 0 0 0





0 0 0
−IL2 0 0

0 0 0
0 0 0
0 0 0
0 IL2 0
0 0 0
0 0 −IR2

0 −IL2 0 0 0 0 0
0 0 0 0 IL2 0 0
0 0 0 0 0 0 IR2

 0 IL2 0 0 0 0 0 0
0 0 0 0 0 −IL2 0 0
0 0 0 0 0 0 0 IR2

 0





v

− v
2

2
pv
σ
ρv
uσ
ur
T
u
sv
Js
Σ
ρv
−ys
ũr

u+ v2

2
0
0

 ∂tρ = ∂tρ
ρv = ρv
ur = −ũr

Remark: The Lagrange multiplier for ∂tρ = ∂tρ is the total energy density u+ v2

2 .
In orange: Sign errors in the proceeding.
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The 1D piston problem

Interconnection of S1, S2, and S3 on (a0, a3) = (0, L):
Assuming no matter exchange between sub-systems, neither between S3 and the environment, and:

thermodynamical equilibrium: Jq,1(t, a1(t)) = −Jq,2(t, a1(t)), Jq,2(t, a2(t)) = −Jq,3(t, a2(t));
mechanical equilibrium: σ1(t, a1(t)) = −σ2(t, a1(t)), σ2(t, a2(t)) = −σ3(t, a2(t));
internal boundary velocities only driven by the matter:

v1(t, a1(t)) = v2(t, a1(t)) = dta1(t), v2(t, a2(t)) = v3(t, a2(t)) = dta2(t).

Power balance: HTot := HS1 +HS2 +HS3 .

d
dtHTot = ρ1(t, 0)v1(t, 0)︸ ︷︷ ︸

Injection–rejection

(
v1

2(t, 0)
2 + u(t, 0)

)
− σ1(t, 0)︸ ︷︷ ︸

Pressure

v1(t, 0)− Jq,1(t, 0) + Jq,3(t, L)︸ ︷︷ ︸
Heating–cooling

.

Extended structure operator:
It is constructed thanks to the above contextual assumptions by writing the interactions in terms of
equalities between inputs u and ouputs y.
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The 1D piston problem
With the additional hypotheses (in order to close the system with constitutive relations):

fluids S1 and S3 are ideal Newtonian gas: σi = νi∂xvi − niRTi

Vi
, i = 1, 2;

solid S2 is rigid: σ2 ≡ 0;
the heat transferts follow Fourier’s law: Jq,i = −λi∂xTi, i = 1, 2, 3;
the Dulong-Petit model is valid: ui = Cv,iρiTi, i = 1, 2, 3;



∂tρ1 = −∂x(ρ1v1), (0, a1),
∂tρ1v1 = −∂x(ρ1v1

2) + ∂x

(
ν1∂x(v1)− n1RT1

a1

)
, (0, a1),

Cv,1∂t(ρ1T1) = −∂x(Cv,1ρ1T1) +
(
ν1∂x(v1)− n1RT1

a1

)
∂x(v1) + ∂x(λ1∂x(T1)), (0, a1),

ρ2∂tv2 = −(v2)2∂x(ρ2), (a1, a2),
Cv,2ρ2∂t(T2) = −∂x(Cv,2ρ2T2) + ∂x(λ2∂x(T2)), (a1, a2),
∂tρ3 = −∂x(ρ3v3), (a2, L),
∂tρ3v3 = −∂x(ρ3v3

2) + ∂x

(
ν3∂x(v3)− n3RT3

L−a2

)
, (a2, L),

Cv,3∂t(ρ3T3) = −∂x(Cv,3ρ3T3) +
(
ν3∂x(v3)− n3RT3

L−a2

)
∂x (v3) + ∂x(λ3∂x(T3)) , (a2, L),

⊕ boundary conditions.

Remark: n1 is a part of the injection–rejection control as it modifies the amount of substance in S1!
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Conclusion

We propose a new approach for the modelling of the 1D piston problem, as interconnected
port-Hamiltonian systems. This allows:

meaningful physical quantities;
the construction of an algebraic structure encoding the power balance: a Dirac structure;
the postponment of equations of state (Fourier’s law, Newtonian fluids, ideal gas, rigid solid,
Dulong-Petit model) at the end of the process.

Further works:
structure-preserving discretization taking advantage of the knowledge of the Dirac structure;
2D and 3D models, with chemical reactions.

Thank you for your attention!
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