

# Modelling the 1D piston problem as interconnected port-Hamiltonian systems

Anne-Sophie Treton<sup>1</sup>

Ghislain Haine<sup>1</sup>

Denis Matignon<sup>1</sup>

<sup>1</sup>ISAE-SUPAERO, Toulouse, France

## 1 Introduction

- The 1D piston problem
- Physics
- Port-Hamiltonian systems

## 2 Modelling the 1D piston

- Kinetic energy
- Internal energy
- One sub-system
- The 1D piston problem

## 3 Conclusion

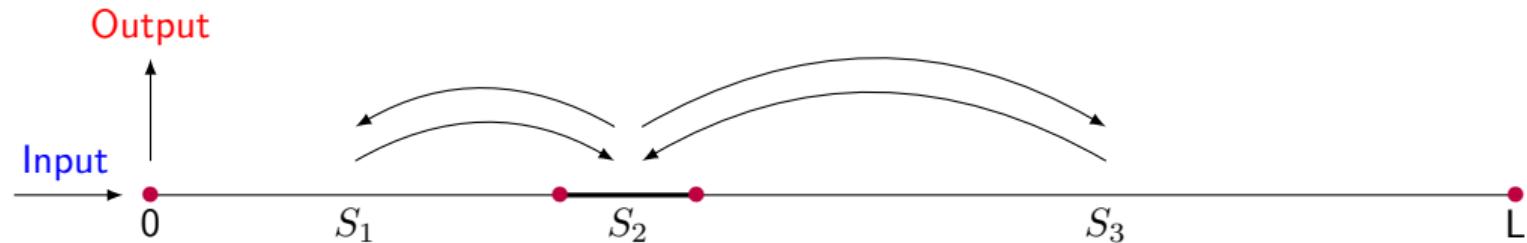
## 1 Introduction

- The 1D piston problem
- Physics
- Port-Hamiltonian systems

## 2 Modelling the 1D piston

## 3 Conclusion

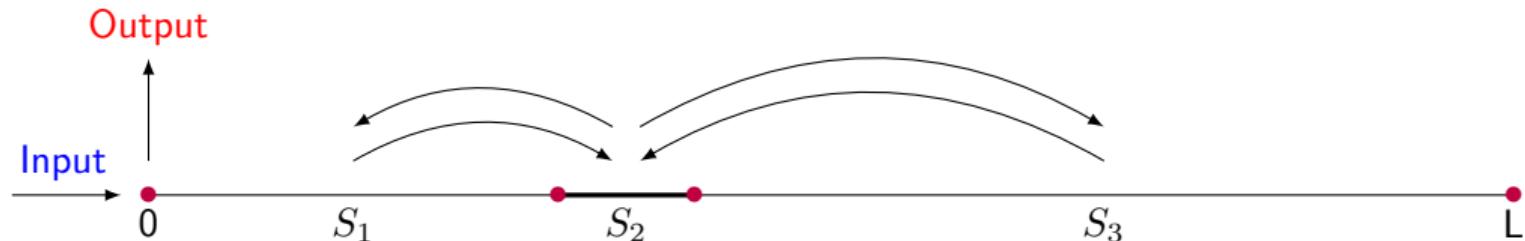
# The 1D piston problem



$S_1, S_3$ : inert compressible viscous fluids;

$S_2$ : inert rigid body;

Arrows: interactions.



$S_1, S_3$ : inert compressible viscous fluids;

$S_2$ : inert rigid body;

Arrows: interactions.

## Notations:

$\rho$ : mass density;

$v$ : particle velocity;

$p := \rho v$ : linear momentum;

$\sigma$ : stress tensor;

$u$ : internal energy density;

$J_q$ : heat flux;

$s$ : entropy density;

$T$ : local temperature;

$\beta := \frac{1}{T}$ : reciprocal temperature;

$\pi$ : local pressure;

$V$ : volume (length);

$J_s := \frac{1}{T} J_q$ : entropy flux;

$$\Sigma := \frac{1}{T} (\sigma \partial_x v - J_s \partial_x T + \pi \frac{d}{dt} V) : \text{irreversible entropy production.}$$

## 1 Introduction

- The 1D piston problem
- **Physics**
- Port-Hamiltonian systems

## 2 Modelling the 1D piston

## 3 Conclusion

**Axiomatics:**

- Conservation of mass:  $\partial_t \rho = -\partial_x(\rho v)$ ;
- Conservation of linear momentum:  $\partial_t p = -\partial_x(pv) + \partial_x(\sigma)$ ;
- Conservation of internal energy:  $\partial_t(\bar{u}) = -\partial_x(\bar{u}v) + \sigma \partial_x(v) - \partial_x(J_q)$ ,  $\bar{u} := \rho u$ ;
- Gibb's formula:  $d\bar{u} = T d\bar{s} - \pi dV + \sum_i \mu_i dn_i$ ,  $\bar{s} := \rho s$ .

**Axiomatics:**

- Conservation of mass:  $\partial_t \rho = -\partial_x(\rho v);$
- Conservation of linear momentum:  $\partial_t p = -\partial_x(pv) + \partial_x(\sigma);$
- Conservation of internal energy:  $\partial_t(\bar{u}) = -\partial_x(\bar{u}v) + \sigma \partial_x(v) - \partial_x(J_q), \quad \bar{u} := \rho u;$
- Gibb's formula:  $d\bar{u} = T d\bar{s} - \pi dV + \sum_i \mu_i dn_i, \quad \bar{s} := \rho s.$

**Context & comportemental laws (equations of state):**

- 1D domain:  $V := (a, b);$
- No chemical reactions is to be found in the system (inert media):  $\mu_i \equiv 0;$
- Dulong-Petit model:  $u = C_v T, \quad C_v$  isochoric heat capacity.
- Fourier's law for heat conduction:  $J_q = -k \nabla(T);$
- For fluids  $S_1, S_3$ , stress tensors are of the form:  $\nu \partial_x v - \pi;$
- Ideal gas law:  $\pi V = n R T$ , where  $n$  is the amount of substance and  $R$  the universal gas constant;
- For the rigid  $S_2$ , the stress tensor is:  $\sigma \equiv 0$  (Hooke's law with null elasticity modulus).

## 1 Introduction

- The 1D piston problem
- Physics
- Port-Hamiltonian systems

## 2 Modelling the 1D piston

## 3 Conclusion

- The **energy variables**  $\alpha$  (vector field);
- The **Hamiltonian**  $\mathcal{H}(\alpha(t))$  (positive functional);

- The **energy variables**  $\alpha$  (vector field);
- The **Hamiltonian**  $\mathcal{H}(\alpha(t))$  (positive functional);
- The **co-energy variables**  $e_\alpha := \delta_\alpha \mathcal{H}$  (vector field),  
~~~ the variational derivative of  $\mathcal{H}$  w.r.t  $\alpha$ ;

- The **energy variables**  $\alpha$  (vector field);
- The **Hamiltonian**  $\mathcal{H}(\alpha(t))$  (positive functional);
- The **co-energy variables**  $e_\alpha := \delta_\alpha \mathcal{H}$  (vector field),  
~~~ the variational derivative of  $\mathcal{H}$  w.r.t  $\alpha$ ;
- The **structure operator**  $J$  (linear and *formally skew-symmetric*);
- The **resistive/dissipative operator**  $R$  (linear and *positive*);

- The **energy variables**  $\alpha$  (vector field);
- The **Hamiltonian**  $\mathcal{H}(\alpha(t))$  (positive functional);
- The **co-energy variables**  $e_\alpha := \delta_\alpha \mathcal{H}$  (vector field),  
     $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\alpha$ ;
- The **structure operator**  $J$  (linear and *formally skew-symmetric*);
- The **resistive/dissipative operator**  $R$  (linear and *positive*);
- The **control operator**  $B$  (linear);
- The **input**  $u$  and the **collocated output**  $y$  (boundary fields);

- The **energy variables**  $\alpha$  (vector field);
- The **Hamiltonian**  $\mathcal{H}(\alpha(t))$  (positive functional);
- The **co-energy variables**  $e_\alpha := \delta_\alpha \mathcal{H}$  (vector field),  
     $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\alpha$ ;
- The **structure operator**  $J$  (linear and *formally skew-symmetric*);
- The **resistive/dissipative operator**  $R$  (linear and *positive*);
- The **control operator**  $B$  (linear);
- The **input**  $u$  and the **collocated output**  $y$  (boundary fields);
- The **dynamical system**:

$$\begin{cases} \partial_t \alpha(t) = (J - R) e_\alpha(t) + B u(t), \\ y(t) = B^* e_\alpha(t). \end{cases}$$

# Port-Hamiltonian systems

- The **energy variables**  $\alpha$  (vector field);
- The **Hamiltonian**  $\mathcal{H}(\alpha(t))$  (positive functional);
- The **co-energy variables**  $e_\alpha := \delta_\alpha \mathcal{H}$  (vector field),  
     $\rightsquigarrow$  the variational derivative of  $\mathcal{H}$  w.r.t  $\alpha$ ;
- The **structure operator**  $J$  (linear and *formally skew-symmetric*);
- The **resistive/dissipative operator**  $R$  (linear and *positive*);
- The **control operator**  $B$  (linear);
- The **input**  $u$  and the **collocated output**  $y$  (boundary fields);
- The **dynamical system**:

$$\begin{cases} \partial_t \alpha(t) = (J - R) e_\alpha(t) + B u(t), \\ y(t) = B^* e_\alpha(t). \end{cases}$$

**Lossy Power Balance:**  $\frac{d}{dt} \mathcal{H}(\alpha(t)) = - \langle R e_\alpha(t), e_\alpha(t) \rangle_J + \langle u(t), y(t) \rangle_B \leq \langle u(t), y(t) \rangle_B.$

/!\ Although **the underlying geometry** is well-determined with the above equation,  
**constitutive relations** between  $\alpha$  and  $e_\alpha$  are also needed to solve the system!

- The **effort space**  $\mathcal{E}$  (Hilbert space) and  $\mathbf{e} := (e_\alpha, e_R, u)^\top$ ;

- The **effort space**  $\mathcal{E}$  (Hilbert space) and  $\mathbf{e} := (e_\alpha, e_R, \mathbf{u})^\top$ ;
- The **flow space**  $\mathcal{F} := \mathcal{E}'$  and  $\mathbf{f} := (\partial_t \alpha, \mathbf{f}_R, -\mathbf{y})^\top$ ;

# Port-Hamiltonian systems

- The **effort space**  $\mathcal{E}$  (Hilbert space) and  $\mathbf{e} := (e_\alpha, e_R, \mathbf{u})^\top$ ;
- The **flow space**  $\mathcal{F} := \mathcal{E}'$  and  $\mathbf{f} := (\partial_t \alpha, \mathbf{f}_R, -\mathbf{y})^\top$ ;
- The **extended structure operator**  $\mathcal{J} := \begin{pmatrix} J & -I & B \\ I & 0 & 0 \\ -B^* & 0 & 0 \end{pmatrix}$ ;

# Port-Hamiltonian systems

- The **effort space**  $\mathcal{E}$  (Hilbert space) and  $\mathbf{e} := (\mathbf{e}_\alpha, \mathbf{e}_R, \mathbf{u})^\top$ ;
- The **flow space**  $\mathcal{F} := \mathcal{E}'$  and  $\mathbf{f} := (\partial_t \alpha, \mathbf{f}_R, -\mathbf{y})^\top$ ;
- The **extended structure operator**  $\mathcal{J} := \begin{pmatrix} J & -I & B \\ I & 0 & 0 \\ -B^* & 0 & 0 \end{pmatrix}$ ;
- The **Bond space**  $\mathcal{B} := \mathcal{F} \times \mathcal{E}$ , with symmetrized bilinear product:

$$\left[ \begin{pmatrix} \mathbf{f}^1 \\ \mathbf{e}^1 \end{pmatrix}, \begin{pmatrix} \mathbf{f}^2 \\ \mathbf{e}^2 \end{pmatrix} \right]_{\mathcal{B}} := \langle \mathbf{f}^1, \mathbf{e}^2 \rangle_{\mathcal{F}, \mathcal{E}} + \langle \mathbf{f}^2, \mathbf{e}^1 \rangle_{\mathcal{F}, \mathcal{E}};$$

# Port-Hamiltonian systems

- The **effort space**  $\mathcal{E}$  (Hilbert space) and  $\mathbf{e} := (\mathbf{e}_\alpha, \mathbf{e}_R, \mathbf{u})^\top$ ;
- The **flow space**  $\mathcal{F} := \mathcal{E}'$  and  $\mathbf{f} := (\partial_t \alpha, \mathbf{f}_R, -\mathbf{y})^\top$ ;
- The **extended structure operator**  $\mathcal{J} := \begin{pmatrix} J & -I & B \\ I & 0 & 0 \\ -B^* & 0 & 0 \end{pmatrix}$ ;
- The **Bond space**  $\mathcal{B} := \mathcal{F} \times \mathcal{E}$ , with symmetrized bilinear product:

$$\left[ \begin{pmatrix} \mathbf{f}^1 \\ \mathbf{e}^1 \end{pmatrix}, \begin{pmatrix} \mathbf{f}^2 \\ \mathbf{e}^2 \end{pmatrix} \right]_{\mathcal{B}} := \langle \mathbf{f}^1, \mathbf{e}^2 \rangle_{\mathcal{F}, \mathcal{E}} + \langle \mathbf{f}^2, \mathbf{e}^1 \rangle_{\mathcal{F}, \mathcal{E}};$$

- The **dissipative constitutive relation**  $\mathbf{e}_R = R\mathbf{f}_R$ ;

# Port-Hamiltonian systems

- The **effort space**  $\mathcal{E}$  (Hilbert space) and  $\mathbf{e} := (e_\alpha, e_R, \mathbf{u})^\top$ ;
- The **flow space**  $\mathcal{F} := \mathcal{E}'$  and  $\mathbf{f} := (\partial_t \alpha, \mathbf{f}_R, -\mathbf{y})^\top$ ;
- The **extended structure operator**  $\mathcal{J} := \begin{pmatrix} J & -I & B \\ I & 0 & 0 \\ -B^* & 0 & 0 \end{pmatrix}$ ;
- The **Bond space**  $\mathcal{B} := \mathcal{F} \times \mathcal{E}$ , with symmetrized bilinear product:

$$\left[ \begin{pmatrix} \mathbf{f}^1 \\ \mathbf{e}^1 \end{pmatrix}, \begin{pmatrix} \mathbf{f}^2 \\ \mathbf{e}^2 \end{pmatrix} \right]_{\mathcal{B}} := \langle \mathbf{f}^1, \mathbf{e}^2 \rangle_{\mathcal{F}, \mathcal{E}} + \langle \mathbf{f}^2, \mathbf{e}^1 \rangle_{\mathcal{F}, \mathcal{E}};$$

- The **dissipative constitutive relation**  $\mathbf{e}_R = R\mathbf{f}_R$ ;

## Theorem

If  $\mathcal{J} \in \mathcal{L}(\mathcal{E}_1, \mathcal{F})$  is closed, densely defined and:  $\langle \mathcal{J}\mathbf{e}^1, \mathbf{e}^2 \rangle_{\mathcal{F}, \mathcal{E}} = -\langle \mathcal{J}\mathbf{e}^2, \mathbf{e}^1 \rangle_{\mathcal{F}, \mathcal{E}}$  for all  $\mathbf{e}_1, \mathbf{e}_2 \in \mathcal{E}_1$ , then  $\mathcal{D} := \text{Graph}(\mathcal{J}) \subset \mathcal{B}$  is a **Dirac structure**, i.e.  $\mathcal{D}^{[\perp]} = \mathcal{D}$  with:

$$\mathcal{D}^{[\perp]} := \left\{ \begin{pmatrix} \mathbf{f} \\ \mathbf{e} \end{pmatrix} \in \mathcal{B} \mid \left[ \begin{pmatrix} \mathbf{f} \\ \mathbf{e} \end{pmatrix}, \begin{pmatrix} \tilde{\mathbf{f}} \\ \tilde{\mathbf{e}} \end{pmatrix} \right]_{\mathcal{B}} = 0, \quad \forall \begin{pmatrix} \tilde{\mathbf{f}} \\ \tilde{\mathbf{e}} \end{pmatrix} \in \mathcal{D} \right\}.$$

$$\langle \mathbf{f}(t), \mathbf{e}(t) \rangle_{\mathcal{F}, \mathcal{E}} = 0, \quad \forall (\mathbf{f}(t), \mathbf{e}(t)) \in \mathcal{D}, \quad \forall t \geq 0.$$

$$\langle \mathbf{f}(t), \mathbf{e}(t) \rangle_{\mathcal{F}, \mathcal{E}} = 0, \quad \forall (\mathbf{f}(t), \mathbf{e}(t)) \in \mathcal{D}, \quad \forall t \geq 0.$$

Let  $(\partial_t \alpha, \mathbf{f}_R, -\mathbf{y}, \mathbf{e}_\alpha, \mathbf{e}_R, \mathbf{u})^\top$  be in  $\mathcal{D}$ . Adding  $\mathbf{e}_R = R\mathbf{f}_R$ : **the lossy power balance is satisfied!**

$$\langle \mathbf{f}(t), \mathbf{e}(t) \rangle_{\mathcal{F}, \mathcal{E}} = 0, \quad \forall (\mathbf{f}(t), \mathbf{e}(t)) \in \mathcal{D}, \quad \forall t \geq 0.$$

Let  $(\partial_t \boldsymbol{\alpha}, \mathbf{f}_R, -\mathbf{y}, \mathbf{e}_\alpha, \mathbf{e}_R, \mathbf{u})^\top$  be in  $\mathcal{D}$ . Adding  $\mathbf{e}_R = R\mathbf{f}_R$ : **the lossy power balance is satisfied!**

Flow/effort representation **generalizes** the above state representation with  $J - R$ , *and this allows an easy way to interconnect sub-systems, thanks to algebraic constraints aside from the structure!*

$$\langle \mathbf{f}(t), \mathbf{e}(t) \rangle_{\mathcal{F}, \mathcal{E}} = 0, \quad \forall (\mathbf{f}(t), \mathbf{e}(t)) \in \mathcal{D}, \quad \forall t \geq 0.$$

Let  $(\partial_t \boldsymbol{\alpha}, \mathbf{f}_R, -\mathbf{y}, \mathbf{e}_\alpha, \mathbf{e}_R, \mathbf{u})^\top$  be in  $\mathcal{D}$ . Adding  $\mathbf{e}_R = R\mathbf{f}_R$ : **the lossy power balance is satisfied!**

Flow/effort representation **generalizes** the above state representation with  $J - R$ , *and this allows an easy way to interconnect sub-systems, thanks to algebraic constraints aside from the structure!*

## Main result

- An **underlying Dirac structure** *containing* the **power balance** is constructed for both the **kinetic** and **internal energies** of  $S_1$ ,  $S_2$  and  $S_3$ .
- The **six** resulting systems are interconnected to obtain a direct modelling of the 1D piston problem as a port-Hamiltonian system with algebraic constraints.
- An interesting feature is that this modelling keeps the **geometric structure of conservation laws** apart from the comportemental laws: the **constitutive relations**.

## 1 Introduction

## 2 Modelling the 1D piston

- Kinetic energy
- Internal energy
- One sub-system
- The 1D piston problem

## 3 Conclusion

**Kinetic energy as Hamiltonian:**  $\mathcal{H}_k(\mathbf{p}, \rho) := \frac{1}{2} \int_{\mathbf{a}(t)}^{\mathbf{b}(t)} \frac{\mathbf{p}^2(t, x)}{\rho(t, x)} dx$ , with  $\mathbf{p}$  and  $\rho$  as energy variables.

**Kinetic energy as Hamiltonian:**  $\mathcal{H}_k(\mathbf{p}, \rho) := \frac{1}{2} \int_{\mathbf{a}(t)}^{\mathbf{b}(t)} \frac{\mathbf{p}^2(t, x)}{\rho(t, x)} dx$ , with  $\mathbf{p}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $\mathbf{e}_p := \delta_{\mathbf{p}} \mathcal{H}_k = \frac{\mathbf{p}}{\rho} = \mathbf{v}$ , the *particle velocity*,

$\mathbf{e}_\rho := \delta_{\rho} \mathcal{H}_k = -\frac{\mathbf{p}^2}{2\rho^2} = -\frac{\mathbf{v}^2}{2}$ , the *flux in the so-called Burgers' equation*.

**Kinetic energy as Hamiltonian:**  $\mathcal{H}_k(p, \rho) := \frac{1}{2} \int_{a(t)}^{b(t)} \frac{p^2(t, x)}{\rho(t, x)} dx$ , with  $p$  and  $\rho$  as energy variables.

**Co-energy variables:**  $e_p := \delta_p \mathcal{H}_k = \frac{p}{\rho} = v$ , the *particle velocity*,

$e_\rho := \delta_\rho \mathcal{H}_k = -\frac{p^2}{2\rho^2} = -\frac{v^2}{2}$ , the *flux in the so-called Burgers' equation*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_k(p, \rho) = \underbrace{[\rho(t, x)v(t, x)]_{a(t)}^{b(t)}}_{\text{Injection-rejection}} - \underbrace{\left[ \rho(t, x) \frac{d}{dt} x \right]_{a(t)}^{b(t)}}_{\text{Moving boundary}} + \underbrace{[v(t, x)\sigma(t, x)]_{a(t)}^{b(t)}}_{\text{Force applied}} - \underbrace{\int_{a(t)}^{b(t)} \partial_x v(t, x)\sigma(t, x) dx}_{\text{Loss in thermal domain}}.$$

**Kinetic energy as Hamiltonian:**  $\mathcal{H}_k(\mathbf{p}, \rho) := \frac{1}{2} \int_{\mathbf{a}(t)}^{\mathbf{b}(t)} \frac{\mathbf{p}^2(t, x)}{\rho(t, x)} dx$ , with  $\mathbf{p}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $\mathbf{e}_p := \delta_{\mathbf{p}} \mathcal{H}_k = \frac{\mathbf{p}}{\rho} = \mathbf{v}$ , the *particle velocity*,

$\mathbf{e}_\rho := \delta_{\rho} \mathcal{H}_k = -\frac{\mathbf{p}^2}{2\rho^2} = -\frac{\mathbf{v}^2}{2}$ , the *flux in the so-called Burgers' equation*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_k(\mathbf{p}, \rho) = \underbrace{[\rho(t, x) \mathbf{v}(t, x)]^{\mathbf{b}(t)}_{\mathbf{a}(t)}}_{\text{Injection-rejection}} - \underbrace{\left[ \rho(t, x) \frac{d}{dt} \mathbf{x} \right]^{\mathbf{b}(t)}_{\mathbf{a}(t)}}_{\text{Moving boundary}} + \underbrace{[\mathbf{v}(t, x) \boldsymbol{\sigma}(t, x)]^{\mathbf{b}(t)}_{\mathbf{a}(t)}}_{\text{Force applied}} - \underbrace{\int_{\mathbf{a}(t)}^{\mathbf{b}(t)} \partial_x \mathbf{v}(t, x) \boldsymbol{\sigma}(t, x) dx}_{\text{Loss in thermal domain}}.$$

This rewrites:

$$\frac{d}{dt} \mathcal{H}_k(\mathbf{p}, \rho) = \langle \mathbf{u}_r, \mathbf{y}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_\sigma, \mathbf{y}_\sigma \rangle_{\mathbb{R}^2} - \langle \partial_x \mathbf{v}, \boldsymbol{\sigma} \rangle_{L^2(\mathbf{a}(t), \mathbf{b}(t))},$$

**Kinetic energy as Hamiltonian:**  $\mathcal{H}_k(\mathbf{p}, \rho) := \frac{1}{2} \int_{\mathbf{a}(t)}^{\mathbf{b}(t)} \frac{\mathbf{p}^2(t, x)}{\rho(t, x)} dx$ , with  $\mathbf{p}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $\mathbf{e}_p := \delta_{\mathbf{p}} \mathcal{H}_k = \frac{\mathbf{p}}{\rho} = \mathbf{v}$ , the *particle velocity*,

$\mathbf{e}_\rho := \delta_{\rho} \mathcal{H}_k = -\frac{\mathbf{p}^2}{2\rho^2} = -\frac{\mathbf{v}^2}{2}$ , the *flux in the so-called Burgers' equation*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_k(\mathbf{p}, \rho) = \underbrace{[\rho(t, x)\mathbf{v}(t, x)]^{\mathbf{b}(t)}_{\mathbf{a}(t)}}_{\text{Injection-rejection}} - \underbrace{\left[ \rho(t, x) \frac{d}{dt} x \right]^{\mathbf{b}(t)}_{\mathbf{a}(t)}}_{\text{Moving boundary}} + \underbrace{[\mathbf{v}(t, x)\sigma(t, x)]^{\mathbf{b}(t)}_{\mathbf{a}(t)}}_{\text{Force applied}} - \underbrace{\int_{\mathbf{a}(t)}^{\mathbf{b}(t)} \partial_x \mathbf{v}(t, x) \sigma(t, x) dx}_{\text{Loss in thermal domain}}.$$

This rewrites:

$$\frac{d}{dt} \mathcal{H}_k(\mathbf{p}, \rho) = \langle \mathbf{u}_r, \mathbf{y}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_\sigma, \mathbf{y}_\sigma \rangle_{\mathbb{R}^2} - \langle \partial_x \mathbf{v}, \sigma \rangle_{L^2(\mathbf{a}(t), \mathbf{b}(t))},$$

$$\mathbf{u}_\sigma(t) := (-\sigma(t, \mathbf{a}(t)), \sigma(t, \mathbf{b}(t)))^\top, \quad \mathbf{y}_\sigma(t) := \gamma_0(\mathbf{v}(t, \mathbf{x})) = (\mathbf{v}(t, \mathbf{a}(t)), \mathbf{v}(t, \mathbf{b}(t)))^\top,$$

**Kinetic energy as Hamiltonian:**  $\mathcal{H}_k(p, \rho) := \frac{1}{2} \int_{a(t)}^{b(t)} \frac{p^2(t, x)}{\rho(t, x)} dx$ , with  $p$  and  $\rho$  as energy variables.

**Co-energy variables:**  $e_p := \delta_p \mathcal{H}_k = \frac{p}{\rho} = v$ , the *particle velocity*,

$e_\rho := \delta_\rho \mathcal{H}_k = -\frac{p^2}{2\rho^2} = -\frac{v^2}{2}$ , the *flux in the so-called Burgers' equation*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_k(p, \rho) = \underbrace{[\rho(t, x)v(t, x)]_{a(t)}^{b(t)}}_{\text{Injection-rejection}} - \underbrace{\left[ \rho(t, x) \frac{d}{dt} x \right]_{a(t)}^{b(t)}}_{\text{Moving boundary}} + \underbrace{[v(t, x)\sigma(t, x)]_{a(t)}^{b(t)}}_{\text{Force applied}} - \underbrace{\int_{a(t)}^{b(t)} \partial_x v(t, x)\sigma(t, x) dx}_{\text{Loss in thermal domain}}.$$

This rewrites:

$$\frac{d}{dt} \mathcal{H}_k(p, \rho) = \langle \mathbf{u}_r, \mathbf{y}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_\sigma, \mathbf{y}_\sigma \rangle_{\mathbb{R}^2} - \langle \partial_x v, \sigma \rangle_{L^2(a(t), b(t))},$$

$$\mathbf{u}_\sigma(t) := (-\sigma(t, a(t)), \sigma(t, b(t)))^\top, \quad \mathbf{y}_\sigma(t) := \gamma_0(v(t, x)) = (v(t, a(t)), v(t, b(t)))^\top,$$

$$\mathbf{u}_r(t) := (-\rho(t, a(t))v(t, a(t)) + \rho(t, a(t))\frac{d}{dt}a(t), \rho(t, b(t))v(t, b(t)) - \rho(t, b(t))\frac{d}{dt}b(t))^\top,$$

$$\mathbf{y}_r(t) := \gamma_0\left(-\frac{v^2(t, x)}{2}\right) = \left(-\frac{v^2(t, a(t))}{2}, -\frac{v^2(t, b(t))}{2}\right)^\top.$$

**Flows and efforts:**

$$\begin{aligned}\mathbf{f}_k &:= \left( \partial_t \mathbf{p}, \quad \partial_t \rho, \quad -\partial_x \mathbf{v}, \quad \partial_x \mathbf{v}, \quad \partial_x \left( \frac{\mathbf{v}^2}{2} \right), \quad -\mathbf{y}_\sigma, \quad -\mathbf{y}_r \right)^\top, \\ \mathbf{e}_k &:= \left( \mathbf{v}, \quad -\frac{\mathbf{v}^2}{2}, \quad \mathbf{p}\mathbf{v}, \quad \sigma, \quad \rho\mathbf{v}, \quad \mathbf{u}_\sigma, \quad \mathbf{u}_r \right)^\top.\end{aligned}$$

**Flows and efforts:**  $\mathbf{f}_k := \left( \partial_t \mathbf{p}, \quad \partial_t \rho, \quad -\partial_x \mathbf{v}, \quad \partial_x \mathbf{v}, \quad \partial_x \left( \frac{\mathbf{v}^2}{2} \right), \quad -\mathbf{y}_\sigma, \quad -\mathbf{y}_r \right)^\top,$

$$\mathbf{e}_k := \left( \mathbf{v}, \quad -\frac{\mathbf{v}^2}{2}, \quad \mathbf{p}\mathbf{v}, \quad \sigma, \quad \rho\mathbf{v}, \quad \mathbf{u}_\sigma, \quad \mathbf{u}_r \right)^\top.$$

**Extended structure operator:**

$$\mathcal{J}_k := \begin{pmatrix} 0 & 0 & -\partial_x & \partial_x & 0 & \gamma_0^* & 0 \\ 0 & 0 & 0 & 0 & -\partial_x & 0 & \gamma_0^* \\ -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\ \partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\partial_x & 0 & 0 & 0 & 0 & 0 \\ -\gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\gamma_0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad \begin{aligned} \gamma_0^* &\in \mathcal{L}(\mathbb{R}^2, H^{-1}(\mathbf{a}, \mathbf{b})), \text{ adjoint of } \gamma_0, \\ H^{-1}(\mathbf{a}, \mathbf{b}) &\text{ dual of } H_0^1(\mathbf{a}, \mathbf{b}) := \ker(\gamma_0), \\ &\text{w.r.t. } L^2(\mathbf{a}, \mathbf{b}). \end{aligned}$$

**Flows and efforts:**  $\mathbf{f}_k := \left( \partial_t \mathbf{p}, \quad \partial_t \rho, \quad -\partial_x \mathbf{v}, \quad \partial_x \mathbf{v}, \quad \partial_x \left( \frac{\mathbf{v}^2}{2} \right), \quad -\mathbf{y}_\sigma, \quad -\mathbf{y}_r \right)^\top,$

$$\mathbf{e}_k := \left( \mathbf{v}, \quad -\frac{\mathbf{v}^2}{2}, \quad \mathbf{p}\mathbf{v}, \quad \sigma, \quad \rho\mathbf{v}, \quad \mathbf{u}_\sigma, \quad \mathbf{u}_r \right)^\top.$$

**Extended structure operator:**

$$\mathcal{J}_k := \begin{pmatrix} 0 & 0 & -\partial_x & \partial_x & 0 & \gamma_0^* & 0 \\ 0 & 0 & 0 & 0 & -\partial_x & 0 & \gamma_0^* \\ -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\ \partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\partial_x & 0 & 0 & 0 & 0 & 0 \\ -\gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\gamma_0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad \gamma_0^* \in \mathcal{L}(\mathbb{R}^2, H^{-1}(\mathbf{a}, \mathbf{b})), \text{ adjoint of } \gamma_0,$$

$$H^{-1}(\mathbf{a}, \mathbf{b}) \text{ dual of } H_0^1(\mathbf{a}, \mathbf{b}) := \ker(\gamma_0),$$

$$\text{w.r.t. } L^2(\mathbf{a}, \mathbf{b}).$$

## Theorem

Let  $\mathcal{E}_1^k := (H^1(\mathbf{a}(t), \mathbf{b}(t)))^5 \times (\mathbb{R}^2)^2$ ,

$\mathcal{E}^k := (L^2(\mathbf{a}(t), \mathbf{b}(t)))^5 \times (\mathbb{R}^2)^2$ ,  $\mathcal{F}^k := (\mathcal{E}^k)' = (L^2(\mathbf{a}(t), \mathbf{b}(t)))^5 \times (\mathbb{R}^2)^2$ ,  $\mathcal{B}^k := \mathcal{F}^k \times \mathcal{E}^k$ ,

then  $\mathcal{D}_k := \text{Graph}(\mathcal{J}_k)$  is an **underlying Dirac structure** of  $\mathcal{H}_k$  on  $\mathcal{B}^k$ .

## 1 Introduction

## 2 Modelling the 1D piston

- Kinetic energy
- **Internal energy**
- One sub-system
- The 1D piston problem

## 3 Conclusion

**Internal energy as Hamiltonian:**  $\mathcal{H}_u(\bar{s}, \rho) := \int_{\alpha(t)}^{\beta(t)} \bar{u}(\bar{s}(t, x)) dx$ , with  $\bar{s}$  and  $\rho$  as energy variables.

**Internal energy as Hamiltonian:**  $\mathcal{H}_u(\bar{s}, \rho) := \int_{\alpha(t)}^{\bar{b}(t)} \bar{u}(\bar{s}(t, x)) dx$ , with  $\bar{s}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $e_{\bar{s}} := \delta_{\bar{s}} \mathcal{H}_u = T$ , the *local temperature*,  
 $e_{\rho} := \delta_{\rho} \mathcal{H}_u = u$ , the *internal energy density*.

**Internal energy as Hamiltonian:**  $\mathcal{H}_u(\bar{s}, \rho) := \int_{a(t)}^{b(t)} \bar{u}(\bar{s}(t, x)) dx$ , with  $\bar{s}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $e_{\bar{s}} := \delta_{\bar{s}} \mathcal{H}_u = T$ , the *local temperature*,  
 $e_{\rho} := \delta_{\rho} \mathcal{H}_u = u$ , the *internal energy density*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_u(\bar{s}, \rho) = \underbrace{\left[ \bar{u}(t, x) \frac{d}{dt} x \right]_{a(t)}^{b(t)}}_{\text{Moving boundary}} - \underbrace{[\bar{u}(t, x) v(t, x)]_{a(t)}^{b(t)}}_{\text{Injection-rejection}} - \underbrace{[J_q(t, x)]_{a(t)}^{b(t)}}_{\text{Heating-cooling}} + \underbrace{\int_{a(t)}^{b(t)} \partial_x v(t, x) \sigma(t, x) dx}_{\text{Gain from kinetic domain}} .$$

**Internal energy as Hamiltonian:**  $\mathcal{H}_u(\bar{s}, \rho) := \int_{a(t)}^{b(t)} \bar{u}(\bar{s}(t, x)) dx$ , with  $\bar{s}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $e_{\bar{s}} := \delta_{\bar{s}} \mathcal{H}_u = T$ , the *local temperature*,  
 $e_{\rho} := \delta_{\rho} \mathcal{H}_u = u$ , the *internal energy density*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_u(\bar{s}, \rho) = \underbrace{\left[ \bar{u}(t, x) \frac{d}{dt} x \right]_{a(t)}^{b(t)}}_{\text{Moving boundary}} - \underbrace{[\bar{u}(t, x) v(t, x)]_{a(t)}^{b(t)}}_{\text{Injection-rejection}} - \underbrace{[J_q(t, x)]_{a(t)}^{b(t)}}_{\text{Heating-cooling}} + \underbrace{\int_{a(t)}^{b(t)} \partial_x v(t, x) \sigma(t, x) dx}_{\text{Gain from kinetic domain}}.$$

This rewrites:

$$\frac{d}{dt} \mathcal{H}_u(\bar{s}, \rho) = - \langle \tilde{\mathbf{u}}_r, \tilde{\mathbf{y}}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_s, \mathbf{y}_s \rangle_{\mathbb{R}^2} + \langle \partial_x v, \sigma \rangle_{L^2(a(t), b(t))},$$

**Internal energy as Hamiltonian:**  $\mathcal{H}_u(\bar{s}, \rho) := \int_{a(t)}^{b(t)} \bar{u}(\bar{s}(t, x)) dx$ , with  $\bar{s}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $e_{\bar{s}} := \delta_{\bar{s}} \mathcal{H}_u = T$ , the *local temperature*,  
 $e_{\rho} := \delta_{\rho} \mathcal{H}_u = u$ , the *internal energy density*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_u(\bar{s}, \rho) = \underbrace{\left[ \bar{u}(t, x) \frac{d}{dt} x \right]_{a(t)}^{b(t)}}_{\text{Moving boundary}} - \underbrace{[\bar{u}(t, x) v(t, x)]_{a(t)}^{b(t)}}_{\text{Injection-rejection}} - \underbrace{[J_q(t, x)]_{a(t)}^{b(t)}}_{\text{Heating-cooling}} + \underbrace{\int_{a(t)}^{b(t)} \partial_x v(t, x) \sigma(t, x) dx}_{\text{Gain from kinetic domain}}.$$

This rewrites:

$$\frac{d}{dt} \mathcal{H}_u(\bar{s}, \rho) = - \langle \tilde{\mathbf{u}}_r, \tilde{\mathbf{y}}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_s, \mathbf{y}_s \rangle_{\mathbb{R}^2} + \langle \partial_x v, \sigma \rangle_{L^2(a(t), b(t))},$$

$$\mathbf{u}_s(t) := \gamma_0(\mathbf{T}(t, x)) = (\mathbf{T}(t, a(t)), \mathbf{T}(t, b(t)))^\top, \quad \mathbf{y}_s(t) := (J_s(t, a(t)), -J_s(t, b(t)))^\top,$$

**Internal energy as Hamiltonian:**  $\mathcal{H}_u(\bar{s}, \rho) := \int_{a(t)}^{b(t)} \bar{u}(\bar{s}(t, x)) dx$ , with  $\bar{s}$  and  $\rho$  as energy variables.

**Co-energy variables:**  $e_{\bar{s}} := \delta_{\bar{s}} \mathcal{H}_u = T$ , the *local temperature*,  
 $e_{\rho} := \delta_{\rho} \mathcal{H}_u = u$ , the *internal energy density*.

**Power balance:** From the transport theorem:

$$\frac{d}{dt} \mathcal{H}_u(\bar{s}, \rho) = \underbrace{\left[ \bar{u}(t, x) \frac{d}{dt} x \right]_{a(t)}^{b(t)}}_{\text{Moving boundary}} - \underbrace{[\bar{u}(t, x) v(t, x)]_{a(t)}^{b(t)}}_{\text{Injection-rejection}} - \underbrace{[J_q(t, x)]_{a(t)}^{b(t)}}_{\text{Heating-cooling}} + \underbrace{\int_{a(t)}^{b(t)} \partial_x v(t, x) \sigma(t, x) dx}_{\text{Gain from kinetic domain}}.$$

This rewrites:

$$\frac{d}{dt} \mathcal{H}_u(\bar{s}, \rho) = - \langle \tilde{\mathbf{u}}_r, \tilde{\mathbf{y}}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_s, \mathbf{y}_s \rangle_{\mathbb{R}^2} + \langle \partial_x v, \sigma \rangle_{L^2(a(t), b(t))},$$

$$\mathbf{u}_s(t) := \gamma_0(\mathbf{T}(t, x)) = (\mathbf{T}(t, a(t)), \mathbf{T}(t, b(t)))^\top, \quad \mathbf{y}_s(t) := (J_s(t, a(t)), -J_s(t, b(t)))^\top,$$

$$\tilde{\mathbf{u}}_r(t) := (\rho(t, a(t)) \mathbf{v}(t, a(t)) - \rho(t, a(t)) \frac{d}{dt} a(t), -\rho(t, b(t)) \mathbf{v}(t, b(t)) + \rho(t, b(t)) \frac{d}{dt} b(t))^\top = -\mathbf{u}_r(t),$$

$$\tilde{\mathbf{y}}_r(t) := \gamma_0(\mathbf{u}) = (\mathbf{u}(t, a(t)), \mathbf{u}(t, b(t)))^\top.$$

Flows and efforts:

$$\begin{aligned}\mathbf{f}_k &:= (\partial_t \bar{s}, \quad \partial_t \rho, \quad -\partial_x \textcolor{red}{T}, \quad -\partial_x \textcolor{red}{T}, \quad -\textcolor{red}{T}, \quad -\partial_x \textcolor{red}{u}, \quad \textcolor{blue}{u}_s, \quad -\tilde{\mathbf{y}}_r)^\top, \\ \mathbf{e}_k &:= (\textcolor{red}{T}, \quad \textcolor{red}{u}, \quad \bar{s}v, \quad \textcolor{red}{J}_s, \quad \Sigma, \quad \rho v, \quad -\textcolor{red}{y}_s, \quad \tilde{\mathbf{u}}_r)^\top.\end{aligned}$$

**Flows and efforts:**  $\mathbf{f}_k := (\partial_t \bar{s}, \quad \partial_t \rho, \quad -\partial_x \mathbf{T}, \quad -\partial_x \mathbf{T}, \quad -\mathbf{T}, \quad -\partial_x \mathbf{u}, \quad \mathbf{u}_s, \quad -\tilde{\mathbf{y}}_r)^\top$ ,  
 $\mathbf{e}_k := (\mathbf{T}, \quad \mathbf{u}, \quad \bar{s}\mathbf{v}, \quad \mathbf{J}_s, \quad \Sigma, \quad \rho\mathbf{v}, \quad -\mathbf{y}_s, \quad \tilde{\mathbf{u}}_r)^\top$ .

**Extended structure operator:**

$$\mathcal{J}_u := \begin{pmatrix} 0 & 0 & -\partial_x & -\partial_x & I & 0 & -\gamma_0^* & 0 \\ 0 & 0 & 0 & 0 & 0 & -\partial_x & 0 & \gamma_0^* \\ -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -I & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\ \gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

**Flows and efforts:**  $\mathbf{f}_k := (\partial_t \bar{s}, \partial_t \rho, -\partial_x \bar{T}, -\partial_x T, -T, -\partial_x u, \mathbf{u}_s, -\tilde{\mathbf{y}}_r)^\top$ ,  
 $\mathbf{e}_k := (\bar{T}, u, \bar{s}v, J_s, \Sigma, \rho v, -\mathbf{y}_s, \tilde{\mathbf{u}}_r)^\top$ .

**Extended structure operator:**

$$\mathcal{J}_u := \begin{pmatrix} 0 & 0 & -\partial_x & -\partial_x & I & 0 & -\gamma_0^* & 0 \\ 0 & 0 & 0 & 0 & 0 & -\partial_x & 0 & \gamma_0^* \\ -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -I & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\ \gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

## Theorem

Let  $\mathcal{E}_1^u := (H^1(\mathbf{a}(t), \mathbf{b}(t)))^6 \times (\mathbb{R}^2)^2$ ,

$\mathcal{E}^u := (L^2(\mathbf{a}(t), \mathbf{b}(t)))^6 \times (\mathbb{R}^2)^2$ ,  $\mathcal{F}^u := (\mathcal{E}^u)' = (L^2(\mathbf{a}(t), \mathbf{b}(t)))^6 \times (\mathbb{R}^2)^2$ ,  $\mathcal{B}^u := \mathcal{F}^u \times \mathcal{E}^u$ ,

then  $\mathcal{D}_u := \text{Graph}(\mathcal{J}_u)$  is an **underlying Dirac structure** of  $\mathcal{H}_u$  on  $\mathcal{B}^u$ .

## 1 Introduction

## 2 Modelling the 1D piston

- Kinetic energy
- Internal energy
- **One sub-system**
- The 1D piston problem

## 3 Conclusion

**Interconnection on a sub-system:**  $\mathcal{H}_{S_i}(p, \bar{s}, \rho) := \mathcal{H}_k(p, \rho) + \mathcal{H}_u(\bar{s}, \rho)$  is the total energy in  $S_i$ .

**Interconnection on a sub-system:**  $\mathcal{H}_{S_i}(p, \bar{s}, \rho) := \mathcal{H}_k(p, \rho) + \mathcal{H}_u(\bar{s}, \rho)$  is the total energy in  $S_i$ .

**Power balance:**

$$\frac{d}{dt} \mathcal{H}_{S_i}(p, \bar{s}, \rho) = \langle \mathbf{u}_\sigma, \mathbf{y}_\sigma \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_r, \mathbf{y}_r - \tilde{\mathbf{y}}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_s, \mathbf{y}_s \rangle_{\mathbb{R}^2}, \quad \text{thanks to } \mathbf{u}_r = -\tilde{\mathbf{u}}_r.$$

The total energy of the closed system is conservative, as expected.

**Interconnection on a sub-system:**  $\mathcal{H}_{S_i}(p, \bar{s}, \rho) := \mathcal{H}_k(p, \rho) + \mathcal{H}_u(\bar{s}, \rho)$  is the total energy in  $S_i$ .

**Power balance:**

$$\frac{d}{dt} \mathcal{H}_{S_i}(p, \bar{s}, \rho) = \langle \mathbf{u}_\sigma, \mathbf{y}_\sigma \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_r, \mathbf{y}_r - \tilde{\mathbf{y}}_r \rangle_{\mathbb{R}^2} + \langle \mathbf{u}_s, \mathbf{y}_s \rangle_{\mathbb{R}^2}, \quad \text{thanks to } \mathbf{u}_r = -\tilde{\mathbf{u}}_r.$$

The total energy of the closed system is conservative, as expected.

**Remark:**  $\mathbf{y}_r - \tilde{\mathbf{y}}_r = \gamma_0 \left( \mathbf{u} + \frac{\mathbf{v}^2}{2} \right)$  is the Dirichlet trace of the total energy density.

# One sub-system

Extended structure operator on a  $(\mathbf{a}(t), \mathbf{b}(t))$ , for each fixed  $t \geq 0$ :

$\partial_t \rho = \partial_t \rho$  by Lagrange multiplier  $\rightarrow$

$$\begin{pmatrix}
 \partial_t p \\
 \partial_t \rho \\
 -\partial_x v \\
 \partial_x v \\
 \partial_x \left(\frac{v^2}{2}\right) \\
 -y_\sigma \\
 -y_r \\
 \partial_t \bar{s} \\
 \partial_t \rho \\
 -\partial_x T \\
 -\partial_x \bar{T} \\
 -T \\
 -\partial_x u \\
 u_s \\
 -\tilde{y}_r \\
 0 \\
 0 \\
 0
 \end{pmatrix} = \begin{pmatrix}
 0 & 0 & -\partial_x & \partial_x & 0 & \gamma_0^* & 0 \\
 0 & 0 & 0 & 0 & -\partial_x & 0 & \gamma_0^* \\
 -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\
 \partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & -\partial_x & 0 & 0 & 0 & 0 & 0 \\
 -\gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & -\gamma_0 & 0 & 0 & 0 & 0 & 0
 \end{pmatrix} \mathbf{0} = \begin{pmatrix}
 0 & 0 & -\partial_x & -\partial_x & I & 0 & -\gamma_0^* & 0 \\
 0 & 0 & 0 & 0 & 0 & -\partial_x & 0 & \gamma_0^* \\
 -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -I & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & -\partial_x & 0 & 0 & 0 & 0 & 0 & 0 \\
 \gamma_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & -\gamma_0 & 0 & 0 & 0 & 0 & 0 & 0
 \end{pmatrix} \begin{pmatrix}
 0 & 0 & 0 \\
 I_{L^2} & 0 & 0 \\
 0 & 0 & 0 \\
 0 & -I_{L^2} & 0 \\
 0 & 0 & 0 \\
 0 & 0 & -I_{\mathbb{R}^2} \\
 0 & 0 & 0 \\
 -I_{L^2} & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & I_{L^2} & 0 \\
 0 & 0 & 0 \\
 0 & 0 & -I_{\mathbb{R}^2}
 \end{pmatrix} \begin{pmatrix}
 v \\
 -\frac{v^2}{2} \\
 p v \\
 \sigma \\
 \rho v \\
 u_\sigma \\
 u_r \\
 T \\
 u \\
 \bar{s} v \\
 J_s \\
 \Sigma \\
 \rho v \\
 -y_s \\
 \tilde{u}_r \\
 u + \frac{v^2}{2} \\
 \rho v = \rho v \\
 u_r = -\tilde{u}_r
 \end{pmatrix} = \mathbf{0}$$

**Remark:** The Lagrange multiplier for  $\partial_t \rho = \partial_t \rho$  is the total energy density  $u + \frac{v^2}{2}$ .

**In orange:** Sign errors in the proceeding.

## 1 Introduction

## 2 Modelling the 1D piston

- Kinetic energy
- Internal energy
- One sub-system
- The 1D piston problem

## 3 Conclusion

**Interconnection of  $S_1, S_2$ , and  $S_3$  on  $(a_0, a_3) = (0, L)$ :**

Assuming no matter exchange between sub-systems, neither between  $S_3$  and the environment, and:

- thermodynamical equilibrium:  $J_{q,1}(t, a_1(t)) = -J_{q,2}(t, a_1(t)), \quad J_{q,2}(t, a_2(t)) = -J_{q,3}(t, a_2(t));$
- mechanical equilibrium:  $\sigma_1(t, a_1(t)) = -\sigma_2(t, a_1(t)), \quad \sigma_2(t, a_2(t)) = -\sigma_3(t, a_2(t));$
- internal boundary velocities only driven by the matter:

$$v_1(t, a_1(t)) = v_2(t, a_1(t)) = d_t a_1(t), \quad v_2(t, a_2(t)) = v_3(t, a_2(t)) = d_t a_2(t).$$

# The 1D piston problem

**Interconnection of  $S_1, S_2$ , and  $S_3$  on  $(a_0, a_3) = (0, L)$ :**

Assuming no matter exchange between sub-systems, neither between  $S_3$  and the environment, and:

- thermodynamical equilibrium:  $J_{q,1}(t, a_1(t)) = -J_{q,2}(t, a_1(t)), \quad J_{q,2}(t, a_2(t)) = -J_{q,3}(t, a_2(t));$
- mechanical equilibrium:  $\sigma_1(t, a_1(t)) = -\sigma_2(t, a_1(t)), \quad \sigma_2(t, a_2(t)) = -\sigma_3(t, a_2(t));$
- internal boundary velocities only driven by the matter:

$$v_1(t, a_1(t)) = v_2(t, a_1(t)) = d_t a_1(t), \quad v_2(t, a_2(t)) = v_3(t, a_2(t)) = d_t a_2(t).$$

**Power balance:**  $\mathcal{H}_{\text{Tot}} := \mathcal{H}_{S_1} + \mathcal{H}_{S_2} + \mathcal{H}_{S_3}.$

$$\frac{d}{dt} \mathcal{H}_{\text{Tot}} = \underbrace{\rho_1(t, 0) v_1(t, 0)}_{\text{Injection-rejection}} \left( \frac{v_1^2(t, 0)}{2} + u(t, 0) \right) - \underbrace{\sigma_1(t, 0) v_1(t, 0)}_{\text{Pressure}} - \underbrace{J_{q,1}(t, 0) + J_{q,3}(t, L)}_{\text{Heating-cooling}}.$$

**Interconnection of  $S_1, S_2$ , and  $S_3$  on  $(a_0, a_3) = (0, L)$ :**

Assuming no matter exchange between sub-systems, neither between  $S_3$  and the environment, and:

- thermodynamical equilibrium:  $J_{q,1}(t, a_1(t)) = -J_{q,2}(t, a_1(t)), \quad J_{q,2}(t, a_2(t)) = -J_{q,3}(t, a_2(t));$
- mechanical equilibrium:  $\sigma_1(t, a_1(t)) = -\sigma_2(t, a_1(t)), \quad \sigma_2(t, a_2(t)) = -\sigma_3(t, a_2(t));$
- internal boundary velocities only driven by the matter:

$$v_1(t, a_1(t)) = v_2(t, a_1(t)) = d_t a_1(t), \quad v_2(t, a_2(t)) = v_3(t, a_2(t)) = d_t a_2(t).$$

**Power balance:**  $\mathcal{H}_{\text{Tot}} := \mathcal{H}_{S_1} + \mathcal{H}_{S_2} + \mathcal{H}_{S_3}.$

$$\frac{d}{dt} \mathcal{H}_{\text{Tot}} = \underbrace{\rho_1(t, 0) v_1(t, 0)}_{\text{Injection-rejection}} \left( \frac{v_1^2(t, 0)}{2} + u(t, 0) \right) - \underbrace{\sigma_1(t, 0) v_1(t, 0)}_{\text{Pressure}} - \underbrace{J_{q,1}(t, 0) + J_{q,3}(t, L)}_{\text{Heating-cooling}}.$$

**Extended structure operator:**

It is constructed thanks to the above contextual assumptions by writing the interactions in terms of equalities between inputs  $\mathbf{u}$  and outputs  $\mathbf{y}$ .

# The 1D piston problem

With the additional hypotheses (in order to close the system with constitutive relations):

- fluids  $S_1$  and  $S_3$  are ideal Newtonian gas:

$$\sigma_i = \nu_i \partial_x v_i - \frac{n_i R T_i}{V_i}, \quad i = 1, 2;$$

- solid  $S_2$  is rigid:

$$\sigma_2 \equiv 0;$$

- the heat transferts follow Fourier's law:

$$J_{q,i} = -\lambda_i \partial_x T_i, \quad i = 1, 2, 3;$$

- the Dulong-Petit model is valid:

$$\bar{u}_i = C_{v,i} \rho_i T_i, \quad i = 1, 2, 3;$$

# The 1D piston problem

With the additional hypotheses (in order to close the system with constitutive relations):

- fluids  $S_1$  and  $S_3$  are ideal Newtonian gas:

$$\sigma_i = \nu_i \partial_x v_i - \frac{n_i R T_i}{V_i}, \quad i = 1, 2;$$

- solid  $S_2$  is rigid:

$$\sigma_2 \equiv 0;$$

- the heat transferts follow Fourier's law:

$$J_{q,i} = -\lambda_i \partial_x T_i, \quad i = 1, 2, 3;$$

- the Dulong-Petit model is valid:

$$\bar{u}_i = C_{v,i} \rho_i T_i, \quad i = 1, 2, 3;$$

$$\left\{ \begin{array}{ll} \partial_t \rho_1 = -\partial_x (\rho_1 v_1), & (0, a_1), \\ \partial_t \rho_1 v_1 = -\partial_x (\rho_1 v_1^2) + \partial_x \left( \nu_1 \partial_x (v_1) - \frac{n_1 R T_1}{a_1} \right), & (0, a_1), \\ C_{v,1} \partial_t (\rho_1 T_1) = -\partial_x (C_{v,1} \rho_1 T_1) + \left( \nu_1 \partial_x (v_1) - \frac{n_1 R T_1}{a_1} \right) \partial_x (v_1) + \partial_x (\lambda_1 \partial_x (T_1)), & (0, a_1), \\ \rho_2 \partial_t v_2 = -(v_2)_2 \partial_x (\rho_2), & (a_1, a_2), \\ C_{v,2} \rho_2 \partial_t (T_2) = -\partial_x (C_{v,2} \rho_2 T_2) + \partial_x (\lambda_2 \partial_x (T_2)), & (a_1, a_2), \\ \partial_t \rho_3 = -\partial_x (\rho_3 v_3), & (a_2, L), \\ \partial_t \rho_3 v_3 = -\partial_x (\rho_3 v_3^2) + \partial_x \left( \nu_3 \partial_x (v_3) - \frac{n_3 R T_3}{L-a_2} \right), & (a_2, L), \\ C_{v,3} \partial_t (\rho_3 T_3) = -\partial_x (C_{v,3} \rho_3 T_3) + \left( \nu_3 \partial_x (v_3) - \frac{n_3 R T_3}{L-a_2} \right) \partial_x (v_3) + \partial_x (\lambda_3 \partial_x (T_3)), & (a_2, L), \\ \oplus \text{ boundary conditions.} \end{array} \right.$$

**Remark:**  $n^1$  is a part of the injection–rejection control as it modifies the amount of substance in  $S_1$ !

1 Introduction

2 Modelling the 1D piston

3 Conclusion

We propose a new approach for the modelling of the 1D piston problem, as interconnected port-Hamiltonian systems. This allows:

- **meaningful** physical quantities;
- the construction of an algebraic structure encoding the power balance: a **Dirac structure**;
- the **postponement** of equations of state (Fourier's law, Newtonian fluids, ideal gas, rigid solid, Dulong-Petit model) at the end of the process.

## Further works:

- structure-preserving discretization taking advantage of the knowledge of the Dirac structure;
- 2D and 3D models, with chemical reactions.

**Thank you for your attention!**

**Institut Supérieur de l'Aéronautique et de l'Espace**

10 avenue Édouard Belin – BP 54032

31055 Toulouse Cedex 4 – France

Phone: +33 5 61 33 80 80

[www.isae-sup Aero.fr](http://www.isae-sup Aero.fr)