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Introduction: problem statement
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Model description

Model for the propagation of sound in air

gt Lﬁﬂ - [gr(;d d(i)V] [ﬂ ' on @ ={ze[0,L], r € [0,R], 6 = [0,27)}.

m p € R and v € R3: variations of pressure and velocity from a steady state;
B [o: the steady state mass density;
m \;: adiabatic compressibility factor;

m x,7,0: axial, radial and tangential coordinates.
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Model description

Model for the propagation of sound in air

d |xsp| 0 div] [p B B

grad 0 | |v
Boundary conditions Initial conditions
p(z, R, 0) = —Z(z,t) vo(z, R, §), p’(z,r,0) =0, v(z,7,0) = g(r),
v-n(0,7,0) = —v,(0,r,0) = —f(r), vp(z,r,0) = f(r), vg(x,7,0) = 0.

v-n(L,r,0)=+v.(L,r,0) =+f(r),

The impedance Z and the axial f(r) and radial flow g(r) expressions are the following

1 2
Z(x,t):]l{gLS x gL t>02tf,n}uoco,
2 2 )
flr)y= 1_ﬁ V0, g(r )—16ﬁ (R—1)%vp.
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Model reduction by symmetr

Because of symmetry the model can be reduced to a 2D problem

o | XxsP 0 0, O-+1/r| |p
5 |Hove| = 9, 0 0 vy|, onQ={xe€[0,L],r €[0,R]}.
Loy dr 0 0 Uy
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Model reduction by symmetr

Because of symmetry the model can be reduced to a 2D problem

o | XxsP 0 0, O-+1/r| |p
5 |Hove| = 9, 0 0 vy|, onQ={xe€[0,L],r €[0,R]}.
Loy dr 0 0 Uy

The boundary conditions must now account for the symmetry condition at r = 0

p(z,R,0) = —Z(z,t)v.(x, R, 0),
v-n(0,r,0) = —vy(0,7,0) = —f(r),
v-n(L,r0)=+v,(L,r,0)=+f(r),

) = vr(2,0) =0

v-n(z,0
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Model reduction by symmetr

Because of symmetry the model can be reduced to a 2D problem

o | XxsP 0 0r O-+1/r| |p
5 |Hove| = 9, 0 0 vy|, onQ={xe€[0,L],r €[0,R]}.
Loy dr 0 0 Uy
p=—Z2(x,t)v,
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A port-Hamiltonian structure

The system can be rewritten compactly as a pH system in co-energy variables

M@te = je
where M = diag([xs, o, to]) and e = [e, eU]T = [p, ’U]T.
The Hamiltonian is then computed as
1
H = 5 (G,Me)Qr

where (-, )¢ is the standard L? inner product in polar coordinates

(a,ﬁ)gr:/ a-ﬂrdrdx:/ a- B dQ,.
Q, Q

The power flow is obtained by application of the Stokes theorem
) L
H= —/ Z(z,t)v? Rdz <0
0
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A port-Hamiltonian structure

The system can be rewritten compactly as a pH system in co-energy variables
Moe = Je

where M = diag([xs, o, to]) and e = [ep, €,]" = [p, v]".

The interconnection operator J can be decomposed into the sum of 7 = Jgiv + Jgrad

0 div,
0 0

0 0 Oy
jgrad = - [grad,, 0] 5 grad'r - (87“) .

Jdiv = — [ ] ) divy = [0z, O; +1/7]
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Finite dimensional discretization
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The partitioned finite element method (PFEM

General procedure for PFEM

Put the system into weak form:
Oe
(Ua Mat)g = (Ua \76)(2 .

Apply integration by parts on a partition of J:
i.b.p.

(v, Te)g="J(v,e)a + b(v, ua)an
so that j(v,e)q is a skew-symmetric bilinear form.

Discretization by Galerkin method (same basis function for test and co-energy variables)
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Application to the wave equation

If the integration by parts is applied on Jgiv
(w, Te)q, = (wy, grad,ep)q — (grad,wp, €y)q + (wp, Un)yg, -
The skew-symmetric bilinear form
Jgrad(w, €) 1= (wy, grad,.€,),, — (grad, wy, €,)q

is introduced, together with the boundary form

(wp7UN)aQ, :/ wpuy dly,
o

where uy = v - nsq,. The corresponding power conjugated output is given by yn = p|aq,.-
The system in weak form under Neumann boundary control is then written as

(w, Mde)q, = Jgrad (w, e) + (wpv ”N)E)Qr :

(’LUN, yN)agr = (wNap)aQr )
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Application to the wave equation

If the integration by parts is carried out on Jgrad
(w, Je)q, = (wp,divy €,)q — (divy wy, €p)q + (Wy - 1, up) g, -
The skew-symmetric bilinear form
Jdiv(w, €) := (wp, div, e”)ﬂr — (div, wy, ep)Qr

is introduced, together with the boundary form
(wv ) nauD)aQr = /6Q Wy "M Up dFT,

where up = p |aq,. Adding the conjugated output yp = v - n|sq,, the system in weak form
under Dirichlet boundary control is then written as
(w7 Mate)ﬂr - jdiv(w7 6) + (’UJU ‘N, uD)aQr 3

(wp,YD)ag, = (WD, v M)y,
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Mixed boundary condition

To tackle mixed boundary conditions two approaches are developed:
m a Lagrange multiplier based method;

® a virtual domain decomposition method.

I
I'p

I'y

x

Figure: Boundary partition for the problem.
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Finite dimensional discretization
m Lagrange multiplier approach
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Weak form with Lagrang

(w, je)ﬂ, = Jgrad(w, €) + (wp, v - nlaﬂr)aﬂr .
The quantity v - n|gq, is known on I'y only. On I'p the Lagrange multiplier Ap is introduced
wpv -ndl, = / wpuy dI'y +/ wpAp dl';.
o0 I'n I'p
The constraint is the non-homogeneous Dirichlet condition

/ wx(p —up) dl'y =0, wy test function for the Lagrange multiplier.
'p

Final Weak Form with Lagrange multiplier

m(w, 0ze) = Jgrad (W, €) + (wp, )\D)FD + (wp, UN)FN ,
0=-— (U))np)rD + (wa, UD)FD )
(wNayN)FN = (U)Nap)rN,
(wp,yp)r, = (WD, AD)ry, »
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A Galerkin method can now be applied to retrieve a finite dimensional pH system. This
means that corresponding test and trial functions are discretized using the same basis

np np ) )

pr Y ¢h(z,r)p’, *p~Y or(sp)¥p, sp€Tlp, (x={u,y,\}),
i=1 =1
Ny . . N . .

vr Y gLz, xnvm Y Sr(sn)xy, sy EeTlN,  (x={u,y}).
=1 i=1

A pHDAE system is obtained:
M O 7d e o J GD e + BN 0 uy
0 ol dt\AXp) |-G, 0 |\Xxp 0 Bp|\up)’
MFN 0 YN B} 0 e
YD 0 BB Ap /-’

0 My,
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Imposition of the boundary conditions

Take the weak form of up = —ZA\p = —Zyp:
Mr,up = —Mr, zyp,
This amounts to applying the control law
_ T _ -1 -1
up = —ZBD)\D, 7 = MFDMPD:ZMI‘D

The Neumann boundary condition is imposed projecting uy = f(r).

Finite dimensional system with Lagrange multiplier

M 0 7(1 e . J GD e + bN
0 0| dt |Ap| |-G, -R||Ap 0|’
with R = BpZB% a symmetric positive definite matrix.
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Finite dimensional discretization

m Virtual domain decomposition
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Decomposition of the domain

First of all the domain has to be decomposed.
The interface between the two subdomain is chosen to get regular meshes on both
subdomains.

Qp D

I'y Qn

Figure: Virtual decomposition of the domain.
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Virtual domain decomposition

Two weak formulations are constructed:

(w, Moie)q, = (w,Te)q, ; where (a, B)q, = / a-fdQy,

QN
(w, Mdse)q, = (w,JTe)q,,  where (a,B)q, = /Q - Bd0p.
D

The integration by parts is performed differently on each subdomain to highlight the
appropriate boundary input

Q
(w, Me)q, = Jgma(W;€) + (Wp, un) g . -
0
(w, Me)q,, = jgv (w,e) + (Wwy - M, up)sq,
where the bilinear skew-symmetric forms are defined on each subdomain

Q
Jgrad (W, €) = (wy, grad,e, ) — (grad,wp, €y)q

Jdiv (w, ) := (wp, div, eU)QD — (div, wy, 610)(20 )

Andrea Brugnoli (ISAE) 21st IFAC World Congress 29/5/20



Virtual domain decomposition
The boundary terms are then split into two contributions
aQN — FN U Fint — (wp7 uN)aQN - (wp7 uN)l"N + (wpa UN)Fint )
p =T'p ULt = (wy - n,up)yg, = (Wy n,up)p, + (wy-m,up)p, -

Two finite dimensional pH systems are obtained

Mpyéy = Jneny + Byuy + B']r\}tu']'\}t, Mpép =Jpep + Bpup + Bgtugt,
T T
MFNYN:BNGN, MFDYD:BDQD,
int int T int int T
Mr,.yny =By en, Mr,.yp =Bp ep
with Hamiltonian Hy ny = %eLMNeN with Hamiltonian H; p = %eEMDeD
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Power preserving interconnection

A gyrator interconnection is performed
int __ int __ —1 pint T int __ _int __ —1 pint T
uy = —yp = _MrintBD ep, up =yny = MFintBN enN.

The interconnection implies that the power is exchanged without loss between the two
systems
uBtTMFintth + uIJ%tTMFintyIJQt = O

After imposition of the boundary condition the final system is obtained.

Finite dimensional system (Virtual domain decomposition)

M o] = (6 e[ a)) ]+ ]

with C = Bi'M! Bt T
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Results
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Physical interpretation of the impedance

The energy accounts for the pressure and velocity contribution

1 1 1 1
Hp = 5 /Xsp2 dQ2, ~ ipTMppv H, = ) /,UO HVH2 dQ, = ivTM”V’

The total energy at the initial time is the kinetic energy only
= e 8 =2 [ [ 007+ 097 rdras
The numerical values of the energy contribution are
H? = 0.453[J], HY, =0.204[J], H? =0.249[J].
The impedance acts by dissipating the radial component of the velocity

lim H,,. — 0, lim H, — HY = 0.204[J]
t—o0 t—o00
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Finite element choice

The pressure ¢,(x,r) is interpolated using order 1 Lagrange polynomials.

\ J

The velocity field ¢, (z,7) is interpolated using order 2 Raviart-Thomas polynomials.

Boundary variables approximation

The boundary variables ¢r(s) are approximated by Lagrange polynomial of order 1
defined on the boundary I'p (for Ap,up,yp) or T (for un,yn).
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Finite element choice

Pressure Velocity Boundary
variables e Point evaluation

Directional

component
CG,p=1 .
O Interior moments

CG, p=1 RT, p=2
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Results

Hamiltonian given by DAE Hamiltonian given by ODE
0.454 — h=R/4 0.45 — h=R/4
h=R/5 \ h=R/s
— h=R/6 — h=R/6
0.40 — h=R7 040 S — h=Rf7
— h=R/8 y — h=R/8
— h=R/9 | — h=R/9
) h=R/10 ) | h=R/10
gy 0351 —— hppr=R/15 g 0359 —— hger=R/15
g ]
9 S
= =
0.30 4 0.30 4
0.254 0.25 4
0.20 0.20 |
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Time (s) Time (s)
(a) DAE system. (b) ODE system.

Figure: Hamiltonian trend for different mesh size.
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Results

Reference Hamiltonian L? norm Hamiltonian difference

— — ODE
Hy 0.0604 —— DAE
0.4 3
= 0.055

~ g
= 031 Q'
2 50
- E 0.050
@ Q
c ]
2 02 T 0045
= |
g 5
z & o001

0.14 jus)

00351
0.0 0.030 1
().I)ﬂ 0.;]2 0.;]-’1 U.;J[i U.;)S U.‘l() 0. lU 0. '12 0. 14 (].1(9 (].18 (].ZZU U.ZZZ (].324
Time (s) Mesh size
. . 2 . .
(a) Reference Hamiltonian. (b) L* Hamiltonian error.

Figure: Reference Hamiltonian and L? error.
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[lprEF — PDAE| L2

L? norm error on p L? norm error on v
—— ODE —— ODE
0454 — DAE 0224 — DAE
0.40 4 0.20 1
=
0.354 T 0.18 4
<
Q
= 0.164
0.30 4 |
50,144
0.25 2
=
— 0.124
0.20 4
0.104
0.151
0.08 4
0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Mesh size Mesh size
2 2 .
(a) L pressure error. (b) L* velocity error.

Figure: Error on the state variables for different mesh size.
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Conclusion

Future developments:
m a numerical analysis of the optimal choice for the underlying finite elements?;

m the employment of theses techniques to more complicated models arising from structural
and fluid mechanics;

m reformulation of the approach in terms of differential forms;

m application of the domain decomposition technique to parallelize simulations of
large-scale models.

Thanks for your attention
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