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Model description
Model for the propagation of sound in air

∂

∂t

[
χsp
µ0v

]
= −

[
0 div

grad 0

] [
p
v

]
, on Ω = {x ∈ [0, L], r ∈ [0, R], θ = [0, 2π)}.

p ∈ R and v ∈ R3: variations of pressure and velocity from a steady state;
µ0: the steady state mass density;
χs: adiabatic compressibility factor;
x, r, θ: axial, radial and tangential coordinates.
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Model description
Model for the propagation of sound in air

∂

∂t

[
χsp
µ0v

]
= −

[
0 div

grad 0

] [
p
v

]
, on Ω = {x ∈ [0, L], r ∈ [0, R], θ = [0, 2π)}.

Boundary conditions
p(x,R, θ) = −Z(x, t) vr(x,R, θ),

v · n(0, r, θ) = −vx(0, r, θ) = −f(r),
v · n(L, r, θ) = +vx(L, r, θ) = +f(r),

Initial conditions
p0(x, r, θ) = 0,
v0
x(x, r, θ) = f(r),

v0
r (x, r, θ) = g(r),
v0
θ(x, r, θ) = 0.

The impedance Z and the axial f(r) and radial flow g(r) expressions are the following

Z(x, t) = 1

{1
3L ≤ x ≤ 2

3L, t ≥ 0.2 tfin
}
µ0 c0,

f(r) =
(

1− r2

R2

)
v0, g(r) = 16 r

2

R4 (R− r)2 v0.
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Model description
Model for the propagation of sound in air

∂

∂t

[
χsp
µ0v

]
= −

[
0 div

grad 0

] [
p
v

]
, on Ω = {x ∈ [0, L], r ∈ [0, R], θ = [0, 2π)}.

ΓN ΓN

vx = f (r) vx = f (r)
p = −Z(x, t) vr

ΓD
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Model reduction by symmetry
Because of symmetry the model can be reduced to a 2D problem

∂

∂t

 χspµ0vx
µ0vr

 = −

 0 ∂x ∂r + 1/r
∂x 0 0
∂r 0 0


 pvx
vr

 , on Ωr = {x ∈ [0, L], r ∈ [0, R]}.
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∂t

 χspµ0vx
µ0vr

 = −

 0 ∂x ∂r + 1/r
∂x 0 0
∂r 0 0


 pvx
vr

 , on Ωr = {x ∈ [0, L], r ∈ [0, R]}.

The boundary conditions must now account for the symmetry condition at r = 0

p(x,R, θ) = −Z(x, t) vr(x,R, θ),
v · n(0, r, θ) = −vx(0, r, θ) = −f(r),
v · n(L, r, θ) = +vx(L, r, θ) = +f(r),
v · n(x, 0) = vr(x, 0) = 0
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Model reduction by symmetry
Because of symmetry the model can be reduced to a 2D problem

∂

∂t

 χspµ0vx
µ0vr

 = −

 0 ∂x ∂r + 1/r
∂x 0 0
∂r 0 0


 pvx
vr

 , on Ωr = {x ∈ [0, L], r ∈ [0, R]}.

vx = f (r) vx = f (r)

p = −Z(x, t) vr

vr = 0

ΓD

ΓN
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A port-Hamiltonian structure
The system can be rewritten compactly as a pH system in co-energy variables

M∂te = J e

whereM = diag([χs, µ0, µ0]) and e = [ep, ev]> = [p, v]>.

The Hamiltonian is then computed as

H = 1
2 (e,Me)Ωr

where (·, ·)Ωr
is the standard L2 inner product in polar coordinates

(α, β)Ωr
=
∫

Ωr
α · β r drdx =

∫
Ωr
α · β dΩr.

The power flow is obtained by application of the Stokes theorem

Ḣ = −
∫ L

0
Z(x, t)v2

r R dx ≤ 0
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A port-Hamiltonian structure
The system can be rewritten compactly as a pH system in co-energy variables

M∂te = J e

whereM = diag([χs, µ0, µ0]) and e = [ep, ev]> = [p, v]>.

The interconnection operator J can be decomposed into the sum of J = Jdiv + Jgrad

Jdiv = −
[
0 divr
0 0

]
, divr = [∂x, ∂r + 1/r]

Jgrad = −
[

0 0
gradr 0

]
, gradr =

(
∂x
∂r

)
.
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The partitioned finite element method (PFEM)

General procedure for PFEM

1 Put the system into weak form:(
v,M∂e

∂t

)
Ω

= (v,J e)Ω .

2 Apply integration by parts on a partition of J :

(v,J e)Ω

i.b.p.︷︸︸︷= j(v, e)Ω + b(v, u∂)∂Ω,

so that j(v, e)Ω is a skew-symmetric bilinear form.
3 Discretization by Galerkin method (same basis function for test and co-energy variables)
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Application to the wave equation
If the integration by parts is applied on Jdiv

(w,J e)Ωr
= (wv, gradrep)Ωr

− (gradrwp, ev)Ωr
+ (wp, uN )∂Ωr

.

The skew-symmetric bilinear form

jgrad(w, e) := (wv, gradrep)Ωr
− (gradrwp, ev)Ωr

is introduced, together with the boundary form

(wp, uN )∂Ωr
=
∫
∂Ωr

wpuN dΓr,

where uN = v · n|∂Ωr . The corresponding power conjugated output is given by yN = p|∂Ωr .
The system in weak form under Neumann boundary control is then written as

(w,M∂te)Ωr = jgrad(w, e) + (wp, uN )∂Ωr
.

(wN , yN )∂Ωr
= (wN , p)∂Ωr

,
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Application to the wave equation
If the integration by parts is carried out on Jgrad

(w,J e)Ωr
= (wp,divr ev)Ωr

− (divrwv, ep)Ωr
+ (wv · n, uD)∂Ωr

.

The skew-symmetric bilinear form

jdiv(w, e) := (wp,divr ev)Ωr
− (divrwv, ep)Ωr

is introduced, together with the boundary form

(wv · n, uD)∂Ωr
=
∫
∂Ωr
wv · n uD dΓr,

where uD = p |∂Ωr . Adding the conjugated output yD = v · n|∂Ωr , the system in weak form
under Dirichlet boundary control is then written as

(w,M∂te)Ωr = jdiv(w, e) + (wv · n, uD)∂Ωr
,

(wD, yD)∂Ωr
= (wD,v · n)∂Ωr

,
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Mixed boundary condition

To tackle mixed boundary conditions two approaches are developed:
a Lagrange multiplier based method;
a virtual domain decomposition method.

Figure: Boundary partition for the problem.
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Weak form with Lagrange multipliers

(w,J e)Ωr
= jgrad(w, e) + (wp,v · n|∂Ωr)∂Ωr

.

The quantity v ·n|∂Ωr is known on ΓN only. On ΓD the Lagrange multiplier λD is introduced∫
∂Ωr

wpv · n dΓr =
∫

ΓN

wpuN dΓr +
∫

ΓD

wpλD dΓr.

The constraint is the non-homogeneous Dirichlet condition∫
ΓD

wλ(p− uD) dΓr = 0, wλ test function for the Lagrange multiplier.

Final Weak Form with Lagrange multiplier

m(w, ∂te) = jgrad(w, e) + (wp, λD)ΓD
+ (wp, uN )ΓN

,

0 = − (wλ, p)ΓD
+ (wλ, uD)ΓD

,

(wN , yN )ΓN
= (wN , p)ΓN

,

(wD, yD)ΓD
= (wD, λD)ΓD

,
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Lagrange multiplier approach
A Galerkin method can now be applied to retrieve a finite dimensional pH system. This
means that corresponding test and trial functions are discretized using the same basis

p ≈
np∑
i=1

φip(x, r)pi,

v ≈
nv∑
i=1
φiv(x, r)vi,

∗D ≈
nD∑
i=1

φiΓ(sD)∗iD, sD ∈ ΓD, (∗ = {u, y, λ}),

∗N ≈
nN∑
i=1

φiΓ(sN )∗iN , sN ∈ ΓN , (∗ = {u, y}).

A pHDAE system is obtained:[
M 0
0 0

]
d
dt

(
e
λD

)
=
[

J GD

−G>D 0

](
e
λD

)
+
[
BN 0
0 BD

](
uN
uD

)
,[

MΓN
0

0 MΓD

](
yN
yD

)
=
[
B>N 0
0 B>D

](
e
λD

)
.
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Imposition of the boundary conditions

Take the weak form of uD = −ZλD = −ZyD:

MΓD
uD = −MΓD,ZyD,

This amounts to applying the control law

uD = −ZBT
DλD, Z = M−1

ΓD
MΓD,ZM−1

ΓD

The Neumann boundary condition is imposed projecting uN = f(r).

Finite dimensional system with Lagrange multiplier

[
M 0
0 0

]
d
dt

[
e
λD

]
=
[

J GD

−G>D −R

] [
e
λD

]
+
[
bN
0

]
,

with R = BDZBT
D a symmetric positive definite matrix.
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Decomposition of the domain
First of all the domain has to be decomposed.
The interface between the two subdomain is chosen to get regular meshes on both
subdomains.

Figure: Virtual decomposition of the domain.
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Virtual domain decomposition
Two weak formulations are constructed:

(w,M∂te)ΩN
= (w,J e)ΩN

, where (α, β)ΩN
=
∫

ΩN

α · β dΩN ,

(w,M∂te)ΩD
= (w,J e)ΩD

, where (α, β)ΩD
=
∫

ΩD

α · β dΩD.

The integration by parts is performed differently on each subdomain to highlight the
appropriate boundary input

(w,Me)ΩN
= jΩN

grad(w, e) + (wp, uN )∂ΩN
,

(w,Me)ΩD
= jΩD

div (w, e) + (wv · n, uD)∂ΩD
,

where the bilinear skew-symmetric forms are defined on each subdomain

jΩN
grad(w, e) := (wv, gradrep)ΩN

− (gradrwp, ev)ΩN
,

jΩD
div (w, e) := (wp,divr ev)ΩD

− (divrwv, ep)ΩD
.
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Virtual domain decomposition
The boundary terms are then split into two contributions

∂ΩN = ΓN ∪ Γint =⇒
∂ΩD = ΓD ∪ Γint =⇒

(wp, uN )∂ΩN
= (wp, uN )ΓN

+ (wp, uN )Γint
,

(wv · n, uD)∂ΩD
= (wv · n, uD)ΓD

+ (wv · n, uD)Γint
.

Two finite dimensional pH systems are obtained

Subdomain ΩN

MN ėN = JNeN + BNuN + Bint
N uint

N ,

MΓN
yN = B>NeN ,

MΓintyint
N = Bint>

N eN ,

with Hamiltonian Hd,N = 1
2e>NMNeN

Subdomain ΩD

MDėD = JDeD + BDuD + Bint
D uint

D ,

MΓD
yD = B>D eD,

MΓintyint
D = Bint>

D eD.

with Hamiltonian Hd,D = 1
2e>DMDeD
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Power preserving interconnection
A gyrator interconnection is performed

uint
N = −yint

D = −M−1
Γint

Bint>
D eD, uint

D = yint
N = M−1

Γint
Bint>
N eN .

The interconnection implies that the power is exchanged without loss between the two
systems

uint>
D MΓintyint

D + uint>
N MΓintyint

N = 0.

After imposition of the boundary condition the final system is obtained.

Finite dimensional system (Virtual domain decomposition)

[
MN 0

0 MD

]
d
dt

[
eN
eD

]
=
([

JN −C
C> JD

]
−
[
0 0
0 R

])[
eN
eD

]
+
[
bN
0

]

with C = Bint
N M−1

Γint
Bint>
D .
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Physical interpretation of the impedance
The energy accounts for the pressure and velocity contribution

Hp = 1
2

∫
χsp

2 dΩr ≈
1
2pTMpp, Hv = 1

2

∫
µ0 ||v||2 dΩr ≈

1
2vTMvv,

The total energy at the initial time is the kinetic energy only

H0
v = H0

vx +H0
vr = 1

2

∫ L

0

∫ R

0
µ0
[
(v0
x)2 + (v0

r )2
]
r drdx.

The numerical values of the energy contribution are

H0
v = 0.453[J ], H0

vx = 0.204[J ], H0
vr = 0.249[J ].

The impedance acts by dissipating the radial component of the velocity

lim
t→∞

Hvr → 0, lim
t→∞

Hv → H0
vx = 0.204[J ]
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Finite element choice

Pressure field approximation

The pressure φp(x, r) is interpolated using order 1 Lagrange polynomials.

Velocity field approximation

The velocity field φv(x, r) is interpolated using order 2 Raviart-Thomas polynomials.

Boundary variables approximation

The boundary variables φΓ(s) are approximated by Lagrange polynomial of order 1
defined on the boundary ΓD (for λD, uD, yD) or ΓN (for uN , yN ).
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Finite element choice

Pressure

CG, p = 1

Velocity

RT, p = 2

Boundary

variables Point evaluation

Directional
component

Interior moments
CG, p = 1
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Results
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(a) DAE system.
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Figure: Hamiltonian trend for different mesh size.
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Figure: Reference Hamiltonian and L2 error.
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Results
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Figure: Error on the state variables for different mesh size.
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Conclusion

Future developments:
a numerical analysis of the optimal choice for the underlying finite elements1;
the employment of theses techniques to more complicated models arising from structural
and fluid mechanics;
reformulation of the approach in terms of differential forms;
application of the domain decomposition technique to parallelize simulations of
large-scale models.

Thanks for your attention
1G. Haine, D. Matignon, and S. Anass. A structure-preserving space-discretization for an anisotropic and

heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system. Submitted.
2020.

Andrea Brugnoli (ISAE) 21st IFAC World Congress 29/5/20 24 / 25



References I

C. Beattie et al. “Linear port-Hamiltonian descriptor systems”. In: Mathematics of Control, Signals, and Systems
30.4 (2018), p. 17.

F. L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. “A structure-preserving Partitioned Finite Element Method
for the 2D wave equation”. In: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control.
Valparaíso, CL, 2018, pp. 1–6.

G. Haine, D. Matignon, and S. Anass. A structure-preserving space-discretization for an anisotropic and
heterogeneous boundary controlled N-dimensional wave equation as port-Hamiltonian system. Submitted. 2020.

P. Kotyczka, B. Maschke, and L. Lefèvre. “Weak form of Stokes-Dirac structures and geometric discretization of
port-Hamiltonian systems”. In: Journal of Computational Physics 361 (2018), pp. 442 –476.

A. Logg, K. A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations by the Finite Element
Method. Springer, 2012.

V. Trenchant et al. “Finite differences on staggered grids preserving the port-Hamiltonian structure with
application to an acoustic duct”. In: Journal of Computational Physics 373 (June 2018). doi:
10.1016/j.jcp.2018.06.051.

Andrea Brugnoli (ISAE) 21st IFAC World Congress 29/5/20 25 / 25

https://doi.org/10.1016/j.jcp.2018.06.051


Institut Supérieur de l’Aéronautique et de l’Espace
10 avenue Édouard Belin – BP 54032
31055 Toulouse Cedex 4 – France
Phone: +33 5 61 33 80 80

www.isae-supaero.fr


	Introduction: problem statement
	Finite dimensional discretization
	Lagrange multiplier approach
	Virtual domain decomposition

	Results
	References

