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Modelling

Ω

Electric permittivity: ε;
Electric induction: D, energy variable;
Magnetic permeability: µ;
Magnetic induction: B, energy variable;
Total inner distributed current: J.

Hamiltonian = electromagnetic energy: E(D,B) := 1
2

∫
Ω

D ·D
ε

+ B ·B
µ

.

Co-energy variables, the electric and magnetic fields: E := δDE = D
ε
, H := δBE = B

µ
.

Physical laws:

Maxwell-Ampère:
Maxwell-Faraday:
Maxwell-Gauß (charge density):
Maxwell-flux:
Ohm:

∂tD = curl H− J;
∂tB = −curl E;
div D = ρ;
div B = 0;
J = η−1E.
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Power balance
Power balance:

d
dtE =

∫
Ω

(E · curl H−H · curl E)−
∫

Ω
E · J,

= −
∫

∂Ω
div (E ∧H)−

∫
Ω

E · J,

= −
∫

∂Ω
Π · n−

∫
Ω
η−1 ‖E‖2 .

Π := γ (E ∧H) is the Poynting vector.

The variation of energy is driven by:
the flux of the Poynting vector across the boundary ∂Ω;
the loss in the thermal domain by Joule’s effect distributed in the domain Ω.

Collocated control u and observation y are taken on the boundary, such that u · y = −Π · n.
Such a choice is called a causality.
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Stokes-Dirac structure
Flows–efforts formulation: fe := ∂tD, fm := ∂tB, fJ := E, ee := E, em := H, eJ := J.
Electric control (voltage applied at the boundary): e∂ = u = (n ∧E) ∧ n.
Magnetic observation (current at the boundary): f∂ = −y = H ∧ n.

}
f∂ · e∂ = Π · n.

Structure operator:fe

fm

fJ

 =

 0 curl −I
−curl 0 0
I 0 0


︸ ︷︷ ︸

J

ee

em

eJ

 ,

Constitutive relations:

ee = ε−1D,
em = µ−1B,
eJ = η−1fJ .

Stokes-Dirac structure: formal symmetry curl∗ = curl =⇒ J formally skew-symmetric :∫
Ω fe · ee +

∫
Ω fm · em +

∫
Ω fJ · eJ +

∫
∂Ω f∂ · e∂ = 0.

Power balance: thanks to constitutive relations:
d
dtE =

∫
Ω

fe · ee +
∫

Ω
fm · em = −

∫
Ω
η ‖fJ‖2︸ ︷︷ ︸

Loss by Joule’s effect

−
∫

∂Ω
f∂ · e∂︸ ︷︷ ︸

Control and observation

.
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Main results

Main results

Application of the Partitioned Finite Element Method (PFEM) to mimic the Stokes-Dirac
structure and the constitutive relations at the discrete level;
Proof of the structure-preserving property: the discrete power balance reads as the continuous
one;
Efficient implementations with boundary control and internal damping (by Joule’s effect) with
classical available open-source FEM softwares, such as FreeFem++, FEniCS, XLiFE++, etc.
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The Partitioned Finite Element Method (PFEM)
The strategy follows:

1 Write the weak formulation;
2 Apply an appropriate Stokes identity (integration by parts) such that u “appears”;
3 Project on a finite-dimensional space thanks to FEM.

The weak formulation reads for all test functions (Φe,Φm) ∈ He ×Hm:∫
Ω

Φe · ∂tD =
∫

Ω
Φe · curl H−

∫
Ω

Φe · J ,∫
Ω

Φm · ∂tB = −
∫

Ω
Φm · curl E ,∫

Ω
Φe · fJ =

∫
Ω

Φe ·E .

Intregating the second line by parts:∫
Ω

Φm · ∂tB = −
∫

Ω
curl Φm ·E−

∫
∂Ω

(Φm ∧ n) ·E︸ ︷︷ ︸
=(Φm∧n)·(n∧E)∧n=(Φm∧n)·u

.
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Finite elements

The energy, co-energy, boundary and test functions of the same nature (electric, magnetic, or control
and observation) are discretized by using the same vector-valued bases:

Dd(x, t) :=
Ne∑
i=1

Di(t)Φe
i (x) = Φe>(x) D(t) , Ed(x, t) :=

Ne∑
i=1

Ei(t)Φe
i (x) = Φe>(x) E(t) ,

fd
J(x, t) :=

Ne∑
i=1

f i(t)Φe
i (x) = Φe>(x) f(t) , Jd(x, t) :=

Ne∑
i=1

J i(t)Φe
i (x) = Φe>(x) J(t) ,

Bd(x, t) :=
Nm∑
k=1

Bk(t)Φm
k (x) = Φm>(x) B(t) , Hd(x, t) :=

Nm∑
k=1

Hk(t)Φm
k (x) = Φm>(x) H(t) ,

ud(s, t) :=
N∂∑

m=1
um(t)Ψ∂

m(s) = Ψ∂>(s) u(t) , yd(s, t) :=
N∂∑

m=1
ym(t)Ψ∂

m(s) = Ψ∂>(s) y(t) .

with Φe an Ne × 3 matrix, Φm an Nm × 3 matrix and Ψ∂ an N∂ × 3 matrix.
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Finite elements
By injecting these discretizations in the weak formulation:

Discrete structure operator:Me
d
dtD

Mm
d
dtB

Me f

 =

 0 C −Me

−C> 0 0
Me 0 0


︸ ︷︷ ︸

J d

EH
J

−
0
T
0

u,
Discrete constitutive relations:

Me E =
〈
ε−1〉 D,

Mm H =
〈
µ−1〉 B,

Me J =
〈
η−1〉 f.

and the collocated observation is given by: M∂ y = −
[
0 T> 0

] (
E, H, J

)>
, where:

(Me)i,j = 〈Φe
i ,Φe

j 〉L2(Ω) , (Mm)k,` = 〈Φm
k ,Φm

` 〉L2(Ω) , (M∂)m,n = 〈Ψ∂
m,Ψ∂

n〉L2(∂Ω) ,

(C)i,` = 〈Φe
i , curl Φm

` 〉L2(Ω) of size Ne ×Nm , (T )k,n = 〈(Φm
k ∧n),Ψ∂

n〉L2(∂Ω) of size Nm ×N∂ ,

and for the constitutive relations:

(
〈
ε−1〉)i,j = 〈Φe

i , ε
−1Φe

j 〉L2(Ω) , (
〈
µ−1〉)k,` = 〈Φm

k , µ
−1Φm

` 〉L2(Ω) , (
〈
η−1〉)i,j = 〈Φe

i , η
−1Φe

j 〉L2(Ω) .
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Final-dimensional Dirac structure and discrete power
balance
Dirac structure: by skew-symmetry of J d,

E> Me
d
dtD + H> Mm

d
dtB + J> Me f − u> M∂ y = 0.

Discrete Hamiltonian:

Ed(D,B) := E(Dd,Bd) = 1
2

∫
Ω

Dd ·Dd

ε
+ Bd ·Bd

µ
= 1

2

(
D>

〈
ε−1〉 D + B>

〈
µ−1〉 B) .

Discrete power balance:

d
dtE

d(D,B) = D>
〈
ε−1〉 d

dtD + B>
〈
µ−1〉 d

dtB,

= E> Me
d
dtD + H> Mm

d
dtB,

= −E>
〈
η−1〉 E> + u> M∂ y.
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Simulation results

Software: FreeFem++ (v 4.4);
Finite elements Φe and Φm:
first order Nédélec finite elements (curl-conforming),
3 × 15,144 dof;
Boundary finite elements Ψ∂ :
discontinuous P1 Lagrange finite elements,
11,346 dof;
Physical parameters: ε = µ = η = 1.
Initial data: divergence-free;
Boundary control:
time- and space-varying,
compatible with the initial data;
Time scheme:
Crank-Nicolson with time step ∆t = 10−3.
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Simulation results
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Simulation results
An other test, changing:

The domain: a sphere;
The software: FEniCS;
The time step:
∆t = 10−2.
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Simulation results

What about the divergences of the electric and magnetic inductions?

Approximations Dd and Bd are pro-
jected on first order Raviart-Thomas
(div-conforming) finite elements.
Their divergences are compare to 0 via:

Error2 =
‖div I‖2L2

‖I‖2L2 + ‖div I‖2L2

,

where I = D or B.

Although non-exploding, the divergence-
free property of inductions is not pre-
served by PFEM in its present form.
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Conclusion

We propose a new approach for the structure-preserving discretization of Maxwell’s equations.
The Partitioned Finite Element Method (PFEM) has been extended to this problem;
The structure-preserving property has been fully proved;
Simulations in two different cases have been provided.

Further works:
Structure-preserving discretization of the divergences (Differential Algebraic Equations);
Control by charge density in Maxwell-Gauß’s equation.

Thank you for your attention!
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