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Modelling

Electric permittivity: «¢;

Electric induction: D, energy variable;
Magnetic permeability: 1;

Magnetic induction: B, energy variable;

Total inner distributed current: J.
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Modelling

Electric permittivity: «¢;

Electric induction: D, energy variable;

=
=

m Magnetic permeability: /i;

m Magnetic induction: B, energy variable;
=

Total inner distributed current: J.

1 D-D B:-B
Hamiltonian = electromagnetic energy: £(D,B) := 5/ — + T
o ¢
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Modelling

m Electric permittivity: «
V/; m Electric induction: D, energy variable;
l‘:‘ m Magnetic permeability: /i;
\L\;{ m Magnetic induction: B, energy variable;
m Total inner distributed current: J.
D-D B- B
Hamiltonian = electromagnetic energy: £(D,B)
M
. : . D B
Co-energy variables, the electric and magnetic fields: E:=/p&=—, H:=6gf =—
€ v
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Modelling

m Electric permittivity: ¢;
V/; m Electric induction: D, energy variable;
‘L\‘ m Magnetic permeability: /i;
S m Magnetic induction: B, energy variable;
=== | m Total inner distributed current: J.
D-D B- B
Hamiltonian = electromagnetic energy: £(D,B)
M
. : . D B
Co-energy variables, the electric and magnetic fields: E:=/p&=—, H:=6gf =—.
€ v
m Maxwell-Ampeére: oyD = curl H — J;
m Maxwell-Faraday: 0B = —curl E;
Physical laws: m Maxwell-GauB (charge density): div D = p;
m Maxwell-flux: div B =0;
m Ohm: J=9"1E.
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Introduction and continuous system

m Power balance
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Power balance

Power balance:
:/(E curl H-—H:-curl E) — /E-J7
9]

/ div (E A H) /E~J
0
[ weae [ e

IT:= v (E A H) is the Poynting vector.

Qa‘g,
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Power balance

Power balance:
:/(E curl H-—H:-curl E) — /E-J,
(9]

Qa‘g,

/ div (E A H) E.J,

(9]
f mon— [ 7B,
IT:= v (E A H) is the Poynting vector.

The variation of energy is driven by:
m the flux of the Poynting vector across the boundary 0¢);
m the loss in the thermal domain by Joule's effect distributed in the domain ().
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Power balance

Power balance:
:/(E curl H-—H:-curl E) — /E-J,
(9]

Qa‘g,

/ div (E A H) E.J,

(9]
f mon— [ 7B,
IT:= v (E A H) is the Poynting vector.

The variation of energy is driven by:
m the flux of the Poynting vector across the boundary 0¢);
m the loss in the thermal domain by Joule's effect distributed in the domain ().

Collocated control w and observation y are taken on the boundary, such that v -y = —II - n.
Such a choice is called a causality.
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Introduction and continuous system

m Stokes-Dirac structure
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Stokes-Dirac structure

Flows—efforts formulation: fe:=0,D, fo, =0,B, f;:=E, e.:=E, e, =H, e;:=1J.
Electric control (voltage applied at the boundary): ey =u=(nAE)An. foep=Tl-n
Magnetic observation (current at the boundary): fo=—vy=HAn. 970 = ’
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Stokes-Dirac structure

fe:=0:D, fp,:=0B, f;:=E,

Flows—efforts formulation:
Electric control (voltage applied at the boundary):
Magnetic observation (current at the boundary):

e.:=E, e, =H, e;:=J.

eg=u=nAE)An. .
fo=—-y=HAn. fo-eo=1I"n.

Structure operator:

fe 0 curl -7 e,
fm | =|—-curl 0 0 em |,
.fJ 1 0 0 ey

J

Constitutive relations:
e.=c D,
em = u B,
e;=n"1f.
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Stokes-Dirac structure

Flows—efforts formulation: fe:=0,D, fo, =0,B, f;:=E, e.:=E, e, =H, e;:=1J.
Electric control (voltage applied at the boundary): ey =u=(nAE)An. foep=Tl-n
Magnetic observation (current at the boundary): fo=—vy=HAn. 970 = ’

Structure operator: Constitutive relations:

fe 0 curl —J €. e, = c—'D,
fm | =|-curl 0 0 em |, en =1 !B,
f] I 0 0 ey BJ:/]_lfJ.
J
Stokes-Dirac structure: formal symmetry curl” = curl = 7 formally skew-symmetric:

ﬁzfe'ee+ﬁzfnL'em+ﬁz.fJ'eJ+f353.f6'e(9:0-
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Stokes-Dirac structure

Flows—efforts formulation:
Electric control (voltage applied at the boundary):
Magnetic observation (current at the boundary):

fe:=0:D, fp,:=0B, f;:=E,

e.:=E, e, =H, e;:=J.

eg=u=nAE)An. .
fo=—-y=HAn. fo-eo=1I"n.

Structure operator:

fe 0 curl -7 e,
fm | = | —curl 0 0 em |,
.fJ 1 0 0 ey

J

Constitutive relations:
e.=c D,
em = u B,
e;=n"1f.

Stokes-Dirac structure:

formal symmetry curl® = curl

= J formally skew-symmetric:

fgz.fe'ee'f'fngm'em"'fngJ'eJ+f3Q.f6'e(9:0-

Power balance:

Loss by Joule's effect

thanks to constitutive relations:

d

—5:/fe~ee+/fm-em: f///IIfJIIQ -

dt Q Q Q o0
—_————

fo-ea

Control and observation
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Main results

Main results

m Application of the Partitioned Finite Element Method (PFEM) to mimic the Stokes-Dirac
structure and the constitutive relations at the discrete level;

m Proof of the structure-preserving property: the discrete power balance reads as the continuous
one;

m Efficient implementations with boundary control and internal damping (by Joule's effect) with
classical available open-source FEM softwares, such as FreeFem-++, FEniCS, XLiFE++, etc.
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The Partitioned Finite Element Method (PFEM)
m Finite elements
m Final-dimensional Dirac structure and discrete power balance
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The Partitioned Finite Element Method (PFEM

Write the weak formulation;
Apply an appropriate Stokes identity (integration by parts) such that w “appears”;
Project on a finite-dimensional space thanks to FEM.
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The Partitioned Finite Element Method (PFEM

Write the weak formulation;
Apply an appropriate Stokes identity (integration by parts) such that w “appears”;
Project on a finite-dimensional space thanks to FEM.

The weak formulation reads for all test functions (®¢, ®™) € H, X H,:

/i’e-ﬁtD = /@e-curlH—/'I'eu],
Q Q Q

™. 9,B — [ @™ . curl E

Q Q

e £ P°.E .

Q Q
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The Partitioned Finite Element Method (PFEM

Write the weak formulation;
Apply an appropriate Stokes identity (integration by parts) such that w “appears”;
Project on a finite-dimensional space thanks to FEM.

The weak formulation reads for all test functions (®¢, ®™) € H, X H,:

/i’e-ﬁtD = /@e-curlH—/'I'eu],
Q Q Q

™. 9,B — [ @™ . curl E

Q Q

e £ P°.E .

Q Q

Intregating the second line by parts:

/@m'atB:—/cur1¢m~E—/ (@™ An)-E
Q Q a0 —_—

=(®™An)-(nAE)An=(®™An)-u
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Finite elements

The energy, co-energy, boundary and test functions of the same nature (electric, magnetic, or control
and observation) are discretized by using the same vector-valued bases:

2

Di(x,0) = Y D05 = 2T (0 D), B ZE — 8T (x) E(1) |
Fhx.) = i:fi(t)@?(X) — 9T (x) (1), Z Ji0@2(x) = 87 (x) (1)
BY(x, 1) = §3k<t>¢?<x> _ om0 B HOt) = 3 By ()80 = 8T () H(1)
u(s,t) i :_ U (B0(5) = 90T () ult) . ylls,t) = :Z_ U (0, (5) = 0T (5) (1)

with ®° an N, x 3 matrix, ®™ an N,, x 3 matrix and ¥ an N x 3 matrix.

IFAC-V 2020

PFEM for Maxwell’s equations

Payen, Matignon, Haine (ISAE)



Finite elements

By injecting these discretizations in the weak formulation:

Discrete structure operator: f . I . )
Discrete constitutive relations:
M, %Q 0 C -M] (E 0 M, E={() D,
M,, EE = [—-CT 0 0 H|-|T| u, MmE:<//71> B
M. f M, O 0 J 0 MeE: <,/71 f
jd

and the collocated observation is given by: My y=—1[0 TT 0] (£, H, J)T , where:
(Mo)ij = (B8, %) 12, (Mi)ke = (@, @) r2() ,  (Mo)mm = (5, 99) 12050

(C)i,g = <‘I’?, curl @?)Lz(g) of size Ne X Nm y (T)k:,n = <<‘I”;€n /\1’1)7 ‘I’2>L2(E)Q) of size Nm X Na s

and for the constitutive relations:

((e7"))ij = <(I)?>‘_1(I’?>L2(Q) (T Y e = (R T R 2y, (7)) = (DS, '/_1(I)?>L2(Q) .
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The Partitioned Finite Element Method (PFEM)

m Final-dimensional Dirac structure and discrete power balance
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Final-dimensional Dirac structure and discrete power

Dirac structure: by skew-symmetry of T

d
ETMEaQ+ﬂTMm—§+JMei—gTMag:0.
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Final-dimensional Dirac structure and discrete power

Dirac structure: by skew-symmetry of T
d
ETMEaQJrﬂTM —B + J M. f —u' Mpy = 0.
Discrete Hamiltonian:

EYD,B) := £D% BY) =

e
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Final-dimensional Dirac structure and discrete power
Dirac structure: by skew-symmetry of T
BT M, $D + H' My $B + 0" M — " Myy = 0.
Discrete Hamiltonian:

EYD,B) := £D% BY) =

Discrete power balance:
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Simulation results
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Simulation results

m Software: FreeFem++ (v 4.4);

m Finite elements ®€ and ®™:
first order Nédélec finite elements (curl-conforming),
3 x 15,144 dof;
» Boundary finite elements ¥?:
discontinuous P! Lagrange finite elements,
11,346 dof;
m Physical parameters: ¢ = ;1 =1 = 1.
m Initial data: divergence-free;

= Boundary control:
time- and space-varying,
compatible with the initial data;

m Time scheme:
Crank-Nicolson with time step At = 1073.

Payen, Matignon, Haine (ISAE) PFEM for Maxwell’s equations IFAC-V 2020 11 /15



' Simulation results

Time evolution of energies.
Maximal variation of the Total Energy:2.375e-05

1 '
.E 087 m— Electric energy
Cn — Magnetic energy
=
% 0.6 Hamiltonian
(] | oule dissipation
o m— Poynting energy
o 0.4 Total energy
™
E 0.2
[ -
=]
=

0

0 0.5 1 1.5 2 2.5 3

Time (s)
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' Simulation results

An other test, changing: Time evolution of energies.
» The domain: a sphere; Maximal variation of the Total Energy:0.006963
. 11 T I I T ——
m The software: FEniCS;
m The time step: = ‘
_9 wn 0.8 -
At =10"". wu m— [ ectric energy
@ Magnetic energy
o 0.6 Hamiltonian
5 — | oule dissipation
= 0.4 m— Poynting energy
.g Total energy
T 0.2
=
e
[=]
= 0

0 0.5 1 1.5 2 2.5
Time (s)
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Simulation results

What about the divergences of the electric and magnetic inductions?

Relative error of divergences

0.08
0.06
0.04
m—— Divergence of D
0.02 Divergence of B
0
0 0.5 1 1.5 2.5 3

Time (s)

Approximations D? and B? are pro-
jected on first order Raviart-Thomas
(div-conforming) finite elements.
Their divergences are compare to 0 via:
. 2
2 [[div T][7-

Error® = 5 - 5
1122 + [[div I

where I = D or B.

Although non-exploding, the divergence-
free property of inductions is not pre-
served by PFEM in its present form.
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Conclusion
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Conclusion

We propose a new approach for the structure-preserving discretization of Maxwell's equations.
m The Partitioned Finite Element Method (PFEM) has been extended to this problem;
m The structure-preserving property has been fully proved;
m Simulations in two different cases have been provided.

Further works:
m Structure-preserving discretization of the divergences (Differential Algebraic Equations);

m Control by charge density in Maxwell-GauB's equation.

Thank you for your attention!
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