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Introduction

Introduction

1 Modeling:
Mathematical model: the Hamiltonian is a quadratic functional.
1st thermodynamical model:
the Hamiltonian is the entropy S of the system.
2nd thermodynamical model:
the Hamiltonian is the internal energy U of the system.

2 Discretization:
Use a Structure-Preserving Discretization taking advantage of the
Finite Element Method: PFEM (”Partitioned Finite Element
Method”, see [Cardoso-Ribeiro, Matignon, Lefèvre, in proc. IFAC
LHMNLC’2018]).
Perform simulation in an object-oriented environment, such as
Python/FEniCS.
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Thermodynamical hypotheses

Thermodynamical hypotheses 1/2 Notations

Spatial domain and physical parameters:
Ω ⊂ Rn≥1, a bounded open connected set.
−→n , the outward unit normal on the boundary ∂Ω.
ρ(x), the mass density.
λ(x), the conductivity tensor.

Notations:
T, the local temperature.
β := 1

T , the reciprocal temperature.
u, the internal energy density.
s, the entropy density.−→
J Q, the heat flux.
−→
J S := β

−→
J Q, the entropy flux.

CV :=
(

du
dT

)
V
, the isochoric heat capacity.
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Thermodynamical hypotheses

Thermodynamical hypotheses 2/2 hypotheses

Assumption: Constant volume and no chemical reaction.
1st law of thermodynamics:

ρ(x) ∂tu(t, x) = −div
(−→

J Q(t, x)
)
.

Gibbs’ relation:

dU = T dS =⇒ ∂tu(t, x) = T(t, x) ∂ts(t, x).

Entropy evolution:

ρ(x) ∂ts(t, x) = −div
(−→

J S(t, x)
)

+ σ(t, x),

with σ(t, x) :=
−−−→
grad(β) · −→J Q, the irreversible entropy production.

Fourier’s law:
−→
J Q(t, x) = −λ(x) ·

−−−→
grad (T(t, x)) .

Dulong-Petit’s law: u(t, x) = CV(x) T(t, x) .
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Lyapunov functional as Hamiltonian Modeling

Lyapunov functional - Modeling 1/3 quadratic Hamiltonian

Consider the quadratic Hamiltonian:

H(t) := 1
2

∫
Ω
ρ(x)(u(t, x))2

CV(t, x) dx

Choose u as energy variable, and compute the co-energy variable
δuH = u

CV
, as variational derivative in L2

ρ.

dtH(t) =
∫

Ω
ρ(x)∂tu(t, x) u(t, x)

CV(t, x) dx− 1
2

∫
Ω
ρ(x)∂tCV(t, x) (u(t, x))2

(CV(t, x))2 dx,

= −
∫

Ω
div
(−→

J Q(t, x)
) u(t, x)

CV(t, x) dx− 1
2

∫
Ω
ρ(x)∂tCV(t, x)

(u(t, x))2

(CV(t, x))2
dx,

=
∫

Ω

−→
J Q(t, x) ·

−−−→
grad

(
u(t, x)

CV(t, x)

)
dx−

∫
∂Ω

u(t, γ)
CV(t, γ)

−→
J Q(t, γ) · −→n (γ) dγ

−1
2

∫
Ω
ρ(x)∂tCV(t, x) (u(t, x))2

(CV(t, x))2 dx.
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Lyapunov functional as Hamiltonian Modeling

Lyapunov functional - Modeling 2/3 port-Hamiltonian system

Defining as flows and efforts:

fu := ∂tu, eu := u
CV−→

f Q := −
−−−→
grad

(
u

CV

)
, −→e Q := −→J Q

Port-Hamiltonian system:(
ρfu−→
f Q

)
=
(

0 −div
−
−−−→
grad 0

)(
eu−→e Q

)
.

Particular choices for boundary control v∂ :
either the Dirichlet trace of eu (temperature with Dulong-Petit),
or normal trace of −−→e Q (inward heat flux).
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Lyapunov functional as Hamiltonian Modeling

Lyapunov functional - Modeling 3/3 power balance

Constitutive relations:
Dulong-Petit’s law =⇒ eu = T and

−→
f Q = −

−−−→
grad(T)

Fourier’s law =⇒ −→e Q = −λ ·
−−−→
grad(T) =⇒ −→e Q = λ ·

−→
f Q

Power balance:

dtH(t) = −
∫

Ω

−→e Q(t, x) ·
−→
f Q(t, x) dx +

∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ

− 1
2

∫
Ω
ρ(x)∂tCV(t, x)(eu(t, x))2 dx

with the constitutive relations (CV(x) only):

dtH(t) = −
∫

Ω

−→
f Q(t, x) · λ ·

−→
f Q(t, x) dx︸ ︷︷ ︸

dissipation

+
∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ︸ ︷︷ ︸
supplied power
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Lyapunov functional as Hamiltonian Discretization

Lyapunov functional - Discretization 1/4 weak form

1 Weak form: Taking arbitrary test functions ϕ and −→ϕ{ ∫
Ω ρfuϕ dx = −

∫
Ω div

(−→e Q
)
ϕ dx,∫

Ω
−→
f Q · −→ϕ dx = −

∫
Ω
−−−→
grad (eu) · −→ϕ dx.

For instance for the control of the inward heat flux −−→e Q · −→n = v∂
2 Apply Green’s formula:{ ∫

Ω ρfuϕ dx =
∫
Ω
−→e Q ·

−−−→
gradϕ dx +

∫
∂Ω v∂ ϕ dγ,∫

Ω
−→
f Q · −→ϕ dx = −

∫
Ω
−−−→
grad (eu) · −→ϕ dx.
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Lyapunov functional as Hamiltonian Discretization

Lyapunov functional - Discretization 2/4 approximation bases

Finite-dimensional bases:

X := span{Φ} := span{(ϕi)1≤i≤N},
X := span{

−→Φ} := span{(−→ϕ k)1≤k≤−→N },
X∂ := span{Ψ} := span{(ψm

∂ )1≤m≤N∂
},

Approximation:

fu(t, x) ' f d
u (t, x) := Φ>(x) · fu(t) :=

∑N
i=1 f i

u(t)ϕi(x)
−→
f Q(t, x) '

−→
f d

Q(t, x) := −→Φ>(x) ·
−→
f Q(t) :=

∑−→N
k=1
−→
f k

Q(t)−→ϕ k(x)
v∂(t, γ) ' vd

∂(t, γ) := ψ>∂ (γ) · v∂(t) :=
∑N∂

m=1 vm
∂ (t)ψm

∂ (x)

and similarly for the other variables.
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Lyapunov functional as Hamiltonian Discretization

Lyapunov functional - Discretization 3/4 matrix form

The discrete weak formulation on X ×X ×X∂ reads:
Mρ fu(t) = D eQ(t) + B v∂(t),
−→
M fQ(t) = −D> eu(t),
M∂ y∂(t) = B> eu(t),

with the following sparse matrices:

Mρ :=
∫

Ω Φ · Φ>ρ dx ∈ RN×N ,
−→
M :=

∫
Ω
−→Φ · −→Φ> dx ∈ R

−→
N×−→N ,

D :=
∫
Ω
−−−→
grad (Φ) · −→Φ> dx ∈ RN×−→N , B :=

∫
∂Ω Φ ·Ψ> dγ ∈ RN×N∂

M∂ :=
∫
∂Ω Ψ ·Ψ> dγ ∈ RN∂×N∂ .

Compact form:Mρ 0 0
0
−→
M 0

0 0 M∂


︸ ︷︷ ︸

Md

 fu(t)
−→
f Q(t)
−y∂(t)


︸ ︷︷ ︸

−→
f d

=

 0 D B
−D> 0 0
−B> 0 0


︸ ︷︷ ︸

Jd

 eu(t)
−→e Q(t)
v∂(t)


︸ ︷︷ ︸

−→e d
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Lyapunov functional as Hamiltonian Discretization

Lyapunov functional - Discretization 4/4 structure

Structure-preservation: −→e >d Md
−→
f d = 0 (thanks to Jd = −J ∗d )

Discrete closure relations:
Dulong-Petit’s law:∫

Ω
ρCV ∂teu ϕ dx =

∫
Ω
ρ fu ϕ dx =⇒ MρCV

d
dt

eu = Mρ fu,

Fourier’s law:∫
Ω

−→e Q · −→ϕ dx =
∫

Ω
(λ ·
−→
f Q) · −→ϕ dx =⇒ −→

MeQ = −→Λ fQ

Discrete Hamiltonian:

Hd(t) = 1
2

eu
>(t) MρCV eu(t)

Discrete power balance:

dtHd(t) = −
−→
f >Q (t)−→Λ

−→
f Q(t)︸ ︷︷ ︸

discrete dissipation

+ v∂>(t) M∂ y∂(t)︸ ︷︷ ︸
discrete supplied power
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Lyapunov functional as Hamiltonian Simulation

Lyapunov functional - Simulation 1/2

Domain: Ω = (0,Lx)× (0,Ly) with Lx = 2 and Ly = 1.
Finite element: X ×X ×X∂ = P1 × RT0× γ0 (P1)

ρ(x) := x1(2−x1)+1, CV = 3, λ(x) =

 5 + x1x2 (x1 − x2)2

(x1 − x2)2 3 + x2

x1 + 1


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Lyapunov functional as Hamiltonian Simulation

Lyapunov functional - Simulation 2/2 time-space simulation
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Lyapunov functional as Hamiltonian Simulation

What about... thermodynamics?

1 Read Distributed port-Hamiltonian modelling for irreversible
processes, by W. Zhou, B. Hamroun, F. Couenne, Y. Le Gorrec.
in Mathematical and Computer Modelling of Dynamical Systems,
vol. 23, n. 1, 2017.

2 Have the chance to talk with Françoise Couenne (LAGEP).
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Entropy as Hamiltonian Modeling

Entropy functional - Modeling 1/3 Hamiltonian Entropy

Consider the entropy of the system as Hamiltonian:

S(t) :=
∫

Ω
ρ(x) s(u(t, x)) dx,

Choose u as energy variable, and compute the co-energy variable

δuS = ds
du

= β.

dtS(t) =
∫

Ω ρ(x)∂tu(t, x)β(t, x) dx,
=
∫

Ω ρ(x)∂ts(t, x) dx,
= −

∫
Ω div

(−→
J S(t, x)

)
dx +

∫
Ω σ(t, x) dx,

= −
∫
∂Ω
−→
J S(t, γ) · −→n (γ) dγ +

∫
Ω σ(t, x) dx,

= −
∫
∂Ω β(t, γ)−→J Q(t, γ) · −→n (γ) dγ +

∫
Ω σ(t, x) dx .
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Entropy as Hamiltonian Modeling

Entropy functional - Modeling 2/3 port-Hamiltonian system

Defining as flows and efforts:

fu := ∂tu, eu := β
−→
f Q := −

−−−→
grad (β) , −→e Q := −→J Q

Port-Hamiltonian system:(
ρfu−→
f Q

)
=
(

0 −div
−
−−−→
grad 0

)(
eu−→e Q

)
.

Particular choices for boundary control v∂ :
either the Dirichlet trace of eu (reciprocal temperature),
or normal trace of −−→e Q (inward heat flux).
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Entropy as Hamiltonian Modeling

Entropy functional - Modeling 3/3 power balance

Constitutive relations:
Dulong-Petit’s law: u = CV

β
=⇒ eu = CV

u

Fourier’s law: −→e Q = 1
β2λ ·

−−−→
grad(β) =⇒ −→e Q = − 1

e2
u
λ ·
−→
f Q

Power balance:

dtS(t) = −
∫

Ω

−→
f Q(t, x) · −→e Q(t, x) dx +

∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ.

with the constitutive relations:

dtS(t) =
∫

Ω
σ(t, x) dx︸ ︷︷ ︸

entropy production

≥ 0

+
∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ︸ ︷︷ ︸
supplied part
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Entropy as Hamiltonian Discretization

Entropy functional - Discretization 1/3 weak form

1 Weak form: Taking arbitrary test functions ϕ and −→ϕ{ ∫
Ω ρfuϕ dx = −

∫
Ω div

(−→e Q
)
ϕ dx,∫

Ω
−→
f Q · −→ϕ dx = −

∫
Ω
−−−→
grad (eu) · −→ϕ dx.

For instance for the control of the inward heat flux −−→e Q · −→n = v∂
2 Apply Green’s formula:{ ∫

Ω ρfuϕ dx =
∫
Ω
−→e Q ·

−−−→
gradϕ dx +

∫
∂Ω v∂ ϕ dγ,∫

Ω
−→
f Q · −→ϕ dx = −

∫
Ω
−−−→
grad (eu) · −→ϕ dx.
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Entropy as Hamiltonian Discretization

Entropy functional - Discretization 2/3 matrix form

The discrete system:
Mρ fu(t) = D eQ(t) + B v∂(t),
−→
M fQ(t) = −D> eu(t),
M∂ y∂(t) = B> eu(t),

Mρ :=
∫

Ω Φ · Φ>ρ dx ∈ RN×N ,
−→
M :=

∫
Ω
−→Φ · −→Φ> dx ∈ R

−→
N×−→N ,

D :=
∫
Ω
−−−→
grad (Φ) · −→Φ> dx ∈ RN×−→N , B :=

∫
∂Ω Φ ·Ψ> dγ ∈ RN×N∂

M∂ :=
∫
∂Ω Ψ ·Ψ> dγ ∈ RN∂×N∂ .

Compact form:Mρ 0 0
0
−→
M 0

0 0 M∂


︸ ︷︷ ︸

Md

 fu(t)
fQ(t)
−y∂(t)


︸ ︷︷ ︸

−→
f d

=

 0 D B
−D> 0 0
−B> 0 0


︸ ︷︷ ︸

Jd

eu(t)
eQ(t)
v∂(t)


︸ ︷︷ ︸
−→e d
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Entropy as Hamiltonian Discretization

Entropy functional - Discretization 3/3 structure

Structure-preservation: −→e >d Md
−→
f d = 0 (thanks to Jd = −J ∗d )

Discrete closure relations:
Dulong-Petit’s law:∫

Ω
ρ β ϕ dx =

∫
Ω
ρ

CV

u
ϕ dx =⇒ (1st Non-linear closure equation),

Fourier’s law:∫
Ω

−→e Q·−→ϕ dx = −
∫

Ω

1
e2

u

−→
f Q·λ·−→ϕ dx =⇒ (2nd Non-linear closure eqn.),

Discrete power balance:

dtSd(t) = −
−→
f >Q (t)−→M−→e Q(t)︸ ︷︷ ︸

discrete entropy production

≥ 0

+ v∂>(t) M∂ y∂(t)︸ ︷︷ ︸
discrete supplied power
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Entropy as Hamiltonian Simulation

Entropy functional - Simulation 1/
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Energy as Hamiltonian Modeling

Energy functional - Modeling

Consider the internal energy of the system as Hamiltonian:

U(t) :=
∫

Ω
ρ(x) u(s(t, x)) dx,

Choosing s as energy variable, compute the co-energy variable

δsU = du
ds

= T.

dtU(t) =
∫

Ω ρ(x)∂ts(t, x)T(t, x) dx,
=
∫

Ω ρ(x)∂tu(t, x) dx,
= −

∫
Ω div

(−→
J Q(t, x)

)
dx,

= −
∫
∂Ω
−→
J Q(t, γ) · −→n (γ) dγ,

= −
∫
∂Ω T(t, γ)−→J S(t, γ) · −→n (γ) dγ.
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Energy as Hamiltonian Modeling

Energy functional - Modeling 2/3 port-Hamiltonian system

Defining as flows and efforts:

fs := ∂ts, eu := T
−→
f S := −

−−−→
grad (T) , −→e S := −→J S

Primary port-Hamiltonian system:(
ρfu−→
f Q

)
=
(

0 −div
−
−−−→
grad 0

)(
eu−→e Q

)
+
(
σ
0

)
.

Following [Zhou & al., 2017], we introduced new ports:

fσ = T, eσ = −σ

Port-Hamiltonian system ρfu−→
f Q

fσ

 =

 0 −div −1
−
−−−→
grad 0 0
1 0 0


 eu−→e Q

eσ

 .
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Energy as Hamiltonian Modeling

Entropy functional - Modeling 3/3 power balance

Particular choices for boundary control v∂ :
either the Dirichlet trace of es (temperature),
or normal trace of −−→e S (inward entropy flux).

Constitutive relations:
Dulong-Petit’s law and Gibbs’ relation:
CVρ∂tT = Tρ∂ts =⇒ CVρ∂tes = es fs
Fourier’s law: es

−→e S = λ ·
−→
f S

Entropy closure relation:
−→
f S · −→e S + fσ eσ = 0

Power balance:

dtU(t) =
∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ
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Energy as Hamiltonian Discretization

Entropy functional - Discretization 1/3 weak form

1 Weak form: Taking arbitrary test functions ϕ and −→ϕ
∫

Ω ρfs ϕ dx = −
∫

Ω div
(−→e S

)
ϕ dx−

∫
Ω σ ϕ dx,∫

Ω
−→
f S · −→ϕ dx = −

∫
Ω
−−−→
grad (es) · −→ϕ dx,∫

Ω fσ ϕ dx =
∫

Ω es ϕ dx.

For instance, the control is the temperature es = v∂
2 Apply Green’s formula:

∫
Ω ρfs ϕ dx = −

∫
Ω div

(−→e S
)
ϕ dx−

∫
Ω σ ϕ dx,∫

Ω
−→
f S · −→ϕ dx =

∫
Ω es div(−→ϕ ) dx,+

∫
∂Ω v∂ (−→ϕ · −→n ) dγ∫

Ω fσ ϕ dx =
∫
Ω es ϕ dx.
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Energy as Hamiltonian Discretization

Energy functional - Discretization 2/3 matrix form

The discrete system:
Mρ fs(t) = D̃ eS(t)−M eσ,−→
M fS(t) = −D̃> es(t) + B̃ v∂(t),
M fσ(t) = M es(t)
M∂ y∂(t) = B> eu(t),

D̃ := −
∫
Ω div

(−→Φ) Φ> dx ∈ R
−→
N×N , B̃ :=

∫
∂Ω(−→Φ · −→n ) ·Ψ> dγ ∈ R

−→
N×N∂

Compact form:
Mρ 0 0 0
0
−→
M 0 0

0 0 M 0
0 0 0 M∂


︸ ︷︷ ︸

M̃d


fs(t)
fS(t)
fσ(t)
−y∂(t)


︸ ︷︷ ︸

−→
f d

=


0 D̃ −M 0
−D̃> 0 0 B̃

M 0 0 0
0 −B̃> 0 0


︸ ︷︷ ︸

J̃d


es(t)
eS(t)
eσ(t)
v∂(t)


︸ ︷︷ ︸
−→e d
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Energy as Hamiltonian Discretization

Energy functional - Discretization 3/3 structure

Structure-preservation: −→e >d M̃d
−→
f d = 0 (thanks to J̃d = −J̃ ∗d )

Discrete closure relation:
Dulong-Petit’s law and Gibbs’ relation:

CVρ∂tes = es fs =⇒ (Solve ODE)

Fourier’s law:∫
Ω

es
−→e S · −→ϕ dx =

∫
Ω

−→
f S · λ ·ϕ dx =⇒ (1st non-linear closure eqn.),

Entropy closure relation:∫
Ω

−→
f S ·−→e S ϕ dx = −

∫
Ω

fσ eσ ϕ dx =⇒ (2nd non-linear closure eqn.)

Discrete power balance:

dtUd(t) = v∂>(t) M∂ y∂(t)
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Energy as Hamiltonian Simulation

Energy functional - Simulation 2/2 time-space simulation
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Energy as Hamiltonian Simulation

Energy functional - Simulation 2/2 time-space simulation
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Conclusion

Conclusion

The integration by parts of one of the weak-form equations
naturally leads to skew-symmetric representation with the
boundary input/output ports;
2D (or 3D) problems are straightforward to address;
Interconnection structure and Constitutive relations are discretized
separately;
Same method can be used for other port-Hamiltonian systems
(higher-order differential operators like Euler-Bernoulli beam, or
Kirchhoff-Love plate equations, etc.);
Space varying coefficients can be easily taken into account;
Nonlinear equations: non-quadratic Hamiltonian and non-linear
interconnection structure;
Thermodynamically consistent potentials can be dealt with for the
heat equation;
PFEM can be easily implemented using available Finite Element
software allowing for complex geometries.
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Conclusion

Ongoing work and open questions

Other (mixed) choices of input/output are possible;
Ongoing convergence analysis;
Numerical methods for DAEs;
Multiphysics systems modelling: some useful 2D testcases
(fluid-structure interaction (FSI), thermal-structure coupling,
fluid-thermal coupling);
Design and implementation of control laws.
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