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Main Objective

Aim:
Simulate complex open physical systems by ensuring the conservation of the
power balance for a chosen functional: the Hamiltonian.

Finite Element Method:
→ Complex geometries are allowed.
→ A wide range of implementation tools are available.

Port-Hamiltonian Systems (PHS):
→ Model “energy” exchanges between simpler open subsystems.
→ The power balance is encoded in a Stokes-Dirac structure.

Partitioned Finite Element Method (PFEM):
→ It translates the Stokes-Dirac structure into a Dirac structure.
→ The discrete Hamiltonian satisfies the “discrete” power balance.

� A structure-preserving Partitioned Finite Element Method for the 2D wave equation
Cardoso-Ribeiro F.L., Matignon D., Lefèvre L.
IFAC-PapersOnLine, vol.51(3), pp.119–124 (2018), LHMNC 2018
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Port-Hamiltonian Systems (PHS)
The energy variables −→α (vector field);
The Hamiltonian H(−→α (t)) (positive functional);

The co-energy variables −→e −→α := δ−→αH (vector field),
 the variational derivative of H w.r.t −→α ;

The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);
The control operator B (linear);
The input u and the collocated output y (boundary scalar fields);
The dynamical system:{

∂t
−→α (t) = (J −R)−→e −→α (t) +Bu(t),

y(t) = B∗−→e −→α (t).

Lossy Power Balance
d
dtH(−→α (t)) = −

〈
R−→e −→α (t),−→e −→α (t)

〉
J

+ 〈u(t),y(t)〉B ≤ 〈u(t),y(t)〉B .

>Although the underlying geometry is well-determined with the above equality,
constitutive relations between −→α and −→e −→α are also needed to solve the system!
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Associated (Stokes-)Dirac structures
The effort space E (Hilbert space) and −→e :=

(−→e −→α , −→e R, u
)>;

The flow space F := E ′ and
−→
f :=

(
∂t
−→α ,

−→
f R, −y

)>
;

The input–output structure operator J :=

 J −I B
I 0 0
−B∗ 0 0

;

The Bond space B := F × E , with symmetrized bilinear product:[(−→
f 1
−→e 1

)
,

(−→
f 2
−→e 2

)]
B

:=
〈−→
f 1,−→e 2

〉
F,E

+
〈−→
f 2,−→e 1

〉
F,E

;

The Dirac structure D := Graph (J ) ⊂ B, i.e. D[⊥] = D with:

D[⊥] :=


(−→
f
−→e

)
∈ B

∣∣∣∣∣
[(−→
f
−→e

)
,

(−̃→
f
−̃→e

)]
B

= 0, ∀

(−̃→
f
−̃→e

)
∈ D

 .

The dissipative constitutive relation −→e R = R
−→
f R;

> Hypotheses on J and B are needed for D to be a (Stokes-)Dirac structure!
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Resulting Differential Algebraic Equations
(DAE)

〈−→
f (t),−→e (t)

〉
F,E

= 0, ∀
(−→
f (t),−→e (t)

)
∈ D, ∀t ≥ 0.

Let
(
∂t
−→α ,
−→
f R,−y,−→e −→α ,−→e R,u

)>
be in D.

Adding −→e R = R
−→
f R: the lossy power balance is satisfied!

=⇒ Flow/effort representation generalizes the above state representation
with J −R, and PFEM appears to be very well-suited to it!

PHS + DAE = PHDAE.

Main result
PFEM gives rise to a finite-dimensional Dirac structure containing a discrete
version of the (lossy) power balance for the discrete Hamiltonian.
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Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.

Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;
−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;
y := −→e q · −→n the output normal stress.
ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .
⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;
−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;
y := −→e q · −→n the output normal stress.
ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .

⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;

−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;
y := −→e q · −→n the output normal stress.
ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .

⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;
−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;

y := −→e q · −→n the output normal stress.
ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .

⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;
−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;
y := −→e q · −→n the output normal stress.


ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .

⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;
−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;
y := −→e q · −→n the output normal stress.
ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .

⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;
−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;
y := −→e q · −→n the output normal stress.
ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .
⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: Wave as PHDAE
Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

ρ the mass density of the medium and T the Young modulus tensor;
αp := ρ∂tw the linear momentum and −→α q := −−−→grad (w) the strain;
−→e q := δ−→αqH = T · −→α q the stress;
ep := δαpH = αp

ρ the deflection velocity and u := ep;
y := −→e q · −→n the output normal stress.
ρ∂2

ttw = div
(
T ·
−−−→
grad (w)

)
,

u = ∂tw,

y =
(
T ·
−−−→
grad (w)

)
· −→n .
⇔
{

∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q

)
,

&
{
u = ep,
y = −→e q · −→n .

Lossless Power Balance
d
dt
H(−→α q, αp) = 〈y,u〉

H
− 1

2 ,H
1
2
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 8 / 17



Conservative System: PFEM strategy
The strategy follows:

1 Write the weak formulation;
2 Apply an accurate Stokes (Green) identity (such that u “appears”);
3 Project on a finite-dimensional space thanks to FEM.

For all test functions −→v q, vp and v∂ (smooth enough):
〈
∂t
−→α q,
−→v q
〉

L2 =
〈−−−→grad (ep) ,−→v q

〉
L2
,

〈∂tαp, vp〉L2 =
〈
div
(−→e q) , vp〉L2 ,

〈y, v∂〉
H−

1
2 ,H

1
2

=
〈−→e q · −→n , v∂〉

H−
1
2 ,H

1
2
.

Applying Green’s formula on the 1st line and using the definition of u:〈
∂t
−→α q,
−→v q
〉

L2 = −
〈
ep,div

(−→v q)〉L2 +
〈−→v q · −→n ,u〉

H−
1
2 ,H

1
2
.

Green’s formula applied on the 2nd line would lead to normal stress control
u = −→e q · −→n . The energy variables are partitioned accordingly.
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Conservative System: FEM Application
The energy, co-energy, boundary and test functions of the same index are
discretized by using the same bases, either scalar- or vector-valued:
−→αap
q (t,−→x ) :=

∑Nq
`=1
−→
φ `
q(
−→x )α`q(t) = −→Φ>q · αq(t),

−→e apq (t,−→x ) = −→Φ>q · eq(t),
αapp (t,−→x ) :=

∑Np
k=1 ϕ

k
p(−→x )αkp(t) = φ>p · αp(t), eapp (t,−→x ) = φ>p · ep(t),

uap(t,−→s ) :=
∑N∂
m=1 ψ

m(−→s )um(t) = Ψ> · u(t), yap(t,−→s ) = Ψ> · y(t),

with −→Φq an Nq × 2 matrix,

φp an Np × 1 matrix and Ψ an N∂ × 1 matrix.

The discretized system (giving the structure) then reads:
−→
M q · d

dtαq(t) = D · ep(t) +B · u(t),
Mp · d

dtαp(t) = −D> · eq(t),
M∂ · y(t) = B> · eq(t),

where:
−→
M q :=

∫
Ω
−→Φq ·

−→Φ>q , Mp :=
∫

Ω φp · φ
>
p , M∂ :=

∫
Ω Ψ ·Ψ>,

D := −
∫

Ω div
(−→Φq

)
· φ>p , B :=

∫
∂Ω

(−→Φq · −→n
)
·Ψ>.
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discretized by using the same bases, either scalar- or vector-valued:
−→αap
q (t,−→x ) :=

∑Nq
`=1
−→
φ `
q(
−→x )α`q(t) = −→Φ>q · αq(t),

−→e apq (t,−→x ) = −→Φ>q · eq(t),
αapp (t,−→x ) :=

∑Np
k=1 ϕ

k
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uap(t,−→s ) :=
∑N∂
m=1 ψ

m(−→s )um(t) = Ψ> · u(t), yap(t,−→s ) = Ψ> · y(t),

with −→Φq an Nq × 2 matrix, φp an Np × 1 matrix and Ψ an N∂ × 1 matrix.
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D := −
∫
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)
· φ>p , B :=
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Conservative System: Power Balance
Finite-Dimensional Dirac Structure

J d :=

 0 D B
−D> 0 0
−B> 0 0

 =⇒ Dd := Graph (J d) .

> The inner product on RNq , RNp and RN∂ has to be taken w.r.t. the mass
matrices −→M q, Mp and M∂ : e.g.

〈−→v 1,
−→v 2
〉
Nq

:= −→v >2 ·
−→
M q · −→v 1.

Discrete Hamiltonian
Hd
(
αq, αp

)
:= H

(−→αap
q , α

ap
p

)
= 1

2

(
α>q ·

−→
M

T
· αq + α>p ·M 1

ρ
· αp

)
,

−→
M

T
:=
∫

Ω
−→Φq · T ·

−→Φ>q & M 1
ρ

:=
∫

Ω
1
ρφp · φ

>
p .

Constitutive relations: −→
M q · eq = −→M

T
· αq & Mp · ep = M 1

ρ
· αp XX

Denote f :=
( d

dtαq,
d
dtαp, −y

)> and e :=
(
eq, ep, u

)>, then:
Discrete Lossless Power Balance(

f
e

)
∈ Dd ⇒

〈
f, e
〉
Np,Nq,N∂

= 0 ⇒ d
dtHd

(
αq, αp

)
= u> ·M∂ · y.
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Internal Dissipation: Dissipative Ports
The Hamiltonian is always the total energy:

H(−→α q, αp) := 1
2

∫
Ω

(
−→α q · T · −→α q + 1

ρ
α2
p

)
.

Internal dissipation ε(−→x )∂tw(t,−→x ) = ε(−→x )ep(t,−→x ) is added, with ε ≥ 0:{
∂t
−→α q = −−−→grad (ep) ,
∂tαp = div

(−→e q)− εep,
{
u = ep,
y = −→e q · −→n .

(
∂t
−→α q

∂tαp

)
=
(

0 −−−→grad
div −ε

)(−→e q
ep

)
 J :=

(
0 −−−→grad

div 0

)
, R :=

(
0 0
0 ε

)
.

Adding dissipative ports fr and er and a dissipative constitutive relation:

=⇒
⊕ er=εfr

∂t−→α q

∂tαp
fr

 =

 0 −−−→grad 0
div 0 −I
0 I 0

−→e qep
er

 .

Lossy Power Balance
d
dtH(−→α q, αp) = −〈εep, ep〉L2 + 〈y,u〉

H−
1
2 ,H

1
2
≤ 〈y,u〉

H−
1
2 ,H

1
2
.
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Internal Dissipation: PFEM
Approximating fr and er in the FEM basis φp, PFEM gives:
−→
M q 0 0 0

0 Mp 0 0
0 0 Mp 0
0 0 0 M∂


︸ ︷︷ ︸

M


d
dtαq(t)
d
dtαp(t)
f
r
(t)

−y(t)


︸ ︷︷ ︸

−→
f d

=


0 D 0 B
−D> 0 Mp 0

0 −Mp 0 0
−B> 0 0 0


︸ ︷︷ ︸

J d


eq(t)
ep(t)
er(t)
u(t)


︸ ︷︷ ︸
−→e d

.

The dissipative constitutive relation is discretized as:
Mp · er = E · f

r
, with E :=

∫
Ω εφp · φ

>
p ≥ 0.

The extended Dirac structure Dεd := Graph (J d), w.r.t. the M-
weighted scalar product in RNq+2Np+N∂ , takes into account for any ε ≥ 0.

Discrete Lossy Power Balance
d
dtHd

(
αq, αp

)
= −e>p · E · ep + u> ·M∂ · y ≤ u> ·M∂ · y.

> In practice, fr and er do not need to be discretized in the basis of fp and ep.
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J d


eq(t)
ep(t)
er(t)
u(t)


︸ ︷︷ ︸
−→e d

.

The dissipative constitutive relation is discretized as:
Mp · er = E · f

r
, with E :=

∫
Ω εφp · φ

>
p ≥ 0.

The extended Dirac structure Dεd := Graph (J d), w.r.t. the M-
weighted scalar product in RNq+2Np+N∂ , takes into account for any ε ≥ 0.

Discrete Lossy Power Balance
d
dtHd

(
αq, αp

)
= −e>p · E · ep + u> ·M∂ · y ≤ u> ·M∂ · y.

> In practice, fr and er do not need to be discretized in the basis of fp and ep.
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Boundary Dissipation: Impedance Ports
The Impedance Boundary Condition (IBC), with Z ≥ 0 on ∂Ω, and ν as new
control, is considered: ν = ep + Z−→e q · −→n ⇔ ν = ∂tw + Z

(
T ·
−−−→grad (w)

)
· −→n .

> This kind of dissipation does not easily fit in the “J −R framework”.
It can be seen as an output feedback law u = −Zy + ν in the previous case.

Lossy Power Balance
d
dtH(−→α q, αp) = −〈εep, ep〉L2 − 〈y, Zy〉

H−
1
2 ,H

1
2

+ 〈y,ν〉
H−

1
2 ,H

1
2
.

Add impedance ports (f i, ei) and dissipative constitutive relation ei = Zf i,
and approximate f i and ei in the FEM basis Ψ, PFEM gives:
−→
Mq 0 0 0 0

0 Mp 0 0 0
0 0 Mp 0 0
0 0 0 M∂ 0
0 0 0 0 M∂




d
dtαq(t)
d

dtαp(t)
f
r
(t)

f
i
(t)

−y(t)

=


0 D 0 −B B

−D> 0 Mp 0 0
0 −Mp 0 0 0
B> 0 0 0 0
−B> 0 0 0 0



eq(t)
e
p
(t)

e
r
(t)

ei(t)
ν(t)


and M∂ · ei = 〈Z〉 · f

i
, with 〈Z〉 :=

∫
∂Ω ZΨ ·Ψ> ≥ 0.

Discrete Lossy Power Balance
d
dtHd

(
αq, αp

)
= −e>p · E · ep − y> · 〈Z〉 · y + ν> ·M∂ · y.
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Boundary Dissipation: Simulations
Heteregenous (ρ 6≡ constant);

Anisotropic (tensor T 6≡ constant);
ε ≡ 0;
Z 6= 0 for t ≥ 2;
Raviart-Thomas FEM for q-variables;
Lagrange FEM for p-variables;
Lagrange FEM for ∂-variables;
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Conclusion and Further Works
To sum up:
A structure-preserving method has been proposed for dissipative
port-Hamiltonian Systems, with the following strategy:

Add ports to get a Dirac structure;
Write down weak formulations;
Apply Stokes formula on a Partition of the system;
Apply the Finite Elements Method;

Furthermore: diffusion model as heat equation can be handled.

To go further:

Choice for the finite elements families:
Convergence rate?
Conformity: Dd ⊂ D?

Mixed boundary control;
Symplectic time-integration? > DAE !!!

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 16 / 17



References
T A structure-preserving Partitioned Finite Element Method for the 2D wave equation

Cardoso-Ribeiro F.L., Matignon D., Lefèvre L.
IFAC-PapersOnLine, vol.51(3), pp.119–124 (2018), LHMNC 2018

T Structure preserving approximation of dissipative evolution problems
Egger H.
Numerische Mathematik, vol.143(1), pp.85–106 (2019)

T Energy-Preserving and Passivity-Consistent Numerical Discretization of Port-Hamiltonian
Systems
Celledoni E., Høiseth, E.H.
arXiv:1706.08621, (2017)

T Hamiltonian formulation of distributed-parameter systems with boundary energy flow
van der Schaft A. J., Maschke B.
Journal of Geometry and Physics, vol.42(1–2), pp.166–194 (2002)

Thank you for your attention!
Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 17 / 17



Diffusion: Thermodynamics

Space domain and physical parameters:
Ω ⊂ Rn≥1 is a bounded open connected set;
−→n is the outward unit normal on the boundary ∂Ω;
ρ(−→x ) is the mass density;
T (−→x ) is the conductivity tensor.

Notations:
T is the local temperature;
β := 1

T
is the reciprocal temperature;

u is the internal energy density;
s is the entropy density;−→
J Q is the heat flux;
−→
J S := β

−→
J Q is the entropy flux;

CV :=
( du

dT

)
V

is the isochoric heat capacity.
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Diffusion: Thermodynamics
“Context & Axioms”:

Medium: rigid body without chemical reaction;
1st law of thermodynamics:

ρ(−→x )∂tu(t,−→x ) = −div
(−→
J Q(t,−→x )

)
;

Gibbs’ relation:

dU = T dS, =⇒ ∂tu(t,−→x ) = T (t,−→x )∂ts(t,−→x );

Entropy evolution:

ρ(−→x )∂ts(t,−→x ) = −div
(−→
J S(t,−→x )

)
+ σ(t,−→x ),

with σ := −−−→grad (β) · −→J Q is the irreversible entropy production.
“Laws”:

Fourier’s law:
−→
J Q(t,−→x ) = −T (t,−→x ) · −−−→grad

(
T (t,−→x )

)
;

Dulong-Petit’s law:

u(t,−→x ) = CV (−→x )T (t,−→x ).
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Diffusion: Lyapunov Functional

Quadratic Hamiltonian: Lyapunov Functional

H(u(t,−→x )) := 1
2

∫
Ω
ρ(−→x )

(
u(t,−→x )

)2
CV (t,−→x )

d−→x ,

αu := u is the energy variable, and eu := δραu = u
CV

the co-energy variable.

Under Dulong-Petit’s law, this is the usual functional used in the mathmatics
community: H :=

∫
Ω ρCvT

2, even if its physical meaning is far to be clear.

Power Balance
d
dtH =

∫
Ω

−→
J Q ·

−−−→grad
(
u

CV

)
−
∫
∂Ω

u

CV

−→
J Q · −→n −

1
2

∫
Ω
ρ∂tCV

(
u

CV

)2
.

Defining fu := ∂tαu = ∂tu, eu = u
CV

,
−→
f Q := −−−−→grad

(
u
CV

)
, and −→e Q := −→J Q:(

ρfu−→
f Q

)
=
(

0 −div
−
−−−→grad 0

)(
eu−→e Q

)
.

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI’19, Toulouse 17 / 17



Diffusion: Lyapunov Functional
At least two choices for boundary control: eu or −→e Q · −→n .

With inward flux control ν = −−→e Q · −→n , the output is y = −→e u, i.e. the
boundary temperature using Dulong-Petit’s law, and the discretized system is:Mρ 0 0

0 −→
M 0

0 0 M∂

f
u

f
Q

−y

 =

 0 D B
−D> 0 0
−B> 0 0

eueQ
ν

 ,

& constitutive relations: MρCV · d
dteu = Mρ · fu & −→

M · −→e Q = −→M
T
· f

Q
.

Lossy Power Balance
d
dtH := −

∫
Ω

−→
f Q · T ·

−→
f Q +

∫
∂Ω
yν.

Discrete Lossy Power Balance
d
dtH := −f

Q
·
−→
M

T
· f

Q
+ ν> ·M∂ · y.
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Diffusion: Internal Energy
Let us take as Hamiltonian the internal energy in function of the entropy:

U(s(t,−→x )) :=
∫

Ω
ρ(−→x )u(s(t,−→x )) d−→x ,

together with ν = T and y = −→J S · −→n .

Power Balance (first law of thermodynamics)
d
dtU(s) = 〈y,ν〉

H−
1
2 ,H

1
2
.

Adding entropy ports with the entropy constitutive relation (definition of σ):
Tσ = −−−−→grad (T ) · −→J S , leads to a PHDAE.

Gibbs’ relation is a first constitutive relation, and Fourier’s law can be the other.

Discrete Power Balance
d
dtUd(s) = ν⊥ ·M∂ · y.
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Diffusion: Simulations
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