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L Main Objective

Simulate complex open physical systems by ensuring the conservation of the
power balance for a chosen functional: the Hamiltonian.
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L Main Objective

Aim:
Simulate complex open physical systems by ensuring the conservation of the
power balance for a chosen functional: the Hamiltonian.

m Finite Element Method:
— Complex geometries are allowed.
— A wide range of implementation tools are available.

m Port-Hamiltonian Systems (PHS):
— Model “energy” exchanges between simpler open subsystems.
— The power balance is encoded in a Stokes-Dirac structure.

m Partitioned Finite Element Method (PFEM):
— It translates the Stokes-Dirac structure into a Dirac structure.
— The discrete Hamiltonian satisfies the “discrete” power balance.

A structure-preserving Partitioned Finite Element Method for the 2D wave equation
Cardoso-Ribeiro F.L., Matignon D., Lefevre L.
IFAC-PapersOnLine, vol.51(3), pp.119-124 (2018), LHMNC 2018
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o Port-Hamiltonian Systems (PHS)

= The energy variables @ (vector field);
= The Hamiltonian 7{(d (t)) (positive functional);
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o Port-Hamiltonian Systems (PHS)
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m The co-energy variables @ - := 027 (vector field),
~ the variational derivative of H w.r.t o;
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_ Port-Hamiltonian Systems (PHS)
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~ the variational derivative of H w.r.t o;
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The input u and the collocated output y (boundary scalar fields);
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_ Port-Hamiltonian Systems (PHS)

= The energy variables @ (vector field);
= The Hamiltonian 7{(d (t)) (positive functional);

m The co-energy variables @ - := 027 (vector field),
~ the variational derivative of H w.r.t o;

The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);

The control operator B (linear);

The input u and the collocated output y (boundary scalar fields);
The dynamical system:
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o Port-Hamiltonian Systems (PHS)

= The energy variables @ (vector field);
= The Hamiltonian 7{(d (t)) (positive functional);

m The co-energy variables @ - := 027 (vector field),
~ the variational derivative of H w.r.t o;

The structure operator J (linear and formally skew-symmetric);
The resistive/dissipative operator R (linear and positive);

The control operator B (linear);

The input u and the collocated output y (boundary scalar fields);
The dynamical system:

{ 0 d(t) = (J — R) €z (t) + Buf(t),
y(t) = B*€=(t).

o

Lossy Power Balance

FHE() =~ (Rea(t), @z ), + (ut),y(t)s < (ul),y(t) 5

AAlthough the underlying geometry is well-determined with the above equality,
constitutive relations between & and ?3 are also needed to solve the system!
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o Associated (Stokes-)Dirac structures

m The effort space & (Hilbert space) and € := (€z, €r, u)T;
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o Associated (Stokes-)Dirac structures

m The effort space & (Hilbert space) and € := (€z, €r, u)T;
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o Associated (Stokes-)Dirac structures

m The effort space & (Hilbert space) and € := (€z, €r, u)T;

m The flow space 7 := £’ and 7 = (Bta>, ?R’ _y)T;

J —-I B
m The input—output structure operator 7 := I 0o 0}|;
-B* 0 O

m The Bond space 5 := F x &£, with symmetrized bilinear product:

)@, -2,

Serhani, Matignon, Haine (ISAE) PFEM 4 Dissipative PHS GSI'19, Toulouse 6 /17



o Associated (Stokes-)Dirac structures

m The effort space & (Hilbert space) and € := (€z, €r, u)T;

m The flow space 7 := £’ and 7 = (8ta>, ?R’ _y)T;

J —-I B
m The input—output structure operator 7 := I 0o 0}|;
-B* 0 O

m The Bond space 5 := F x &£, with symmetrized bilinear product:

(). (L] =3, + (722,

m The Dirac structure D := Graph (J) C B, i.e. DI*] = D with:
(7 AN AT e
DUl .= <?>EB <?> = B_o, v = eD

A Hypotheses on J and B are needed for D to be a (Stokes-)Dirac structure!
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o Associated (Stokes-)Dirac structures

m The effort space & (Hilbert space) and € := (€z, €r, u)T;

m The flow space 7 := £’ and 7 = (8ta>, ?R’ _y)T;

J —-I B
m The input—output structure operator 7 := I 0o 0}|;
-B* 0 O

m The Bond space 5 := F x &£, with symmetrized bilinear product:

(). (L] =3, + (722,

m The Dirac structure D := Graph (J) C B, i.e. DI*] = D with:

()< [0, ()

m The dissipative constitutive relation ?R = R?R;

A Hypotheses on J and B are needed for D to be a (Stokes-)Dirac structure!
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L Resulting Differential Algebraic Equations

<?(t), E>(t)> =0, V (?(t), ?(t)) eD, Vt>0.

FE

T
Let (8,53, ?R, —y,?g,?mu) be in D.
Adding ?R = R?R: the lossy power balance is satisfied!
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<?(t), E>(t)> =0, V (?(t), ?(t)) eD, Vt>0.

F.£

T
Let (8,53, ?R, —y,?g,?mu) be in D.
Adding ?R = R?R: the lossy power balance is satisfied!

— Flow/effort representation generalizes the above state representation
with J — R, and PFEM appears to be very well-suited to it!
PHS + DAE = PHDAE.
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o Resulting Differential Algebraic Equations

<?(t),?(t)> =0, V (?(t),?(t)) eD, Vt>0.

F.£

-
Let (8,53, ?R, —y,?g,?R,u) be in D.

Adding ?R = R?R: the lossy power balance is satisfied!

— Flow/effort representation generalizes the above state representation
with J — R, and PFEM appears to be very well-suited to it!
PHS + DAE = PHDAE.

Main result

PFEM gives rise to a finite-dimensional Dirac structure containing a discrete
version of the (lossy) power balance for the discrete Hamiltonian.
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Partitioned Finite Element Method (PFEM)
m Conservative System
m Internal Dissipation
m Boundary Dissipation
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L Conservative System: Wave as PHDAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
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Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(A 4, ) = 5/9 (Hq T-d g+ pai) .
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Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(A 4, ) = 5/9 (E)q T-d g+ /)ai) .

m p the mass density of the medium and T the Young modulus tensor;

ap = pOyw the linear momentum and 3(1 = graa (w) the strain;

e, = g H=T- d,, the stress;

® ¢, =05, = = the deflection velocity and u := ¢,;
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L Conservative System: Wave as PHDAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(A 4, ) = 5/9 (Hq T-d g+ pai) .

m p the mass density of the medium and T the Young modulus tensor;
B o, = pOyw the linear momentum and 3(1 = gm (w) the strain;
e, = oz, M= T. d, the stress;

® ¢, =05, = = the deflection velocity and u := ¢,;

my = ?q -7 the output normal stress.

pOfw = div (% . gr‘?i (w)) ,

u = 8tw,

y = @-gr?i(w)) 7.
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L Conservative System: Wave as PHDAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(A 4, ) = 5/9 (Hq T-d g+ pai) .

m p the mass density of the medium and T the Young modulus tensor;
B o, = pOyw the linear momentum and 3(1 = gm (w) the strain;
e, = oz, M= T. d, the stress;

® ¢, =05, = = the deflection velocity and u := ¢,;

my = ?q -7 the output normal stress.

pOZw = div (% . graa> (w)) , _
u :&w, <:>{ ataq :g.ra (eP)v &{

y = @-gr?i(w)) 7.

e
Il
e
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~
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o Conservative System: Wave as PHDAE

Deflection w of a 2D-membrane, boundary deflection velocity as control.
Its total energy is given by the sum of the potential & kinetic energies:

1 = 1
H(A 4, ) = 5/9 (Hq T-d g+ pai) .

m p the mass density of the medium and 7" the Young modulus tensor;
B o, = pOyw the linear momentum and a>q = graa (w) the strain;

m €, =0z H =T 0, the stress;
® ¢, =05, = = the deflection velocity and u := ¢,;

my = ?q -7 the output normal stress.

pOZw = div (% . gra(_i> (w)) , _
u :&w, <:>{ ataq :g.ra (eP)7 &{

y = <%~gra?1 (w)) 7.
Lossless Power Balance
_>
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Apply an accurate Stokes (Green) identity (such that u “appears”);
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Write the weak formulation;
Apply an accurate Stokes (Green) identity (such that u “appears”);
Project on a finite-dimensional space thanks to FEM.
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L Conservative System: PFEM strategy

Write the weak formulation;

A Apply an accurate Stokes (Green) identity (such that w “appears”);
Project on a finite-dimensional space thanks to FEM

For all test functions ¥/, v, and vy (smooth enough)

<at_> = ( 8ra é 6p >L2’
<8tap,vp 2= < iv
<y7va -5 gt = <

) ”p>L2 )

-

1 1.
H7§,H§
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L Conservative System: PFEM strategy

Write the weak formulation;
Apply an accurate Stokes (Green) identity (such that u “appears”);

Project on a finite-dimensional space thanks to FEM.
For all test functions ¥/, v, and vy (smooth enough):

<6ta>q77q>L2 = <g~r;g (ep)a?Q>

(Osap, vp) 2 = <div ?q) 71)10>L2 ,
<y7va>H7%7H% = q T,0s H™% H3 '

2 )

Applying Green's formula on the 1st line and using the definition of w:

<ata>qa 7q>L'z == <ep’div (74)>L2 + <74 ‘ ﬁ,u>H,%’H% :

GSI'19, Toulouse
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L Conservative System: PFEM strategy

Write the weak formulation;
Apply an accurate Stokes (Green) identity (such that u “appears”);

Project on a finite-dimensional space thanks to FEM.
For all test functions ¥/, v, and vy (smooth enough):

<6ta>q77q>L2 = <g~r;g (ep)a?Q>

(Osap, vp) 2 = <div ?q) 71)10>L2 ,
<y7va>H7%7H% = q T,0s H™% H3 '

L2’

Applying Green's formula on the 1st line and using the definition of w:

<ata>qa 7q>L'z == <ep’div (74)>L2 + <74 ‘ ﬁ,u>H,%’H% :

Green's formula applied on the 2nd line would lead to normal stress control
u= ?q 7. The energy variables are partitioned accordingly.

GSI'19, Toulouse
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L Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are
discretized by using the same bases, either scalar- or vector-valued:

(L, F) = Y0 BT )ak(t) = BT - a,(b),

with gq an Ny x 2 matrix,
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L Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are
discretized by using the same bases, either scalar- or vector-valued:

T, B) = 0 BUR)ak(t) = BT 0, (t), POt T) = B] ¢

q

with gq an N, x 2 matrix,
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L Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are
discretized by using the same bases, either scalar- or vector-valued:

For(t, @) = 0 BL(@)al(t) = B -a,(t), C(t,T) = $T e
AP (t, @) = Y0, ok (F)e ,,<t>:¢; p<> ;p(t,?w ep<>

with gq an Ny X 2 matrix, ¢, an N, x 1 matrix
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L Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are
discretized by using the same bases, either scalar- or vector-valued:

QAL T) = Ze L L ()al(t) ¥T a,(t), Ew(t,T) = ¥T e, (1),
ath(t, @) =Y sop(?) r(t) ¢ p( ), /Zp(t, T) = ep(t),
=0 u(t), Yyt F)= \IIT g(t)

wP(t,F) = S o (F um(t)

with gq an Ny X 2 matrix, ¢, an N, x 1 matrix and ¥ an Ny X 1 matrix.
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L Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are
discretized by using the same bases, either scalar- or vector-valued:

dor(t, @) = N Lol (t) = BT -, (t), ?gp(t,?)=$T-gq<t),
A (t, @) = Y00, w’;(?) <> o) fp<> Pt D) = ¢, - e,(t),
= 7(t), yap(tv ?) ‘I’T Q(t)

wP(t,F) = S o (F um(t)

¢ Sa,(t)=D-e,(t)+ B-ult),
M, - 5:0,(t) = —DT - ¢,(t),
Mp-y(t) = BT - ¢,(t),
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L Conservative System: FEM Application

The energy, co-energy, boundary and test functions of the same index are
discretized by using the same bases, either scalar- or vector-valued:

dor(t, @) = N Lol (t) = BT -, (t), ?gp(t,?)=$T-gq<t),
A (t, @) = Y00, w’;(?) <> o) fp<> Pt D) = ¢, - e,(t),
= 7(t), yap(tv ?) ‘I’T Q(t)

wP(t,F) = S o (F um(t)

¢ Sa,(t)=D-e,(t)+ B-ult),
M, - 5:0,(t) = —DT - ¢,(t),
Mp-y(t) = BT - ¢,(t),

lﬁq = fggq'¥;7 fQ¢p p7
D= — [, div (@) by, B[ (B, 7) T

My:= [, ¥ T,
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. Conservative System: Power Balance
Finite-Dimensional Dirac Structure

0 D B
Ja:=|-DT 0 o0 = Dy := Graph (74).
-BT 0 0
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. Conservative System: Power Balance
Finite-Dimensional Dirac Structure

0 D B
Ja:=|-DT 0 o0 = Dy := Graph (74).
-BT 0 0

A The inner product on RMs, RM» and RYo has to be taken w.r.t. the mass
matrices ﬁq, M, and My: e.g. <71,72>N =g ~ﬁq Y.
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. Conservative System: Power Balance
Finite-Dimensional Dirac Structure

0 D B
Ja:=|-DT 0 o0 = Dy := Graph (74).
-BT 0 0

A The inner product on RMs, RM» and RYo has to be taken w.r.t. the mass
matrices ﬁq, M, and My: e.g. <71,72>N =g ~ﬁq Y.

Discrete Hamiltonian
H (a « ) ~=H(a>ap aap):l(a'l'.ﬁf.a +a!l M-« )
d\&g&p) - g %p 2 (&4 T S Sp + %)
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| Conservative System: Power Balance

Finite-Dimensional Dirac Structure

0 D B
Ja:=|-DT 0 o0 = Dy := Graph (74).
-BT 0 0

A The inner product on RMs, RM» and RYo has to be taken w.r.t. the mass
matrices ﬁq, M, and My: e.g. <71,72>N =g ~ﬁq Y.

Discrete Hamiltonian

i T, )
Qg ta, M gp),

o 1 T
< '—fﬂﬁ¢p'¢p'
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| Conservative System: Power Balance

Finite-Dimensional Dirac Structure

0 D B
Ja:=|-DT 0 o0 = Dy := Graph (74).
-BT 0 0

A The inner product on RMs, RM» and RYo has to be taken w.r.t. the mass
matrices ﬁq, M, and My: e.g. <71,72>N =g ~ﬁq Y.

Discrete Hamiltonian

Ha (ag0y) =M (@2,07) = § (o] M-, +a] - Mi-g,),

p
M_=[,®, 73] & Mi = [y 10, &),
Constitutive relations: ﬁ . =y & M, ey = M% a, vV
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. Conservative System: Power Balance
Finite-Dimensional Dirac Structure
0 D B

Ja:=|-DT 0 o0

- = Dy := Graph (Jq).
-B" 0 O

A The inner product on RMa, RM» and RYo has to be taken w.r.t. the mass
matrices ﬁq, M, and My: e.g. <71,72>N =g ~ﬁq Y.

Discrete Hamiltonian

Ha (ag0y) =M (@2,07) = § (o] M-, +a] - Mi-g,),
M_:=[,3,T-3] & M =[,19, ¢
Constitutive relations: ﬁq 8g = M% a, & My-e,= M% a, vV

Denote f := (%gq, %gp, fg)T and ¢:= (¢,, ¢, g)T, then:

Discrete Lossless Power Balance

(g) €Da = (f,e)y y oy, =0 = §Halepa)=u’ Moy
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Partitioned Finite Element Method (PFEM)

m Internal Dissipation
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L Internal Dissipation: Dissipative Ports

The Hamiltonian is always the total energy:

= 1
H(aq,up) = 5/ (a@ ST aﬂ, + (15) .
Q P

Internal dissipation «(@)dyw(t, @) = (@ )e,(t,

z
{atah, = grad (¢, {

O, =div (@) — cep,

) is added, with ¢ > 0:

U = ep,
y =¢,-7.
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L Internal Dissipation: Dissipative Ports

The Hamiltonian is always the total energy:

1 = 1
H(aq»ap) = */ (a)q T a>q + O‘%)
2 Ja p
Internal dissipation «(@)dyw(t, @) = (@ )e,(t, @) is added, with ¢ > 0:

(4 ., |

O, =div (e )—mp,

(%tfzj):(d?v — )( ) ' (dlv gr(?)’ = (8 O)
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L Internal Dissipation: Dissipative Ports

The Hamiltonian is always the total energy:

= 1
H(aq,ap) = 5/ (a@ ST aﬂ, + ozi) .
Q P

Internal dissipation «(@)dyw(t, @) = (@ )e,(t, @) is added, with ¢ > 0:

{ atah, :graggep), { U =ep,
O, =div (@) — cep, y =€, 7.

9, _(0 graa e, g [0 gra (00
Orarp div = —¢ €p ' div 0 ’ ' 0 ¢)°

Adding dissipative ports f, and e, and a dissipative constitutive relation:

8, 0 grad 0 e,
o= Oy | = div 0 —I ep
o fr o I 0 er
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L Internal Dissipation: Dissipative Ports

The Hamiltonian is always the total energy:

= 1
H(aq,up) = 5/ (a@ ST aﬂ, + (15) .
Q P

Internal dissipation «(@)dyw(t, @) = (@ )e,(t, @) is added, with ¢ > 0:

{ atah, :graggep), { U =ep,
O, =div (@) — cep, y =€, 7.

9, _(0 graa e, g [0 gra (00
Orarp div = —¢ €p ' div 0 ’ ' 0 ¢)°

Adding dissipative ports f, and e, and a dissipative constitutive relation:

8, 0 gra 0 e,
= Oop | =|div 0 —I €p
Ber=clr fr o I 0/ \e
d —
(e ) = —{eep ep)pa + (Y, u) g3 3 Sy u)y g pg
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. Internal Dissipation: PFEM

Approximating f, and e, in the FEM basis ¢,, PFEM gives:

M, 0 0 0\ [%a,0 0 D 0 B\ /e
0 M, 0 0 ||se®O|_[-D7 0o M, 0][e®
0 0 M, 0 £,(t) 0 =M, 0 0/[[|e(t)
0 0 0 M, —y(t) -BT 0 0 0/ \u(®)
~ ——
M Fa Ta 2y
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. Internal Dissipation: PFEM

Approximating f, and e, in the FEM basis ¢,, PFEM gives:

M, 0 0 0\ [%a,0 0 D 0 B\ /e
0 M, 0 0 ||se®O|_[-D7 0o M, 0][e®
0 0 M, 0 1) 0 M, 0 0]f]|e@®
0 0 0 M, —y(t) -BT 0 0 0/ \u(®)
~ N——
M Fa Ta g
The dissipative constitutive relation is discretized as:
My-e,=FE-f, with 7= [ e, - @) > 0.
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. Internal Dissipation: PFEM

Approximating f, and e, in the FEM basis ¢,, PFEM gives:

M, 0 0 0\ [%a,0 0 D 0 B\ /e
0 M, 0 0 ||se®O|_[-D7 0o M, 0][e®
0 0 M, 0 1) 0 M, 0 0]f]|e@®
0 0 0 M, —y(t) -BT 0 0 0/ \u(®)
~ N——
M Fa Ta g
The dissipative constitutive relation is discretized as:
My-e,=FE-f, with 7= [ e, - @) > 0.

The extended Dirac structure D := Graph(J4), w.rt. the M-
weighted scalar product in R¥a+2N»+No takes into account for any ¢« > 0.
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. Internal Dissipation: PFEM

Approximating f, and e, in the FEM basis ¢,, PFEM gives:

M, 0 0 0\ [%a,0 0 D 0 B\ /e
0 M, 0 0 ||se®O|_[-D7 0o M, 0][e®
0 0 M, 0 1) 0 M, 0 0]f]|e@®
0 0 0 M, —y(t) -BT 0 0 0/ \u(®)
~ N——
M Fa Ta g
The dissipative constitutive relation is discretized as:
My-e,=FE-f, with 7= [ e, - @) > 0.

The extended Dirac structure D := Graph(J4), w.rt. the M-
weighted scalar product in R¥a+2N»+No takes into account for any ¢« > 0.

Discrete Lossy Power Balance

SMa(aga,) =—¢) E-ep+u’ -Myp-y<u' -Mpy-y.

A In practice, f, and ¢, do not need to be discretized in the basis of f,, and e,,.

13 /17
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Partitioned Finite Element Method (PFEM)

m Boundary Dissipation
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L Boundary Dissipation: Impedance Ports

The Impedance Boundary Condition (IBC), with Z > 0 on 99, and v as new
control, is considered: v = e, + Z?q He v=8w+7 (T . graa (w)) 7.
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L Boundary Dissipation: Impedance Ports

The Impedance Boundary Condition (IBC), with Z > 0 on 99, and v as new
control, is considered: v = e, + Z?q He v=8w+7 (T . graa (w)) 7.
A This kind of dissipation does not easily fit in the “.J — R framework”.
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L Boundary Dissipation: Impedance Ports

The Impedance Boundary Condition (IBC), with Z > 0 on 99, and v as new
control, is considered: v = e, + Z?q He v=8w+7 (T . graa (w)) 7.

A This kind of dissipation does not easily fit in the “.J — R framework”.
It can be seen as an output feedback law uw = —”7y + v in the previous case.
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o Boundary Dissipation: Impedance Ports

The Impedance Boundary Condition (IBC), with Z > 0 on 99, and v as new
control, is considered: v = e, + Z?q He v=8w+7 (T . graa (w)) 7.

A This kind of dissipation does not easily fit in the “.J — R framework”.
It can be seen as an output feedback law uw = —”7y + v in the previous case.

Lossy Power Balance

%
iH (A ap) = —(cepep) o = (Y, 2Y) oy g3 T (YY) g b

) )
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| Boundary Dissipation: Impedance Ports
The Impedance Boundary Condition (IBC), with Z > 0 on 99, and v as new
control, is considered: v = e, + Z?q He v=8w+7 (T . graa (w)) 7.

A This kind of dissipation does not easily fit in the “.J — R framework”.
It can be seen as an output feedback law uw = —”7y + v in the previous case.

Lossy Power Balance

%
SH(Ay, ap) = — (eep, €p) 12 — (U, ZY) -3 b T WUV gg -

)

Add impedance ports (f;, ¢;) and dissipative constitutive relation ¢; = 7 f;,
and approximate f; and ¢; in the FEM basis ¥, PFEM gives:

M, o o o o0 Sra,®) 0 D 0 -B B\ [t
o M, 0 0 0 ara,(t) -pT 0 M, 0 0 e, (b)
0 0 M, O 0 B =1 0 —M, 0 0o 0 e (t)
0 0 0 Mp O f (1) BT 0 0 0o 0 e, (1)
0 0 0 0 Mp Zu(t) -B" 0 0 0 0 v(t)

and My - ¢, =(7)- [, with (Z) := [,, 7% - ¥ >0.
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| Boundary Dissipation: Impedance Ports
The Impedance Boundary Condition (IBC), with Z > 0 on 99, and v as new
control, is considered: v = e, + Z?q He v=8w+7 (T . graa (w)) 7.
A This kind of dissipation does not easily fit in the “.J — R framework”.

It can be seen as an output feedback law uw = —”7y + v in the previous case.
Lossy Power Balance

%
SH(Ay, ap) = — (eep, €p) 12 — (U, ZY) -3 b T WUV gg -

)

Add impedance ports (f;, ¢;) and dissipative constitutive relation ¢; = 7 f;,
and approximate f; and ¢; in the FEM basis ¥, PFEM gives:

M, o o o o0 Sra,®) 0 D 0 -B B\ [e()
o M, 0 0 0 T, () -pT 0o M, 0 o0 e, (b)
0 0 M, © 0 ® |= 0 -M, 0 o 0 e, (t)
0 0 0 Mp O f (1) BT 0 0 0o 0 e, (1)
0 0 0 0 Mp :é(t) -B" 0 0 0 0 v(t)
and My - ¢, =(7)- [, with (Z) := [,, 7% - ¥ >0.
Discrete Lossy Power Balance

SHa(ag0,) =—¢) E-e,—y' (Z)-y+r"-My-y.
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L Boundary Dissipation: Simulations

Heteregenous (p # constant); 0

Anisotropic (tensor T Z constant); #Tw A .

e=0;
Z #0fort>2

Lagrange FEM for p-variables;
Lagrange FEM for O-variables; :

Serhani, Matignon, Haine (ISAE)

n
n
|
m Raviart-Thomas FEM for g-variables;
n
n

(2,1)

(0,0)
Dof of &
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o Conclusion and Further Works

A structure-preserving method has been proposed for dissipative
port-Hamiltonian Systems, with the following strategy:

m Add ports to get a Dirac structure;
m Write down weak formulations;
m Apply Stokes formula on a Partition of the system;
m Apply the Finite Elements Method;
Furthermore: diffusion model as heat equation can be handled.

To go further:

m Choice for the finite elements families:

m Convergence rate?
m Conformity: Dy C D?

m Mixed boundary control;
m Symplectic time-integration? A DAE!!!
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L Diffusion: Thermodynamics

m Space domain and physical parameters:

m Q C R"! is a bounded open connected set;
m 71 is the outward unit normal on the boundary 0€;
m () is the mass density;
(]

T (@) is the conductivity tensor.

= Notations:

m T is the local temperature;

8= % is the reciprocal temperature;
u is the internal energy density;

s is the entropy density;

7@ is the heat flux;

s := B J q is the entropy flux;

Cy = (ﬂ) is the isochoric heat capacity.
dT /v
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L Diffusion: Thermodynamics

m “Context & Axioms”:
® Medium: rigid body without chemical reaction;
m 1st law of thermodynamics:

o(@)u(t, B) = —div (7Q(t, ?)) :
m Gibbs’ relation:
AU =T dS, = dwu(t, @) =T(t, @)ds(t, ®);
m Entropy evolution:

o(@)drs(t, T) = —div (7s(t, ?)) Yot @),

with o := grag 8) - 7@ is the irreversible entropy production.
m “Laws”:
m Fourier’s law:

Tot, @)= —T(t, ) grad (T(t, D)) ;
m Dulong-Petit’s law:

u(t, @) = Cv(Z)T(t, D).
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L Diffusion: Lyapunov Functional

Quadratic Hamiltonian: Lyapunov Functional

u(t, @)’
Hlult, D)) = ;/Q/)(?)% i,

(v, := u is the energy variable, and ¢, := §? = 2~ the co-energy variable.
Xy Cy gy

Under Dulong-Petit’s law, this is the usual functional used in the mathmatics
community: H := fﬂ pC,T?, even if its physical meaning is far to be clear.

Power Balance
d u u 1 u \2
e [To (L) [ LTo-L [ mer(L)
di QQg Cv oo Cv @ 2Q/fVC'v
Defining f, := Opvy = g, €, = C%/ ?Q = fgraa (c%/) and ?Q = 7Q:

(7o)~ (ama ) ()
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o Diffusion: Lyapunov Functional

At least two choices for boundary control: e, or ?Q ..

With inward flux control v = —?Q -7, the output is y = ?u, i.e. the
boundary temperature using Dulong-Petit's law, and the discretized system is:

M/) 0 0 i’u, 0 D B €u
0o M o |(fo|=(-D" 0 0[],
0 0 My \—y -BT 0 0 v

=M, f, & M-Zo=M_ fo

& constitutive relations: M ¢, - dt =

Lossy Power Balance

——/Q?Q'??Wr/myv.

Discrete Lossy Power Balance

d :
&H'__iQ.ﬁ%'iQ_‘_z M(‘)Q
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o Diffusion: Internal Energy

Let us take as Hamiltonian the internal energy in function of the entropy:

Uls(t, B)) = / A(@)uls(t, D)) AT,

Q
together with v =T and y = 75 7.

Power Balance (first law of thermodynamics)

d
EU(S) = <y’V>H—%)H% °

Adding entropy ports with the entropy constitutive relation (definition of o):
To = —grad (T) - J s, leads to a PHDAE.

Gibbs' relation is a first constitutive relation, and Fourier’s law can be the other.

Discrete Power Balance
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Diffusion: Simulations
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