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Waves with impedance boundary condition (IBC)

Anisotropic Heterogeneous Wave equation with boundary damping (Ω
open
⊂

bounded
R2):

ρ(x)∂2
tt w(t,x) = div

(
T (x) ·gradw(t,x)

)
, x ∈Ω, (PDE)

Z(x)︸︷︷︸
Impedance

(
T (x) ·gradw(t,x)

)
·n︸ ︷︷ ︸

Neumann trace

+ ∂t w(t,x)︸ ︷︷ ︸
Dirichlet trace

= 0, x ∈ ∂Ω, (BC)

w(0,x) = w0(x), x ∈Ω, t = 0,
∂t w(0,x) = w1(x), x ∈Ω, t = 0,

(Initial data)

• w(t,x) deflection from equilibrium.

• T (x) Young’s elasticity modulus.
• ρ(x) mass density.
• Z(x) impedance.

•
{

Z = 0 =⇒ Homogeneous Dirichlet BC.
Z = ∞ =⇒ Homogeneous Neumann BC.

In 1D, T = T0 and ρ = ρ0,
characteristic impedance

Zc =
√

T0ρ0
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Port-Hamiltonian formulation 1/3

• Introduce the energy variables ααα :=
[
αααq
> αp

]>
αααq := gradw

(Strain)

, αp := ρ ∂t w
(Linear momentum)

,

• The corresponding co-energy variables e :=
[
eq
> ep

]>
,

eq := δαααq H = T ·αααq
(Stress)

, ep := δαp H =
1
ρ

αp

(Velocity)

.

Infinite-dimensional port-Hamiltonian system:
∂t

[
αααq
αp

]
=

[
0 grad

div 0

][
eq
ep

]
,

u∂ = ep
∣∣
∂Ω,

y∂ = eq ·n
∣∣
∂Ω .

Output-feedback Law
=⇒ (IBC)

(u∂ =−Zy∂)

 ∂t

[
αααq
αp

]
=

[
0 grad

div 0

][
eq
ep

]
,

Z eq ·n + ep
∣∣
∂Ω = 0 .
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Port-Hamiltonian formulation 2/3 - Dissipation

Power balance:

d
dt

H (t) =
〈
ep, eq ·n

〉
∂Ω =−

〈
Z eq ·n, eq ·n

〉
∂Ω =−

∥∥√Z eq ·n
∥∥2

L2(∂Ω) ≤ 0

Energy representation: 
∂t

[
αααq
αp

]
︸ ︷︷ ︸

ααα

=

[
0 grad

div 0

]
︸ ︷︷ ︸

J

e︷ ︸︸ ︷[
T 0
0 1

ρ

]
︸ ︷︷ ︸

Q

[
αααq
αp

]
︸ ︷︷ ︸

ααα

,

Z (T ·αααq) ·n + 1
ρ

αp
∣∣
∂Ω = 0 .

(1)

• J is formally skew-symmetric (grad∗ =−div), but not skew-adjoint.

• Dissipativity comes from: Z eq ·n + ep
∣∣
∂Ω = 0 in D(J )⊂ Hdiv(Ω)×H1(Ω) .

• The dissipative system is not of the form ∂t ααα = (J −R )e.

, At the discrete level, we will get ∂t αααd = (Jd −Rd )ed !
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Port-Hamiltonian formulation 3/3 - Well-posedness

Existence and uniqueness: [Kurula and Zwart, 2015]

Theorem

∀(ααα
0
q ,α

0
p) ∈ T

−1
Hdiv(Ω)×ρH1(Ω) (initial data),

∃!(αααq ,αp) ∈ C
(
0,∞;T

−1
Hdiv(Ω)×ρH1(Ω)

)
∩C 1(0,∞;L2(Ω)×L2(Ω)

)
,

such that (1) is satisfied

• T ∈ L∞(Ω)2×2 coercive symmetric,

• ρ≥ ρ0 > 0 ∈ L∞(Ω),

• Hdiv(Ω) :=
{

vq ∈ L2(Ω); divvq ∈ L2(Ω)
}

.

• T
−1

Hdiv(Ω) :=
{

vq ∈ L2(Ω); div(T
−1
·vq) ∈ L2(Ω)

}
,

• ρH1(Ω) :=
{

vp ∈ L2(Ω); grad(ρvp) ∈ L2(Ω)
}

.
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Structure-Preserving Discretizations Overview

Discrete methods based on the Geometry of the system:

• Explicit simplicial discretization [Seslija et al., 2014]

• Discretization based on primal-dual complex [Kotyczka and Maschke*, 2017]

• Finite difference methods (FDM) [Trenchant et al.*, 2018]

• Finite volume methods (FVM) [Kotyczka, 2016; Serhani et al.* 2018]

Finite Element / Galerkin Approaches:

• Mixed finite element method [Golo et al., 2004]

• Pseudo spectral finite element method [Moulla et al., 2012]

• Finite element formulation for Maxwell’s equations [Farle et al., 2013]

• Mixed Galerkin discretization [Kotyczka et al.*, 2018]

Discretization Strategy:

1• Use PFEM to discretize the port-Hamiltonian system.

2• Use an output-feedback law to take the impedance BC into account.
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Open-Loop Discretization 1/5 - Weak formulation

Boundary controlled and observed wave equation:


ρ∂

2
tt w = div(Tgradw),

u∂ = ∂t w
∣∣
∂Ω,

y∂ = T gradw ·n
∣∣
∂Ω.

(PHS)
=⇒


∂t

[
αααq
αp

]
=

[
0 grad

div 0

][
eq
ep

]
,

u∂ = ep
∣∣
∂Ω,

y∂ = eq ·n
∣∣
∂Ω .

Its power balance is then: d
dt H (t) =

〈
u∂,y∂

〉
∂Ω.

STEP 1: Weak form {
(((∂t αααq ,vq)))Ω = (((gradep,vq)))Ω,
(∂t αp,vp)Ω = (diveq ,vp)Ω,

where vq and vp are sufficiently smooth test functions.
STEP 2: Green’s formula with ep|∂Ω = u∂

(((∂t αααq ,vq)))Ω =−(ep,divvq)Ω +
〈
u∂,vq ·n

〉
∂Ω,

(∂t αp,vp)Ω = (diveq ,vp)Ω,〈
y∂,v∂

〉
∂Ω =

〈
eq ·n,v∂

〉
∂Ω.

(2)
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Open-Loop Discretization 2/5 - Approximation families

Finite-dimensional basis families:

Vq := span{~ϕϕϕi
q}1≤i≤Nq , Vp := span{ϕk

p}1≤k≤Np and V∂ := span{ψm
∂
}1≤m≤N∂

.

Approached solutions:

αααq(t,x)≈Σ
Nq
i=1α

i
q(t)~ϕϕϕi

q(x) = ~ΦΦΦ
>
q ·αq , eq(t,x)≈Σ

Nq
i=1ei

q(t)~ϕϕϕi
q(x) = ~ΦΦΦ

>
q ·eq ,

Port-Hamiltonian system in the approximation basis:
Σ

Nq
i=1

(
~ϕϕϕi

q ,~ϕϕϕ
j
q
)

Ω

d
dt

α
i
q =−Σ

Np
k=1

(
ϕ

k
p ,div~ϕϕϕj

q
)

Ωek
p + ΣN∂

m=1

〈
ψ

m
∂
,~ϕϕϕj

q ·n
〉

∂Ωum
∂
, j = 1, ...,Nq

Σ
Np
k=1

(
ϕ

k
p ,ϕ

`
p
)

Ω

d
dt

α
k
p = Σ

Nq
i=1

(
div~ϕϕϕi

q ,ϕ
`
p
)

Ωei
q , ` = 1, ...,Np

ΣN∂

m=1

〈
ψ

m
∂
,ψn

∂

〉
∂Ωym

∂
= Σ

Nq
i=1

〈
~ϕϕϕi

q ·n,ψn
∂

〉
∂Ωei

q , n = 1, ..,N∂
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Nq
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dt
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ϕ

k
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k
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p
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α
k
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p
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∂
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Open-Loop Discretization 3/5 - Interconnection structure

Matrix form: 
Mq

d
dt

αq = D ep + Bu∂

Mp
d
dt

αp =−D> eq

M∂y
∂

= B>eq

where, (
Mq
)

ij =
(
~ϕϕϕj

q ,~ϕϕϕ
i
q
)

Ω, Mq =
∫

Ω
~ΦΦΦq ·~ΦΦΦ

>
q ∈ RNq×Nq ,(

Mp
)

k` =
(
ϕ`

p,ϕ
k
p
)

Ω, Mp =
∫

Ω Φp ·~ΦΦΦ
>
q ∈ RNp×Np ,(

D
)

jk = −
(
ϕk

p ,div~ϕϕϕj
q
)

Ω, D =−
∫

Ω div~ΦΦΦq ·Φ>p ∈ RNq×Np ,(
B
)

jm =
(
ψm

∂
,~ϕϕϕj

q ·n
)

∂Ω, B =
∫

∂Ω
~ΦΦΦq ·n ·Ψ>∂ ∈ RNq×N∂ ,(

M∂

)
mn =

(
ψn

∂
,ψm

∂

)
∂Ω, M∂ =

∫
∂Ω Ψ∂ ·Ψ>∂ ∈ RN∂×N∂ .

The underlying Stokes-Dirac structure is preserved as a Dirac structure: [Egger et al., 2018]

e>q Mq
d
dt

αq + e>p Mp
d
dt

αp = y>
∂

M∂ u∂

Proof: eq
> (D ep + B u∂) + ep

> (−D> eq) = eq
>B u∂ = y>

∂
M∂ u∂
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Open-Loop Discretization 4/5 - Constitutive relations

Constitutive equations:

eq = T αααq

Testing over vq
=⇒ (((eq ,vq)))Ω = (((T αααq ,vq)))Ω

Using Vq
=⇒

[∫
Ω

~ΦΦΦq ·~ΦΦΦ
>
q

]
︸ ︷︷ ︸

Mq

eq =
[∫

Ω

~ΦΦΦq ·T ~ΦΦΦ
>
q

]
︸ ︷︷ ︸

MT

αq

ep = 1
ρ

αααq
similarly
=⇒

[∫
Ω

Φp ·Φ>p
]

︸ ︷︷ ︸
Mp

ep =
[∫

Ω
Φp ·

1
ρ

Φ>p

]
︸ ︷︷ ︸

M 1
ρ

αq

Mq eq = M
T

αq , Mpep = M 1
ρ

αp

Port-Hamiltonian Differential-Algebraic Equation (PHDAE): [Beattie et al., 2018]

(PHDAE)



[
Mq 0
0 Mp

]
d
dt

[
αq
αp

]
=

[
0 D
−D> 0

][
eq
ep

]
+

[
B
0

]
u∂,[

Mq 0
0 Mp

][
eq
ep

]
=

[
M

T
0

0 M 1
ρ

][
αq
αp

]
M∂y

∂
= B> eq .
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Open-Loop Discretization 5/5 - Discrete Hamiltonian

Discrete Hamiltonian:

Hd (t) := H
(
ααα

d
q (t),αd

p (t)
)

=
1
2

∫
Ω

ααα
d
q ·T ·αααd

q + α
d
p

1
ρ

α
d
p

=
1
2

αq
>
[∫

Ω

~ΦΦΦq ·T · ~ΦΦΦ
>
q

]
︸ ︷︷ ︸

MT

αq +
1
2

αp
>
[∫

Ω
Φp ·

1
ρ

Φ>p

]
︸ ︷︷ ︸

M 1
ρ

αp

=
1
2

αq
>M

T
αq +

1
2

αp
>M 1

ρ

αp

Discrete power balance:

d
dt

Hd (t) = αq
>M

T

d
dt

αq + αp
>M 1

ρ

d
dt

αp

(constitutive relations) = eq
>Mq

d
dt

αq + ep
>Mp

d
dt

αp

(Dirac structure) = y>
∂

M∂ u∂

:=
〈
u∂,y∂

〉
∂
,
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Discrete Hamiltonian:

Hd (t) := H
(
ααα

d
q (t),αd

p (t)
)

=
1
2

∫
Ω

ααα
d
q ·T ·αααd

q + α
d
p

1
ρ

α
d
p

=
1
2

αq
>
[∫

Ω

~ΦΦΦq ·T · ~ΦΦΦ
>
q

]
︸ ︷︷ ︸

MT

αq +
1
2

αp
>
[∫

Ω
Φp ·

1
ρ

Φ>p

]
︸ ︷︷ ︸

M 1
ρ

αp

=
1
2

αq
>M

T
αq +

1
2

αp
>M 1

ρ

αp

Discrete power balance:

d
dt

Hd (t) = αq
>M

T

d
dt

αq + αp
>M 1

ρ

d
dt

αp

(constitutive relations) = eq
>Mq

d
dt

αq + ep
>Mp

d
dt

αp
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Closed-Loop

Next step: Close the loop (IBC)

Z eq ·n + ep
∣∣
∂Ω = 0

in/out-put
=⇒ u∂ = −Zy∂

similarly
=⇒

[∫
∂Ω

Ψ∂ ·Ψ>∂
]

︸ ︷︷ ︸
M∂

u∂ = −
[∫

∂Ω
Ψ∂ ·Z Ψ>

∂

]
︸ ︷︷ ︸

Mz

y
∂
,

{
M∂u∂ =−Mzy

∂

M∂y
∂

= B> eq

=⇒ u∂ =−M−1
∂

Mz M−1
∂

B> eq

Substitution of the control term in the system: Dissipative system: Matrix Rd appears !![
Mq 0
0 Mp

]
︸ ︷︷ ︸

Md

d
dt

[
αq
αp

]
=

([
0 D
−D> 0

]
︸ ︷︷ ︸

Jd

−
[

Rz 0
0 0

]
︸ ︷︷ ︸

Rd

)[
eq
ep

]
,

d
dt

Hd (t) =
〈
u∂,y∂

〉
∂

=−y
∂

>Mzy
∂
≤ 0.
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Mesh and finite elements

Ω = (0,Lx )× (0,Ly ), Lx = 2, Ly = 1

Vq := RT0, Vp := P1 and V∂ := tr(P1).

Nq := 1998, Np := 699 and N∂ := 96.
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Spectral Analysis 1/3

Spectrum: Generalized eigenvalue problem

(Jd − Rd )Qd v = λMd v

λ = β + iω

• z = 0 =⇒ λ = iω (Dirichlet BC), corresponds to J skew-adjoint.
• z = ∞≈ 108 =⇒ λ = iω (Neumann BC), corresponds to J skew-adjoint.
• z = 0.1 =⇒ λ = β + iω (IBC), corresponds to J not skew-adjoint, β < 0.
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Spectral Analysis 2/3

Spectrum
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Spectral Analysis 3/3

Decay rate

λn = λn(Z), −max
λn 6=0

βn
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Simulation

Space parameters:

• ρ(x) = x2 (2− x) + 1

• T (x ,y) =

[
x2 + 1 y

y x + 1

]
• Z

∣∣
Γ1∩Γ3

= 1, Z
∣∣
Γ2∩Γ4

= 0.5

Time integration:

• Crank-Nicolson

• tf = 5

• ∆t = 10−3
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Simulation
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Convergence - Errors with known analytical solution

Absolute error of energy variables: sup0≤t≤tf ‖ααα(t)−αααexact(t)‖H
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Conclusion and perspectives

Conclusion

• Structure preserving discretization of the wave equation with boundary damping.

• In continuous model, the dissipation was hidden in the domain of the operator.

• At discrete level, the dissipation appeared explicitly in a matrix Rd thanks to PFEM.
Rd is with low rank, since it accounts for boundary damping.

• Simulation of different examples: Anistropic & Heterogeneous.

• Numerical evidence of convergence.

Perspectives

• Finite element convergence analysis and error estimation [Serhani et al., 2019a] .

• Structure-preserving discretization of heat problem (PHDAE) [Serhani et al., 2019b] ,

[Serhani et al., 2019c] .

• Structure-preserving model reduction.

• Coupled problems from thermoelasticity.

• Discretization of acoustically time-varying impedance [Monteghetti et al., 2018] .
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THANK YOU !
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Different representations

Infinite-dimensional Hamiltonian system:

∂t

[
αααq
αp

]
=

[
0 grad

div 0

][
eq
ep

]
, eq = T αααq , ep =

1
ρ

αp

Energy representation:

∂t

[
αααq
αp

]
=

[
0 grad

div 0

][
T 0
0 1

ρ

][
αααq
αp

]
,

Co-energy representation:

∂t

[
T
−1

0
0 ρ

][
eq
ep

]
=

[
0 grad

div 0

][
eq
ep

]

DISCRETE Energy representation:[
Mq 0
0 Mp

]
d
dt

[
αq
αp

]
=

[
0 D
−D> 0

][
QT 0
0 Qρ

][
αq
αp

]
,
[

QT 0
0 Qρ

]
=
[

Mq 0
0 Mp

]−1[MT 0
0 Mρ

]
DISCRETE Co-energy representation:[

M
T

0
0 Mρ

]
d
dt

[
eq
ep

]
=

[
0 D
−D> 0

][
eq
ep

]
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1
ρ

αp

Energy representation:

∂t

[
αααq
αp

]
=

[
0 grad

div 0

][
T 0
0 1

ρ

][
αααq
αp

]
,

Co-energy representation:

∂t

[
T
−1

0
0 ρ

][
eq
ep

]
=

[
0 grad

div 0

][
eq
ep

]

DISCRETE Energy representation:[
Mq 0
0 Mp

]
d
dt

[
αq
αp

]
=

[
0 D
−D> 0

][
QT 0
0 Qρ

][
αq
αp

]
,
[

QT 0
0 Qρ

]
=
[

Mq 0
0 Mp

]−1[MT 0
0 Mρ

]
DISCRETE Co-energy representation:[

M
T

0
0 Mρ

]
d
dt

[
eq
ep

]
=

[
0 D
−D> 0

][
eq
ep

]
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Finite element families optimal choice

Following [Serhani et al., 2019] ,

Vq×Vp×V∂ = RTk (Ω)×Pl (Ω)×Pm(∂Ω)

Hamiltonian error estimation ∣∣H −Hd
∣∣= o(hs)

Energy variables error estimation ∥∥ααα−αααd
∥∥

H = o(hr )
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Model reduction: Structure-preserving Proper Orthogonal Decomposition (POD) reduction

Figure: SVD on snapshots of the energy and co-energy variables

Chaturantabut, S., Beattie, C., and Gugercin, S. (2016). Structure-preserving model reduction for nonlinear
Port-Hamiltonian systems. SIAM Journal on Scientific Computing, 38(5), B837–B865
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Model reduction: Structure-preserving Proper Orthogonal Decomposition (POD) reduction

Figure: Spectrum, tolerance ε = 10−4

Chaturantabut, S., Beattie, C., and Gugercin, S. (2016). Structure-preserving model reduction for nonlinear
Port-Hamiltonian systems. SIAM Journal on Scientific Computing, 38(5), B837–B865
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Model reduction: Structure-preserving Proper Orthogonal Decomposition (POD) reduction

Figure: Hamiltonian, tolerance ε = 10−4

Chaturantabut, S., Beattie, C., and Gugercin, S. (2016). Structure-preserving model reduction for nonlinear
Port-Hamiltonian systems. SIAM Journal on Scientific Computing, 38(5), B837–B865
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Weighted scalar product & discrete Hamiltonian

New scalar products: 〈
v1,v2

〉
q := v>1 Mq v2, v1,v2 ∈ RNq ,〈

v1,v2
〉

p := v>1 Mp v2, v1,v2 ∈ RNp ,〈
v1,v2

〉
∂

:= v>1 M∂ v2, v1,v2 ∈ RN∂ ,

QT ,Qρ

sym
≥ 0. Also y∂ is exactly the conjugated output of u∂ with respect to

〈
·, ·
〉

∂
.

Discrete Hamiltonian:

Hd (t) :=
1
2

∫
Ω

ααα
d
q ·T ·αααd

q + α
d
p

1
ρ

α
d
p

=
1
2

〈
αq ,QT αq

〉
q +

1
2

〈
αp,Qρ αp

〉
p.

Discrete power balance:

d
dt

Hd (t) = y>
∂

M∂u∂ :=
〈
u∂,y∂

〉
∂
,
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