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Overview

@ Linear model: 2D Wave Equation

@ Structure Preserving Discretization
@ Literature
@ FVM - Natural Flux
@ FVM - Leapfrog Flux
@ Simulations

e Non-linear model: 2D irrotational Shallow Water Equations (iSWE)

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3“’. 2018 Valparaiso 2/20



@ Linear model: 2D Wave Equation

o F = = DA
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Linear wave equation

2D wave
Consider the linear wave equation on the two-dimensional domain = (0, /) x (0, /),

2
p(x)aa?u(x, t) = div (T(x)Vu(x7 t))

where p(x) and 7(x) are the mass density and Young’s modulus.

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3“’, 2018 Valparaiso 4/20



Linear wave equation

2D wave
Consider the linear wave equation on the two-dimensional domain = (0, /) x (0, /),

2
p(x,y) E?tz u(x,y,t) = J (T(x Y) u(x y,t)) J (T(X y) u(x,y7 t)) (1)

where p(x.y) and T(x.y) are the mass density and Young's modulus.
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Linear wave equation

2D wave equation
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o F = = DA
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Linear wave equation

Associated Hamiltonian
2D wave equation
1 0 \2 0
92 d d d J }[Zé/ﬂp(a_tU) +T(
Part = (T34 + o (TW")
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Linear wave equation

2D wave equation
92 0 o] e) o)
Paed= 3 (T34 + 3 (75,9)
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strain: q' = a%u, GF= %u and momentum: p = p%u
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Linear wave equation

. P) 0 J
2D wave equation H;/Q;(&)ji)z—k T(@(;’)ZJrT(ayu)z
R 9, 9\, 9, 2 ’ M b

pﬁu_&(T&u)+$(T$u)

strain: q' = a%u, GF= %u and momentum: p = p%u

The wave equation can be written as follows
1

3 q’ 0 0 O[T 0 0][q
5 @#|l=|0 0 9|0 T 0]|g (1)
p 9 9, 0|0 O % o
f: flow J==7* e: effort

@)
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Linear wave equation

. o)

2D v:ave equation H:%/Q%(pa u)2+ T(a—L,)Z_pT(a u)z
3 3, 0 o (.0 1 2

pﬁu:aix(Taixu)—i_w(Twu) P q q

strain: g = a%u, o = %u and momentum: p = p%u

The wave equation can be written as follows
1

919 0 0 o7 0 0o]Tqg
35 @#|l=|0 0 9|0 T 0]|g (1)
p 9 9, 0|0 O % o
f: flow J==7* e: effort
By the flow-effort notation we get the port-Hamiltonian system,
f=JYe
pHs f ()
(pts) (ea ) related to the trace tr(e)
)

@)
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Linear wave equation

. o)

2D v:ave equation }[:%/Q%(pa u)2+ T(a—L,)Z_pT(a U)z
3 3, 0 o (.0 1 2

pﬁu:aix(Taixu)—i_w(Twu) P q q

strain: g = a%u, o = %u and momentum: p = p%u

The wave equation can be written as follows
1

919 0 0 o7 0 0o]Tqg
&q2:ooay0Toq2 (1)
p 9 9, 0|0 O % o
f: flow J==7* e: effort
By the flow-effort notation we get the port-Hamiltonian system,
f=JYe
pHs f ()
(pts) <;>related to the trace tr(e)
)
The power balance is
H = / el f 3
g 500 (3)

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3“’, 2018 Valparaiso 4/20



Linear wave equation

. o)

2D v:ave equation }[:%/Q%(pa u)2+ T(a—L,)Z_pT(a U)z
3 3, 0 o (.0 1 2

pﬁu:aix(Taixu)—i_w(Twu) P q q

strain: g = a%u, o = %u and momentum: p = p%u

The wave equation can be written as follows
1

919 0 0 o7 0 0o]Tqg
&qZZOOByOTOqQ 1)
p 9 9, 0|0 O % o
f: flow J==7* e: effort
By the flow-effort notation we get the port-Hamiltonian system,
f=JYe
pHs f ()
(pts) <;>related to the trace tr(e)
)
The power balance is
JH:/ elfy:= €, 6H)y, 3
8 CRAE ®3)
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° Structure Preserving Discretization
@ Literature
@ FVM - Natural Flux
@ FVM - Leapfrog Flux
@ Simulations
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Discretization Methods

Finite Element / Galerkin Approachs
e Mixed finite element method [Golo et al., 2004]
e Pseudo spectral finite element method [Moulla et al., 2012]
e Finite element formulation for Maxwell’s equations [Farle et al., 2013]
e Mixed Galerkin discretization [Kotyczka et al., 2018]
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Discrete methods based on the Geometry of the system
e Explicit simplicial discretization [Seslija et al., 2014]
e Finite volume method (FVM) [Kotyczka, 2016]
o Finite difference method (FDM) [Trenchant et al., 2017]
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Discretization Methods

Finite Element / Galerkin Approachs
o Mixed finite element method [Golo et al., 2004]
e Pseudo spectral finite element method [Moulla et al., 2012]
o Finite element formulation for Maxwell’s equations [Farle et al., 2013]
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Discrete methods based on the Geometry of the system
e Explicit simplicial discretization [Seslija et al., 2014]
o | Finite volume method (FVM) [Kotyczka, 2016] |
o Finite difference method (FDM) [Trenchant et al., 2017]
e Discretization based on primal-dual complex [Kotyczka and Maschke, 2017]

The method proposed in [Kotyczka, 2016] for 1D port-Hamiltonian system is extended to 2D
pHs.
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@ Linear model: 2D Wave Equation

° Structure Preserving Discretization

@ FVM - Natural Flux

e Non-linear model: 2D irrotational Shallow Water Equations (iISWE)
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Finite volume discretization

o F = = DA
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Finite volume discretization

For simplicity we set p —= 7 — 1

o F = = DA
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Finite volume discretization

For simplicity we setp —= 7 — 1

o | 0 0 x| [o
Y Q2 0 0 9y |g
Jy 0 0 )
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Finite volume discretization

For simplicity we setp = 7 — 1

5 [a o 0 ] fa], . JIat axdy = [f 2
a ®| = 0 0 ay ® |nei>orm ffqdedy ff
pl [9x 9y O] |p JJ b axdy =[] 2 aXq dxdy + [J 37 dxdy
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Finite volume discretization

For simplicity we setp = 7 — 1

T o o alfa], . ffq dxdy = [f 2 ng dxdy
s l®l =10 0 9 |a| " /4P iy = ff PdXdy
% 9 0f|p b dxdy = [[ 2 axq dxay + [ 57,6 dxdy

q}:(xji%,xj %) (Vi—1.1)
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X/_M}’I \L X]+17yl
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Xi_1,Y1-1 Xip15YI—1
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Finite volume discretization

For simplicity we set p = 7 — 1

5 [ 0 0 oy y JIé q dxdy = [f agpdxdy
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Finite volume discretization

For simplicity we set p = 7 — 1
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Finite volume discretization - Natural Flux

. 0
// g’ dxdy:// —p dxdy
G Gl 9x

o F = = DA
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Finite volume discretization - Natural Flux

VX
Jlatss=[" ("5
G Vi1 Mx

. <P dx) dy

o F = = DA
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Finite volume discretization - Natural Flux

Vi Y
1
q dxdy:/ p(x; 1,y)dy—/ p(X;_1,y)dy
//q} Vi1 Itz Vi1 I~z

o F = = DA
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Finite volume discretization - Natural Flux
1
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Finite volume discretization - Natural Flux

1 / 4 dxdy_ii/y’ p(X11/2.y)dy Li/y’ p(x%_1/0.)dy
ININ Dx Ay )y SOV A Dy )y, PR

P P
¢'/71 2,1 ¢/4 2
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Finite volume discretization - Natural Flux
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Finite volume discretization - Natural Flux

1 / 4 dxdy_ii/y’ p(X11/2.y)dy Li/y’ p(x%_1/0.)dy
ININ Dx Ay )y SOV A Dy )y, PR

P P
¢'/71 2,1 cD/fW 2

G
X/‘_%my/ /\‘ X/’+%7yl
Xomoooo oo >
|
|
|
|
|
P
l k2
|
|
|
|
|
Y
Xi_1,Y1-1 Xip15YI—1

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3“’, 2018 Valparaiso 9/20



Finite volume discretization - Natural Flux
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Finite volume discretization - Natural Flux
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Finite volume discretization - Natural Flux

1 / 4 dxdy_ii/y’ p(X11/2.y)dy Li/y’ p(x%_1/0.)dy
ININ Dx Ay )y SOV A Dy )y, PR

P

7

P2 j—1/2,1

J

Q= ﬁAyﬂ.C,? q' dxdy
Q= ﬁj.’/‘(ﬁ q? dxdy
By = ﬁﬂcﬂap dxdy
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Finite volume discretization - Natural Flux

1 / 4 dxdy_ii/y’ p(X11/2.y)dy Li/y’ p(x%_1/0.)dy
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¢/v1 212 By
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Finite volume discretization - Natural Flux
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Finite volume discretization - Natural Flux
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Finite volume discretization - Natural Flux

1 /“'1dxd_ii/y/ (X )d Li/” (X )d
AxAy C;}q y = Ax Ay y/,1p j+1/2:Y)aY Ax Ay pr i—1/2,¥)ay
q)/‘/yw 2. CD,;/YW 2,
G
X/‘_%my/ /\‘ X/’+%7.yl

Q= ﬁAyﬂ)C,? q' dxdy
Q= ﬁj.’/‘(ﬁ q? dxdy
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P ~ P,
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Xj_%ay/—‘l X/‘J,_%ay/—1
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Finite volume discretization - Natural Flux

1 /“'1dxd_ii/y/ (X )d Li/” (X )d
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Finite volume discretization - Natural Flux

1 /“'1dxd_ii/y/ (X )d Li/” (X )d
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Xj_%ay/—‘l X/‘J,_%ay/—1
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Finite volume discretization - Natural Flux

1 /] .4 axd —ii/y' (X1 /20y —— 1/” p(X_1/2:¥)d
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Natural Flux - matrix form

o F = = DA
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Natural Flux - matrix form

Q' 0 0 DifQ Q!
Q?l =1 o o D@2 +{° 9} ng,
P —o] -b7 o || 9 9™,
L ~ <
Fd J=—ud £d ! &
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2] [o o] %2
(P, | — |91 G 7|
—— N——
Fd oT S——
9 91 £d
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Natural Flux - matrix form

Q"7 T o 0o D] [qQ Q!

azl=1 o o B Q2 +{° 9} &l
P —o] -b7 o || 9 9™,

L7l L ~ d

Fd Ja=—ud Ed 1 Ej

- . - 1
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(P, | — |91 G 7|

Fd a7
)
where,

Dy € RN XMy fy e RN —1) <Ny 0 c RIN=DNy g c RNy 2Ny 5 e RMNyx2Ne g e RMy =2

-4 0 - 0 1 0 - 0
Aq
1] o .
Dy =— By =—
T Ax . ’ T Ay
. 0 Ay
0 0 —1 0 0 1
—In, O -1 0
11 _ B
1 0 ~ 1 0
A = = — s = — , B=
1 s a1 Ax 91 Ay
-1 1 0 B 0
0 Iy, 0 1
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@ Linear model: 2D Wave Equation

° Structure Preserving Discretization

@ FVM - Leapfrog Flux

e Non-linear model: 2D irrotational Shallow Water Equations (iISWE)
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Finite volume discretization - Leapfrog Flux

1 / '1dxd—ii/yl (X )d Li/” (X )d (4)
AxAy C;}q y = Ax Ay y/,1p ]+1/27y y Ax Ay y/,1p /71/27}/ y
q)/‘/yw 2,/ q)/’w 2,1
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Finite volume discretization - Leapfrog Flux

! / g dxdy—ii/y/p(x y)dy LL/YIP(X y)dy (@)
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Finite volume discretization - Leapfrog Flux

! / g dxdy—ii/y/p(x y)dy LL/YIP(X y)dy (@)
AxAy ) Ax Ay Jy, | /20 Ax Ay Jy, | i=1/2

P

7

j—1/2,1

>

j+1/2.0

3
r cells C}'—H—H

Xj+%7y/71

d)/'.ljr1 o RO (B Brpr—1,) | P (vt,e, V) = Xy @n,r Vi [Fornberg and Ghrist, 1999]

®)
Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3rd’ 2018 Valparaiso 12/20



Finite volume discretization - Leapfrog Flux

! / g dxdy—ii/y/p(x y)dy LL/YIP(X y)dy (@)
AxAy ) Ax Ay Jy, | /20 Ax Ay Jy, | i=1/2

P

P
q>; 1/2,0

>

j+1/2.0

3
r cells C}'—H—H

Xj+%7y/71
d)/'.ljr1 o RO (B Brpr—1,) | P (vt,e, V) = Xy @n,r Vi [Fornberg and Ghrist, 1999]
T 1 ¢
Q= 2 (OBt Brrd) = OBy Borins) ) = 1 ¥ @ (Bvns = Bonins) )
X X p=1
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Leapfrog flux - matrix form |
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P _pT _PBT o P gr Or dy
r r _;—/
Fd JI=—f £ 5 &
1
;
Tax _ 0 9 %2
Tay 9 g P ’
—— ————
Fd g7
d r Ed
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Leapfrog flux - matrix form |

d
FB

Discrete energy balance

In a compact form

1
7] o o] Q2
2)=ls 3] |2
—— N —r

Q' 0 o D][qQ o
Q@l=]0o o b||lQ +[° 9} &l
P ol -Bf of|2| O g™
SN—— d

Fd Ja=—J¢ E¢ o Ef

. _1d 192 22 2\ _ T A1 T A2
%'_EE(HQ” +IQIF+ 2|l )—TaanX"’fPay%y

d\T =d d\T =d
(F) E°=(Fy) Ej
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Leapfrog flux - matrix form Il

Dy e RN 1Ny xNeNy 5y o N (Ny—1)xNxNy o g(Ny =Ny o o pNxNyx2Ny g o pNyxNy 5 o gNxNyx2Nx o pNyx2

—ay 0 0 a ar.r
Ar
Dr—i —arr - - - - ars ,b(:Aiy 5
Ar
—arr _51.1, 0 0 51.11,
—atr arr ar,r —by
5 o :
Br Cr
—ar.r —81.,, 31. r °

where by = X1_ a, ;. and fip(B) := (Br.....By)
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Leapfrog flux - matrix form Il

Dy e RN 1Ny xNeNy 5y o N (Ny—1)xNxNy o g(Ny =Ny o o pNxNyx2Ny g o pNyxNy 5 o gNxNyx2Nx o pNyx2

—ar o 0 a.r ar,r
Ar
1 ~ 1
o= Ax —anr ar,r e Ky '
Ar
—a,r ar ar,r —by
8, cr
= —ar,r arr ,grzi[ios '"F’?B)]’B: 'B":bn,Ny’QI:ALY o= 75’
Br Cr .
—arr —31.,, 31.‘1 ° 51

where by =Y!__a, ;. and flip(8) := (Br,....By) .
i=n@r,i 1

© We can reach higher accuracy without increasing the size of the matrices,
but only by making it less sparse by increasing r.
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Leapfrog flux - matrix form Il

Dr ER(NX—UN}/XNXN}/‘ Br ERNX(Ny—UXNxNy_ Ar ER(N}’71)NY, ar GJRNXNyXZNy, Bn eRNyXN}’, r < RNxNy x2Nx | cr crNy*2,

e, 0 0 a, o e
Ar
1 ~ 1
Dr=-—— ,br=—
" Ax —arr ar,r ’ Ay
Ar
—arr —ayr 0 0 31’,r
—ar A arr —by 0
By Cr
_ ) . _ 1 [-B 0 |- _ Lo 1 _ | —br 0
Ar= o 5 - s ,gr—E[o ﬂip(s)]'B* : +Bn=bnly, Gr= 7 o=y N
Br Cr . .
—arr —at,r 51.‘! ° o
where by = Y1_ a ;. and fip(B) := (Br....By) .
© We can reach higher accuracy without increasing the size of the matrices,
but only by making it less sparse by increasing r.
© Any change of the order r requires the recomputation of all the coefficient ap .



@ Linear model: 2D Wave Equation

° Structure Preserving Discretization

@ Simulations

e Non-linear model: 2D irrotational Shallow Water Equations (iISWE)

o = T 9Dacx
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Simulations results and analysis

The 2D Wave Equation as PHS simulated by S-P FVM (2" order) and Symp Integration (2" order)
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Simulations results and analysis

40

35

30

Continuous Time - Discrete Space

The exact angular frequencies of the
continuous operator J compared to the
eigenvalues of discrete operator J,d with
different values of r.

Angular frenquencies

10
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Simulations results and analysis

40

35

w
8

Continuous Time - Discrete Space

~
0

The exact angular frequencies of the
continuous operator J compared to the
eigenvalues of discrete operator J,d with
different values of r.

~
S

Angular frenquencies
-
5

"
S

1072
107 Discrete Time - Discrete Space
10 Relative error of discrete Hamiltonian, of three
5 198 different time integration schemes:
;mw e Symplectic:
- Symplectic Euler (order 1)
19712 Stormer-Verlet (order 2)
1074 e Non-symplectic:
i symp Euler Stormer -V 1sim .
mrlﬁe 1 2 3 4 5 Isim -~

time
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e Non-linear model: 2D irrotational Shallow Water Equations (iISWE)

o F = = DA
Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018



What about iSWE ?

o F = = DA
Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018



What about iSWE ?

5 v (hu) =0,
au

2
- h) =
at+grad(2||u|| +gh) =0,

o F = = DA
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What about iSWE ?

h H —
3 Tdv (hu) =0,
e +grad (1||u||2 +gh) =0
ot 2 ’

g:=h and p:=pu=p<u

X
Uy
1 1
9(q.p) = /Q (5 alpl? + p g c?) axay
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What about iSWE ?

Uy
h =h and =pu=
%—i—div(hu):o, 7 PP p(”y>
o !l 4+ gn) = H(q,p) = 1/ (1 qllpl® + png) dx dy
5; Torad (5llull*+gh) =0, P)=35 o\
! 0 —dx -0y [e
2l=[-0x 0 0 e?
I —-J, 0 0 &l
N—— N——
aq,p dqpH
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What about iSWE ?

u
oh '=h and p:=pu= X
5 Hdiv (hu) =0, 7 Prmpa=p (Uy>
1l LT H(q |r>)=1 (1q|\|f>||2 i png) dxdy
§+grad(§||u|| +gh) =0, g 2Ja\p
f1 0 —BX —By 61 Same meth.
rl=[-9x o0 0 |l =
Il -9, 0 0 ) r=1
—— ——
aq,p dqpH
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What about iSWE ?

g:=h and p::puzp(Ux>
uy

oh
5, Hdiv (hu) =0, 1 1
au 1 _ 2 2
§+grad(§||u|\2+gh) =0, H(q,p) = 5/9 (5 allel®+pgq ) dxdy
F} o -p] -D]\ (E} 0 0\,
Fél=|Dy 0O 0 EZ |+ ( = ) Eg,
f1 0 _ax —ay 91 Same meth. Fg b1 0 0 ES 91 (]
Pl=(-9x o0 0 el = .
1 -9, 0 0 ) r=t 5 0o o\’ Eg
N—— N—— Fd = (91 Q1> Ed s
9,8 SqpH ES
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What about iSWE ?

oh
— +div(hu) =0
at +div ( ) )
ou 1, 5
— rad (—|ju h) =0,
5; T9rad (5 [lul*+gn)
f1 0 —BX —ay e1 Same meth.
2| =1 —-ox 0 0 e? -
3 —dy 0 0 el r=1
—— ——
qp SqpH

Continuous power balance:
(F,E)2 = (Fa,Ea)a

1 1
H(q,p) = 5/9 (5 qllpl® + png) dx dy

g:=h and p::pu:p(5;>

(

5
7
7

-2
o

0

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018

-bf -bl\ (g 0
0 0 EZ |+ (
o o J\g) ¥

1

0 ) T Eg

- E5l,

91 Eg

Discretized power balance:

FiE] = (F9)E]
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What about iSWE ?

oh
ot
du

ot

+div (hu) =0,

1
+grad (§||u|\2 +gh) =0,

0 0 € ==

3 *ay 0 0 e r=1
—— ——
o o

Continuous power balance:
(F,E)2 = (Fa,Ea)a

e Why not taking r > 2 ??

g:=h and p::pu:p(u">
uy

1 1
H(q,p) = 5/9 (5 qllpl® + png) dx dy

F} o -b] -DI\ [(E}
2 2 0
Fl=(o o 0 E2 |+
f1 0 —BX —ay e1 Same meth. F3 b 0 0 E3 g1
2 > d 1 d
f = ——ax
3

7 [E}

(0 0) (£
a7 \gr G E‘é ’

d

Discretized power balance:

FiE] = (F9)E]
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What about iSWE ?

u;
oh g:=h and p::pu:p(">
— +div(hu) =0 u
at + ( ) ) 1 1 Yy
Jdu 1 _ v T 2 2
5+grac|(§||u|\2+gh) =0, H(q,p) = 2/9 (p allel®+pgq ) dxdy
Fy o -b] -Db]\ (E o o
FPl=[b o 0 E3 |+ ( - ) EY,
f1 0 —dy —ay e\ same meth. Fg 51 0 0 Eg 91 91
l=[-9x 0 0 f| = )
8 -9y 0 0 ) r=t (0 0 T Eg
P i=\e @) \H)
q.p BSqpH Eq
Continuous power balance: Discretized power balance:
(F.E)2 = (Fo, By FiEq = (F3)TES

e Why not taking r > 2 ?? © Needs a resolution of Riemann problem at each space step.
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What about iSWE ?

u
oh '=h and p:=pu= X
5, Hdiv (hu) =0, q pi=pu=p (uy>
au 1 _1 1 2 2
5+grac|(§||u|\2+gh) =0, H(q,p) = 5/9 (5 allel®+pgq ) dxdy
F} o -b] -DI\ [(E}

; ; F2| = by 0 0 £ +(o 9),:_37
f 0 —BX —ay e Same meth. F3 51 0 0 E3 91 91
Pl=(-3 0o o | = a d
I -9, 0 0 &

1
r=1 o 0 0 T Eg
— — a7 \g G Eqg -
a.p SqpH

g
Ey
Continuous power balance:

Discretized power balance:
(F,E)2 = (Fa,Ea)a

FiE] = (F9)E]

e Why not taking r > 2 ?? © Needs a resolution of Riemann problem at each space step.
e Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]
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What about iSWE ?

u
oh '=h and p:=pu= X
5, Hdiv (hu) =0, q pi=pu=p (uy>
au 1 _1 1 2 2
5+grac|(§||u|\2+gh) =0, H(q,p) = 5/9 (5 allel®+pgq ) dxdy
F} o -b] -DI\ [(E}

; ; F2| = by 0 0 £ +(o 9),:_37
f 0 —BX —ay e Same meth. F3 51 0 0 E3 91 91
Pl=(-3 0o o | = a d
I -9, 0 0 &

1
r=1 o 0 0 T Eg
" a7 \gr G Eq |
a.p SqpH

g
Ey
Continuous power balance:

Discretized power balance:
(F,E)2 = (Fa,Ea)a

FiE] = (F9)E]

e Why not taking r > 2 ?? © Needs a resolution of Riemann problem at each space step.

e Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]
© Hamiltonian is non-separable
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What about iSWE ?

u;
oh g:=h and p::pu:p(’(>
— +div(hu) =0 u
Bt + ( ) ) 1 1 Yy
Jdu 1 _ v T 2 2
§+grad(§||u|\2+gh) =0, H(q,p) = 2/9 (p allel®+pgq ) dxdy
Fy o -b] -Db]\ (E o o
FPl=[b o 0 E3 |+ ( - ) EY,
f1 0 —dy —ay e\ same meth. Fg 51 0 0 Eg 91 91
l=[-9x 0 0 el = o
Il —a 0 0 e3 r=1 T (Eq
A ]
q.p BSqpH £
Continuous power balance: Discretized power balance:
(F.E)2 = (Fo, By FiEq = (F3)TES

e Why not taking r > 2 ?? © Needs a resolution of Riemann problem at each space step.
e Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]
© Hamiltonian is non-separable = Implicit Scheme (Inversion of the system)
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What about iSWE ?

u
oh g:=h and p::pu:p(’(>
— +div(hu) =0 u
ot it () ’ ly
Jdu 1 _1 1 2 2
= -+grad (- ||u|[>+gh) =0, H(q,p) = 5/9 (5 qlpll® + pgg°) dxdy
ot 2
F o -of -D]\ [E}
FPl=[b o 0 ES +(° P)Ea,
f1 0 —BX —ay e1 Same meth. F3 51 0 0 E3 91 91
rl=(-3 o 0 | = a . d
I —a 0 0 el r=1 T [Eyq
S RN !
q.p BSqpH £
Continuous power balance: Discretized power balance:
(F.E)2 = (Fo, By FiEq = (F3)TES

e Why not taking r > 2 ?? © Needs a resolution of Riemann problem at each space step.
e Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]

© Hamiltonian is non-separable = Implicit Scheme (Inversion of the system)
© Hamiltonian is non-quadratic
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What about iSWE ?

u;
oh g:=h and p::pu:p(’(>
— +div(hu) =0 u
ot it () ’ ly
Jdu 1 _1 1 2 2
= +grad (5 ||ul®+gh) =0, H(ap)=3 |, (5 9lPI* + o) axay
ot 2
F o -of -D]\ [E}
FPl=[b o 0 ES +(° P)Ea,
f1 0 —dy —ay e\ same meth. Fg 51 0 0 Eg 91 91
l=[-9x 0 0 el = )
8 -9y 0 0 ) r=t (0 0 T Eg
5o o &) \H)
q.p BSqpH Eq
Continuous power balance: Discretized power balance:
(F.E)2 = (Fo, By FiEq = (F3)TES

e Why not taking r > 2 ?? © Needs a resolution of Riemann problem at each space step.
e Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]

© Hamiltonian is non-separable = Implicit Scheme (Inversion of the system)
© Hamiltonian is non-quadratic = Non-linear Inversion
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PDE simulated by PHS

e Following the causality that we choose for the port-Hamiltonian system, which is

1 9

q |aQX><Q ) BXU’aQXxQ Homogenous Neummann N

eai=< 2| =1 e 7] =0 Vu-iifyq =0
971, xeQ, ay Y Q,x09, -

e To be well-posed, we need to add some initial data.

Full PDE
82
S u(x,y.0) = Au(x., ) inQx [0, 7],
Vu(x,y,t)-1q o= 0, on dQ x [0, T],
U(X,y70):U0(X7y) inQX{O}7
%u(x,y,o) =0 in Qx {0},

e up(x,y) is a function satisfying Vuo - 1j|,, = 0.

o Simple example we set ug(x,y) = cos ( 2™ x ) cos ( 2™ ) for arbitrary values of nand m.
p p Iy I,
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