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Linear wave equation

2D wave

Consider the linear wave equation on the two-dimensional domain Ω = (0, lx )× (0, ly ),

ρ(x)
∂2

∂t2 u(x, t) = div
(

T (x)∇u(x, t)
)

where ρ(x) and T (x) are the mass density and Young’s modulus.

2D wave equation

ρ
∂2

∂t2 u =
∂

∂x

(
T

∂

∂x
u
)

+
∂

∂y

(
T

∂

∂y
u
) H =

1
2

∫
Ω

1
ρ

(
ρ

∂

∂t
u︸ ︷︷ ︸

p

)2
+ T

(
∂

∂x
u︸︷︷︸

q1

)2
+ T

(
∂

∂y
u︸︷︷︸

q2

)2

strain: q1 = ∂

∂x u, q2 = ∂

∂y u and momentum: p = ρ
∂

∂t u

The wave equation can be written as follows

∂

∂t

q1

q2

p


︸ ︷︷ ︸

f : flow

=

 0 0 ∂x
0 0 ∂y
∂x ∂y 0


︸ ︷︷ ︸

J =−J ∗

T 0 0
0 T 0
0 0 1

ρ

q1

q2

p


︸ ︷︷ ︸

e: effort

(1)

By the flow-effort notation we get the port-Hamiltonian system,

(pHs)


f = J e(

f∂
e∂

)
related to the trace tr(e)

(2)

The power balance is

Ḣ =
∫

∂Ω
eT

∂
f∂ := 〈e∂, f∂〉∂,

(3)
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By the flow-effort notation we get the port-Hamiltonian system,

(pHs)


f = J e(

f∂
e∂

)
related to the trace tr(e)

(3)

The power balance is

Ḣ =
∫

∂Ω
eT

∂
f∂ := 〈e∂, f∂〉∂,

(4)
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Ḣ =
∫

∂Ω
eT

∂
f∂

:= 〈e∂, f∂〉∂,

(3)

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3rd, 2018 Valparaíso 4 / 20



Linear wave equation

2D wave equation

ρ
∂2

∂t2 u =
∂

∂x

(
T

∂

∂x
u
)

+
∂

∂y

(
T

∂

∂y
u
) H =

1
2

∫
Ω

1
ρ

(
ρ

∂

∂t
u︸ ︷︷ ︸

p

)2
+ T

(
∂

∂x
u︸︷︷︸

q1

)2
+ T

(
∂

∂y
u︸︷︷︸

q2

)2

strain: q1 = ∂

∂x u, q2 = ∂

∂y u and momentum: p = ρ
∂

∂t u

The wave equation can be written as follows

∂

∂t

q1

q2

p


︸ ︷︷ ︸

f : flow

=

 0 0 ∂x
0 0 ∂y
∂x ∂y 0


︸ ︷︷ ︸

J =−J ∗

T 0 0
0 T 0
0 0 1

ρ

q1

q2

p


︸ ︷︷ ︸

e: effort

(1)

By the flow-effort notation we get the port-Hamiltonian system,

(pHs)


f = J e(

f∂
e∂

)
related to the trace tr(e)

(2)

The power balance is
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Discretization Methods

Finite Element / Galerkin Approachs

• Mixed finite element method [Golo et al., 2004]

• Pseudo spectral finite element method [Moulla et al., 2012]

• Finite element formulation for Maxwell’s equations [Farle et al., 2013]

• Mixed Galerkin discretization [Kotyczka et al., 2018]

Discrete methods based on the Geometry of the system

• Explicit simplicial discretization [Seslija et al., 2014]

• Finite difference method (FDM) [Trenchant et al., 2017]

• Discretization based on primal-dual complex [Kotyczka and Maschke, 2017]

The method proposed in [Kotyczka, 2016] for 1D port-Hamiltonian system is extended to 2D
pHs.
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Finite volume discretization

For simplicity we set ρ = T = 1

∂

∂t

q1
q2
p

=

 0 0 ∂x
0 0 ∂y
∂x ∂y 0

q1
q2
p

 integral form

=⇒

∫∫
q̇1 dxdy =

∫∫
∂

∂x p dxdy∫∫
q̇2 dxdy =

∫∫
∂

∂y p dxdy∫∫
ṗ dxdy =

∫∫
∂

∂x q1 dxdy +
∫∫

∂

∂y q2 dxdy

•xj−1,yl−1

•xj−1,yl •
xj ,yl

•
xj ,yl−1

C 3
jl −→

×xj− 1
2
,yl−1

×xj+ 1
2
,yl−1

×
xj+ 1

2
,yl

×
xj− 1

2
,yl

C 1
jl
↓

4xj−1,yl− 1
2 4xj ,yl− 1

2

4
xj ,yl+ 1

24
xj−1,yl+ 1

2

C 2
jl −→

C 1
jl =

(
xj− 1

2
,xj+ 1

2

)
×
(
yl−1,yl

)
C 2

jl =
(
xj−1,xj

)
×
(
yl− 1

2
,yl+ 1

2

)
C 3

jl =
(
xj−1,xj

)
×
(
yl−1,yl

)
∫∫

C 1
jl

q̇1 dxdy =
∫∫

C 1
jl

∂

∂x
p dxdy

∫∫
C 2

jl

q̇2 dxdy =
∫∫

C 2
jl

∂

∂y
p dxdy

∫∫
C 3

jl

ṗ dxdy =
∫∫

C 3
jl

∂

∂x
q1 dxdy +

∫∫
C 3

jl

∂

∂y
q2 dxdy
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Finite volume discretization - Natural Flux
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Finite volume discretization - Natural Flux
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Finite volume discretization - Natural Flux
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and Ṗjl = 1

∆x

(
Q 1

j+1,l −Q 1
j,l

)
+ 1

∆y

(
Q 2

j,l+1−Q 2
j,l

)

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3rd, 2018 Valparaíso 9 / 20



Finite volume discretization - Natural Flux

1
∆x∆y

∫∫
C 1

jl

q̇1 dxdy =
1

∆x
1

∆y

∫ yl

yl−1

p
(
xj+1/2,y

)
dy︸ ︷︷ ︸

ΦP
j+1/2,l

− 1
∆x

1
∆y

∫ yl

yl−1

p
(
xj−1/2,y

)
dy︸ ︷︷ ︸

ΦP
j−1/2,l

C 3
j−1,l
↗
↘

•

• •

•

↖
↙C 3

jl

×xj+ 1
2
,yl−1

×xj− 1
2
,yl−1

×
xj− 1

2
,yl

×
xj+ 1

2
,yl

C 1
jl

↙↘

ΦP
j+1/2,lΦP

j−1/2,l

•

••

•

Q 1
jl := 1

∆x∆y

∫∫
C 1

jl
q1 dxdy

Q 2
jl := 1

∆x∆y

∫∫
C 2

jl
q2 dxdy

Pjl := 1
∆x∆y

∫∫
C 3

jl
p dxdy

ΦP
j+1/2,l ≈ Pjl

ΦP
j−1/2,l ≈ Pj−1,l

Q̇ 1
jl =

1
∆x

(
Pj,l −Pj−1,l

)
.

Similarly we get Q̇ 2
jl = 1

∆y

(
Pj,l −Pj,l−1

)
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Natural Flux - matrix form



Q̇ 1

Q̇ 2

Ṗ


︸ ︷︷ ︸

Fd

=

 0 0 D1

0 0 D̃1

−DT
1 −D̃T

1 0


︸ ︷︷ ︸

Jd
1 =−Jd

1

Q 1

Q 2

P


︸ ︷︷ ︸

Ed

+

[
0 0
g1 g̃1

]
︸ ︷︷ ︸

gd
1

[
Q1

∂x
Q2

∂y

]
︸ ︷︷ ︸

Ed
∂

,

[
P∂x
P∂y

]
︸ ︷︷ ︸

Fd
∂

=

[
0 0
g1 g̃1

]T

︸ ︷︷ ︸
gd

1
T

Q 1

Q 2

P


︸ ︷︷ ︸

Ed

,

where,

D1 ∈ R(Nx−1)Ny×Nx Ny , D̃ ∈ RNx (Ny−1)×Nx Ny , A1 ∈ R(Ny−1)Ny , g1 ∈ RNx Ny×2Ny , g̃1 ∈ RNx Ny×2Nx , B ∈ RNy×2,

D1 =
1

∆x


−1 0 · · · 0 1 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0
0 · · · 0 −1 0 · · · 0 1

 , D̃1 =
1

∆y

A1

. . .
A1



A1 =

−1 1
. . .

. . .
−1 1

 , g1 =
1

∆x


−INy 0

0
...

... 0
0 INy

 , g̃1 =
1

∆y

B
. . .

B

 , B=



−1 0

0
...

... 0
0 1


.
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1 Linear model: 2D Wave Equation

2 Structure Preserving Discretization
Literature
FVM - Natural Flux
FVM - Leapfrog Flux
Simulations

3 Non-linear model: 2D irrotational Shallow Water Equations (iSWE)
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Finite volume discretization - Leapfrog Flux

1
∆x∆y

∫∫
C 1

jl

q̇1 dxdy =
1

∆x
1

∆y

∫ yl

yl−1

p
(
xj+1/2,y

)
dy︸ ︷︷ ︸

ΦP
j+1/2,l

− 1
∆x

1
∆y

∫ yl

yl−1

p
(
xj−1/2,y

)
dy︸ ︷︷ ︸

ΦP
j−1/2,l

(4)

•

• •

•

←− C 3
jl

r cellsC 3
jl C 3

j+r−1,l

×xj+ 1
2
,yl−1

×

× ×
xj+ 1

2
,yl

C 1
jl
↓

ΦP
j+1/2,l

ΦP
j+1/2,l ≈Φ (Pj,l , ...,Pj+r−1,l ) Φ : (v1, ...,vr ) 7→ ∑

r
n=1 an,r vn [Fornberg and Ghrist, 1999]

Q̇ 1
jl =

1
∆x

(
Φ
(
Pj+1,l , ...,Pj+r ,l

)
−Φ

(
Pj,l , ...,Pj−r+1,l

))
=

1
∆x

r

∑
n=1

an,r

(
Pj+n,l −Pj−n+1,l

)

(5)
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Leapfrog flux - matrix form I



Q̇ 1

Q̇ 2

Ṗ


︸ ︷︷ ︸

F d

=

 0 0 Dr

0 0 D̃r

−DT
r −D̃T

r 0


︸ ︷︷ ︸

Jd
r =−Jd

r

Q 1

Q 2

P


︸ ︷︷ ︸

Ed

+

[
0 0
gr g̃r

]
︸ ︷︷ ︸

gd
r

[
Q1

∂x

Q2
∂y

]
︸ ︷︷ ︸

Ed
∂

,

[
P∂x

P∂y

]
︸ ︷︷ ︸

F d
∂

=

[
0 0
gr g̃r

]T

︸ ︷︷ ︸
gd

r
T

Q 1

Q 2

P


︸ ︷︷ ︸

Ed

,

Discrete energy balance

Ḣd :=
1
2

d
dt

(
‖Q 1‖2 +‖Q 2‖2 +‖P‖2

)
= P T

∂x
Q 1

∂x
+ P T

∂y
Q 2

∂y

In a compact form
(F d )T Ed = (F d

∂
)T Ed

∂
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Ḣd :=
1
2

d
dt

(
‖Q 1‖2 +‖Q 2‖2 +‖P‖2

)
= P T

∂x
Q 1

∂x
+ P T

∂y
Q 2

∂y

In a compact form
(F d )T Ed = (F d

∂
)T Ed

∂

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3rd, 2018 Valparaíso 13 / 20



Leapfrog flux - matrix form II

Dr ∈ R(Nx−1)Ny×Nx Ny , D̃r ∈ RNx (Ny−1)×Nx Ny , Ar ∈ R(Ny−1)Ny , gr ∈ RNx Ny×2Ny , Bn ∈ RNy×Ny , g̃r ∈ RNx Ny×2Nx , Cr ∈ RNy×2 ,

Dr =
1

∆x



−a1,r 0 · · · 0 a1,r · · · ar ,r

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−ar ,r

.
.
.

.
.
.

.
.
.

.
.
. ar ,r

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.
−ar ,r · · · −a1,r 0 · · · 0 a1,r


, D̃r =

1
∆y


Ar

.
.
.

Ar

 ,

Ar =



−a1,r a1,r · · · ar ,r

.

.

.

.
.
.

.
.
.

.
.
.

−ar ,r

.
.
.

.
.
. ar ,r

.
.
.

.
.
.

.
.
.

.

.

.
−ar ,r · · · −a1,r a1,r


, gr =

1
∆x

[
−B 0
0 flip(B)

]
, B =


B1
.
.
.

Br

 , Bn = bn INy , g̃r =
1

∆y


Cr

.
.
.

Cr

 , Cr =



−b1 0

.

.

.

.

.

.
−br 0

0 br

.

.

.

.

.

.
0 b1


,

where bn = ∑
r
i=n ar ,i . and flip(B) :=

(
Br , ...,B1

)T .

© We can reach higher accuracy without increasing the size of the matrices,
but only by making it less sparse by increasing r .

§ Any change of the order r requires the recomputation of all the coefficient an,r .
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§ Any change of the order r requires the recomputation of all the coefficient an,r .
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1 Linear model: 2D Wave Equation

2 Structure Preserving Discretization
Literature
FVM - Natural Flux
FVM - Leapfrog Flux
Simulations

3 Non-linear model: 2D irrotational Shallow Water Equations (iSWE)
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Simulations results and analysis

The 2D Wave Equation as PHS simulated by S-P FVM (2nd order) and Symp Integration (2nd order)

Continuous Time - Discrete Space

The exact angular frequencies of the
continuous operator J compared to the
eigenvalues of discrete operator Jd

r with
different values of r .

Discrete Time - Discrete Space

Relative error of discrete Hamiltonian, of three
different time integration schemes:
• Symplectic:

I Symplectic Euler (order 1)
I Stormer-Verlet (order 2)

• Non-symplectic:
I lsim
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What about iSWE ?


∂h
∂t

+ div
(
hu
)

= 0,

∂u
∂t

+ grad
(1

2
‖u‖2 + gh

)
= 0,

q := h and p := ρu = ρ

(
ux
uy

)
H (q,p) =

1
2

∫
Ω

( 1
ρ

q ‖p‖2 + ρ g q2
)

dx dy

f 1

f 2

f 3


︸ ︷︷ ︸

q̇,ṗ

=

(
0 −∂x −∂y
−∂x 0 0
−∂y 0 0

)e1

e2

e3


︸ ︷︷ ︸
δq,pH

Same meth.

=⇒
r =1



F 1
d

F 2
d

F 3
d

=

 0 −DT
1 −D̃T

1
D1 0 0
D̃1 0 0

E1
d

E2
d

E3
d

+

(
0 0
g1 g̃1

)
E∂

d ,

F ∂
d =

(
0 0
g1 g̃1

)T
E1

d
E2

d
E3

d

 ,

• Why not taking r ≥ 2 ?? § Needs a resolution of Riemann problem at each space step.
• Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]

§ Hamiltonian is non-separable =⇒ Implicit Scheme (Inversion of the system)
§ Hamiltonian is non-quadratic =⇒ Non-linear Inversion
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=

(
0 −∂x −∂y
−∂x 0 0
−∂y 0 0

)e1

e2

e3


︸ ︷︷ ︸
δq,pH

Same meth.

=⇒
r =1



F 1
d

F 2
d

F 3
d

=

 0 −DT
1 −D̃T

1
D1 0 0
D̃1 0 0

E1
d

E2
d

E3
d

+

(
0 0
g1 g̃1

)
E∂

d ,

F ∂
d =

(
0 0
g1 g̃1

)T
E1

d
E2

d
E3

d

 ,

• Why not taking r ≥ 2 ?? § Needs a resolution of Riemann problem at each space step.
• Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]

§ Hamiltonian is non-separable =⇒ Implicit Scheme (Inversion of the system)
§ Hamiltonian is non-quadratic =⇒ Non-linear Inversion

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3rd, 2018 Valparaíso 18 / 20



What about iSWE ?


∂h
∂t

+ div
(
hu
)

= 0,

∂u
∂t

+ grad
(1

2
‖u‖2 + gh

)
= 0,

q := h and p := ρu = ρ

(
ux
uy

)
H (q,p) =

1
2

∫
Ω

( 1
ρ

q ‖p‖2 + ρ g q2
)

dx dy

f 1

f 2

f 3


︸ ︷︷ ︸

q̇,ṗ

=

(
0 −∂x −∂y
−∂x 0 0
−∂y 0 0

)e1

e2

e3


︸ ︷︷ ︸
δq,pH

Same meth.

=⇒
r =1



F 1
d

F 2
d

F 3
d

=

 0 −DT
1 −D̃T

1
D1 0 0
D̃1 0 0

E1
d

E2
d

E3
d

+

(
0 0
g1 g̃1

)
E∂

d ,

F ∂
d =

(
0 0
g1 g̃1

)T
E1

d
E2

d
E3

d

 ,

• Why not taking r ≥ 2 ?? § Needs a resolution of Riemann problem at each space step.
• Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]

§ Hamiltonian is non-separable =⇒ Implicit Scheme (Inversion of the system)
§ Hamiltonian is non-quadratic =⇒ Non-linear Inversion

Anass Serhani (ISAE-Supaero) LHMNLC Workshop 2018 May 3rd, 2018 Valparaíso 18 / 20



What about iSWE ?


∂h
∂t

+ div
(
hu
)

= 0,

∂u
∂t

+ grad
(1

2
‖u‖2 + gh

)
= 0,

q := h and p := ρu = ρ

(
ux
uy

)
H (q,p) =

1
2

∫
Ω

( 1
ρ

q ‖p‖2 + ρ g q2
)

dx dy

f 1

f 2

f 3


︸ ︷︷ ︸

q̇,ṗ
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)T
E1

d
E2

d
E3

d

 ,

Continuous power balance:

〈F ,E〉L2 = 〈F∂,E∂〉∂

Discretized power balance:

F T
d ET

d = (F ∂
d )T E∂

d

• Why not taking r ≥ 2 ?? § Needs a resolution of Riemann problem at each space step.
• Symplectic integration ?? [Leimkuhler et al., 2004] [Hairer et al., 2002]

§ Hamiltonian is non-separable

=⇒ Implicit Scheme (Inversion of the system)
§ Hamiltonian is non-quadratic =⇒ Non-linear Inversion
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What about iSWE ?
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PDE simulated by PHS

• Following the causality that we choose for the port-Hamiltonian system, which is

e∂ :=

(
q1|∂Ωx×Ωy

q2|Ωx×∂Ωy

)
:=

(
∂

∂x u
∣∣
∂Ωx×Ωy

∂

∂y u
∣∣
Ωx×∂Ωy

)
= 0

Homogenous Neummann

=⇒ ∇u ·~η
∣∣
∂Ω = 0

• To be well-posed, we need to add some initial data.

Full PDE 

∂2

∂t2 u(x ,y , t) = ∆u(x ,y , t) in Ω× [0,T ],

∇u(x ,y , t) ·~η
∣∣∣
∂Ω

= 0, on ∂Ω× [0,T ],

u(x ,y ,0) = u0(x ,y) in Ω×{0},
∂

∂t
u(x ,y ,0) = 0 in Ω×{0},

• u0(x ,y) is a function satisfying ∇u0 ·~η
∣∣
∂Ω = 0.

• Simple example we set u0(x ,y) = cos
(

2nπ

lx
x
)

cos
(

2mπ

ly
y
)

, for arbitrary values of n and m.
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