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Motivation: fractional delay systems in aeroacoustics
Context: Noise regulations ⇒ research into sound absorption.

Modelling of locally-reacting sound absorbing material
Passive LTI system:

p(t, x) = [z ?
t
u · n(·, x)] (t)

with kernel z ∈ D′
+(R)∩S ′

(R).

Perforated plate

Cavity
Rigid plate

Key components of z : (Monteghetti et al. 2016)

ẑ(s) = a0 + a1/2

√
s + aτe

−sτ

⇒ Boundary condition of a PDE on (p, u).
⇒ Spatial discretisation yields fractional delay equation (x ∈ Rn):

M · ẋ(t) + K · x(t) = F1 · d
1/2x(t) + F2 · x(t − τ) .

Objective: use parabolic - hyperbolic realisations to study stability.
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Existing stability results

Time-delay system of retarded type

ẋ(t) = A0x(t) +
∑
i

Aix(t − τi )⇔ Ẋ = AX

• Roots of characteristic equation det∆(λ) = 0⇔ λ ∈ σp(A).
(Michiels and Niculescu 2014, Chap. 1) (Curtain and Zwart 1995, § 2.4)

• Lyapunov-Krasovkii equivalence theorem.
(Fridman 2014, Chap. 3) (Briat 2014, Thm. 5.2.9)

Fractional differential equation
• BIBO & asymptotic stability with commensurate fractional
powers. (Matignon 1996)

Fractional delay differential equation
• BIBO stability with commensurate delays.

(Bonnet and Partington 2002)

• Asymptotic stability with non-commensurate delays.
(Deng, Li and Lü 2007)
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Toy model: Laplace technique
Objective: delay-independent stability of

ẋ(t) = a x(t) + b x(t − τ) − g dαC x(t) for t > τ, α ∈ (0, 1)

x(t) := x0(t) for t ∈ [0, τ ].

Theorem. Toy model stability
Under the following algebraic condition:

<(a) < −|b| ≤ 0 and g ∈ Jα ,

toy model is delay-independent stable.
<(g)

=(g)

0 Jα

g

απ2

Proof (Sketch). Expression of x̂(s) has 5 terms:

x̂(s) =g x0(0) ĥc(s) + g x0(τ) ĥd(s) + x0(τ) ĥe(s)

+ x̂0 ĥa(s) + gL[dαCx
0 1[0,τ ]] ĥb(s) .

1 ĥc,d ,e(s) : final-value theorem.

2 ĥa,b(s) : Callier-Desoer Â(0) class and dominated convergence.
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Toy model: coupled PDEs formulation (1)

ẋ(t) = a x(t) + b x(t − τ) − g dαC x(t) for t > τ, α ∈ (0, 1)

x(t) := x0(t) for t ∈ [0, τ ].

Proposition. Toy model stability
Under the algebraic condition

<(a) < −|b| ≤ 0 and g > 0,

toy model with x0(0) = 0 is delay-independent stable.

Proof. Let Ex := 1
2 |x |

2. Decay rate along trajectories is

Ėx = 2<(a)Ex + <
[
x (b xτ − )

]
, (1)

whose sign is a priori indefinite.
However, energy decay can be proven using suitable realisations.

1 Hyperbolic for xτ (t) : transport equation.
2 Parabolic for Dα

RL x(t) : heat equation.
3 Extended energy E ⇒ sufficient condition for decay.
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ẋ(t) = a x(t) + b x(t − τ) − g dαC x(t) for t > τ, α ∈ (0, 1)

x(t) := x0(t) for t ∈ [0, τ ].

Proposition. Toy model stability
Under the algebraic condition

<(a) < −|b| ≤ 0 and g > 0,

toy model with x0(0) = 0 is delay-independent stable.

Proof. Let Ex := 1
2 |x |

2. Decay rate along trajectories is
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Toy model: coupled PDEs formulation (2)
Hyperbolic realisation z ∈ (0, `) Transport PDE.
(Engel and Nagel 2000, § VI.6) (Curtain and Zwart 1995, § 2.4)

(Michiels and Niculescu 2014, § 2.2)

0 ` := cτ

x(t)

x(t − τ)

z

ψ(t, ·)


∂tψ(t, z) = −c ∂zψ(t, z)

ψ(t, z = 0) := x(t)

x(t − τ) = ψ(t, z = `)

Initial data ψ(t = τ, z) := x0(τ − z/c).

Natural energy: Eψ(t) :=
1
2

ˆ `

0
|ψ(t, z)|2 dz .

Energy balance reflects lossless transport:
d
dt

Eψ(t) = −c
ˆ `

0
<(∂zψ(t, z)ψ(t, z)) dz

= −c

2
[ |ψ(t, z)|2 ]`0

=
c

2

(
|x(t)|2 − |x(t − τ)|2

)
.
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Toy model: coupled PDEs formulation (3)

Parabolic realisation ξ ∈ (0,∞) (Parabolic) ODE.
(Staffans 1994) (Montseny 1998) (Matignon 2009) (Hélie and Matignon 2006a)

∂tϕ(ξ, t) = −ξ ϕ(ξ, t) + u(t), ϕ(ξ, 0) = 0 ,

Dα
RL x(t) =

ˆ ∞
0

µ1−α(ξ) [u(t)− ξ ϕ(ξ, t)] dξ .

Natural energy: Eϕ(t) :=
1
2

ˆ ∞
0

ξ |ϕ(ξ, t)|2 µ1−α(ξ)dξ.

Energy balance (expresses dissipativity of Dα
RL):

d
dt

Eϕ(t) = <(x Dα
RL x )−

ˆ ∞
0
|x − ξ ϕ(ξ, ·)|2 µ1−α(ξ) dξ .

≤ <(x Dα
RL x ).
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Toy model: coupled PDEs formulation (4)

Extended energy Ek := Ex(t) + k Eψ(t) + g Eϕ(t) ,
with k > 0 unknown.
• Parabolic realisation: cross terms g <(x Dα

RLx ) cancel out

• Hyperbolic realisation leads to

Ėk ≤ −XHΣkX

where X := (x , xτ )ᵀ and

Σk := −

(
<(a) + k c

2
b
2

b
2 −k c

2

)
?
> 0.

• Eigenvalues: λ2(k) > λ1(k) = −<(a)+
√

P(k)

2 , with P(k) > 0.
• Least stringent condition:

min
k>0

λ1(k) = −<(a) + |b|
2

for k∗ = −<(a)

c
.

λ1 > 0⇐⇒ <(a) < −|b|
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Vector-valued model
Vector-valued fractional system with delay:

ẋ(t) = Ax(t) + B x(t − τ) − G dαC x(t) for t > τ, α ∈ (0, 1)

x(t) := x0(t) for t ∈ [0, τ ],
with x(t) ∈ Rn.

Theorem. Stability.

Let G be a diagonalisable matrix with eigenvalues (g1, · · · , gn) ≥ 0.
Under the algebraic condition

max
a∈σ(A)

<(a) < −
√

max
b∈σ(BHB)

|b| ≤ 0,

the system with x0(0) = 0 is delay-independent stable.

Proof. Similar in spirit to toy model, with extended energy

E(t) :=
∑

i∈J1,nK

Exi (t) + k Eψi
(t) + gi Eϕi (t) .

12
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Numerical methods for stability: state of the art

Time-delay system of retarded type
• Design an approximate Lyapunov-Krasovkii functional, and
formulate a numerically-tractable LMI.
(Seuret, Gouaisbaut and Ariba 2015) (Baudouin, Seuret and Safi 2016)

• Study of characteristic roots. (Michiels and Niculescu 2014, § 2)

Count unstable roots. (Li, Niculescu and Cela 2015)
Locate unstable roots : eigenvalue approach.
• Spectrum of operator semigroup etA.

DDE-BIFTOOL (Engelborghs, Luzyanina and Roose 2002)
• Spectrum of generator A using hyperbolic realisation.

TRACE-DDE (Breda, Maset and Vermiglio 2005)

Fractional delay differential equation
• YALTA. (Fioravanti et al. 2012) (Avanessoff, Fioravanti and Bonnet 2013)

• Count unstable roots. (Zhang et al. 2016)

⇒ Eigenvalue approach using parabolic - hyperbolic realisation?

14
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Eigenvalue approach to stability: overview

Vector-valued fractional delay system:

ẋ(t) = Ax(t) + B x(t − τ) − G dαC x(t − τα) (τα ≥ 0).

Hyperbolic realisation (PDE)

z ∈ (0, 1)

∂tψh = −τ−1∂zψh

ψh(0) = x

x(t − ·) = ψh(z = 1)

⇒ High-order discretisation

Parabolic realisation (ODE)

ξ ∈ (0,∞)

∂tϕh = −ξϕh + x

dαC x =
∑

k∈J1,NξK

µk ϕh(ξk)

⇒ Quadrature or optimisation

⇒ Cauchy problem on Cn:

Ẋh(t) = Ah Xh(t), with Xh := (x , ψh , ϕh ).

Challenge: ensure σ(Ah) is “meaningful”.

15
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Numerical experiment: spectral structure

Case 1: x(t) ∈ R2, ẋ(t) = A · x(t) + B · x(t − τ)− g I2 · d
1/2
C x(t),

with
max

a∈σ(A)
<(a) < −

√
max

b∈σ(BHB)
|b| ≤ 0 verified.

−0.3 −0.25 −0.2 −0.15 −0.1 −5 · 10−2 0 5 · 10−2
−4
−2
0
2
4

<(λ)

=
(λ

)

σ(A)

Pure delay g = 0 ( ) σ(A) = σp(A) (discrete)

Fractional derivative g 6= 0 ⇒ σc(A) 6= ∅ (essential)
( ) g = +2 > 0 ⇒ stable ( ) g = −2 < 0 ⇒ unstable

What about g ∈ C?
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Numerical experiment: delay-dependent stability

Case 2: Scalar model ẋ(t) = −x(t) + 1
2 x(t − τ)− g d

1/2
C x(t).

For delay-independent stability, g ∈ J1/2 .

<(g)

=(g)

0
J1/2

g
π
4

What about the
delay-dependent stability
region?

0 2 4 6 8 10
3π/4

π

τ

θmax
g (τ, |g |)
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Numerical experiment: composition (exploratory)

Case 3: Scalar model ẋ(t) = −x(t) + 1
2 x(t − τ)− g d

1/2
C x(t − τα ).

−0.3 −0.25 −0.2 −0.15 −0.1 −5 · 10−2 0

−4
−2
0

2

4

<(λ)

=
(λ

)

σ(A)

Effect of delaying the fractional derivative

g = |a|/4.
1 τα = 0 ( ).

2 τα = τ ( ).

g = |a|.
1 τα = 0 ( ).

2 τα = τ ( ).
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Application in acoustics
Computational case Infinite 2D duct.
DG: N = 4. Mesh: NK = 188.
Time-integration: CFL = 0.5. (LSERK (8,4) (Toulorge and Desmet 2012))

ẑ(s, x) =∞ (Rigid Wall)
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DG: N = 4. Mesh: NK = 188.
Time-integration: CFL = 0.5. (LSERK (8,4) (Toulorge and Desmet 2012))

ẑ(s) = a + a
√
s +

a

2
e−sτ (Soft Wall)
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Outline

1 Introduction

2 Coupled PDEs formulation: stability results

3 An eigenvalue approach to stability

4 Conclusion
Conclusion
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Conclusion

Takeaways

• Parabolic - Hyperbolic PDE realisations ⇒ time-local coupled
system (x , ϕ , ψ )

• Natural extended energy E = Ex + Eϕ + k Eψ

⇒ sufficient asymptotic stability condition
⇒ eigenvalue approach to stability

• Application to aeroacoustics

Perspectives

• Multiple delay case
• Semigroup formulation

• Composition: Dα
RLx(t − τ)?

• Theoretical study of
eigenvalue approach

21
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Conclusion

1 Introduction

2 Coupled PDEs formulation: stability results

3 An eigenvalue approach to stability

4 Conclusion

Appendix

Thanks for your attention. Any questions?

(Contact: florian.monteghetti@onera.fr)
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Additional slides

5 Coupled formulation: stability results

6 An eigenvalue approach to stability

Main presentation
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Outline

5 Coupled formulation: stability results
Toy model: Laplace analysis
Vector-valued case
Parabolic realisation and heat equation

6 An eigenvalue approach to stability
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Toy model: Laplace analysis

x̂(s) = (s − a)ĥ(s) x̂0(s)︸ ︷︷ ︸
(a)

+g ĥ(s)L0[dαC x
0 1[0,τ ]](s)︸ ︷︷ ︸

(b)

+ gx0(0) ĥ(s) sα︸ ︷︷ ︸
(c)

+gx0(τ) ĥ(s)sαe−sτ︸ ︷︷ ︸
(d)

+ x0(τ) ĥ(s)e−sτ︸ ︷︷ ︸
(e)

,

where ĥ(s) := (s − a− b exp(−τ s) + g sα)−1. ĥ is defined over C+
β

for β ≥ 0 (cut).
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Toy model: Laplace analysis (2)

ĥ(s) := (s − a− b exp(−τ s) + g sα)−1 is defined over C+
β for β ≥ 0

(cut).
Analyticity? Let s = x + i y = r exp(iθ) with {x ≥ 0 and y ∈ R} or
{r ≥ 0 and |θ| ≤ π

2 }.

<(s − a− be−τs + gsα) = x −<(a)− |b|e−τx cos(τy − θb) + <(gsα)

≥ x −<(a)− |b|+ |g ||s|α

≥ −<(a)− |b|,

using θg ∈ Jα. If <(a) < −|b|, then ĥ analytic in C+
0 .
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Toy model: Laplace analysis (3)

If θg ∈ Jα and <(a) < −|b|,
ĥ(s) := (s − a− b exp(−τ s) + g sα)−1 ∈ Â(0), the Callier-Desoer
class. (Curtain and Zwart 1995, Thm. A.7.49)

• (s − a)−1 ∈ Â(0), since <(a) < 0. It remains to show that ‌

[1− (b exp(−τ s)− g sα)/(s − a)]−1 ∈ Â(0).

We first notice that

f̂ (s) = 1− (b exp(−τ s)− g sα)/(s − a) ∈ Â(0).

Then, it is enough to prove that inf<(s)≥0 |f̂ (s)| > 0 to ensure
that 1/f̂ ∈ Â(0).

• As a consequence, h ∈ A(0), i.e. can be decomposed into

h(t) = ha(t) +
∑
n∈N

hn δ(t − tn) , (2)

with ha ∈ L1(R+) and (hn)n∈N ∈ l1(N); and
0 = t0 < t1 < t2 < · · · .
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Vector-valued case

The energy balance reads

Ė = ẋ · x +
kc

2
[‖x‖2 − ‖x(· − τ)‖2] +

∑
i∈J1,nK

gi Ėϕ̃i
.

G diagonal ⇒ no coupling btw diffusive variables ϕ̃i :
delay/fractional coupling is straightforward.
Since gi ≥ 0, it is sufficient for to prove that

−Σk :=

A + AH

2
+

kc

2
I

1
2
B

1
2
BH −kc

2
I

 < 0,

Let us denote AS = (A+AH)/2 the symmetric part of A. We have for
all x and y in Cn

−Σk

[
x
y

]
·
[
x
y

]
=ASx · x +

kc

2
‖x‖2 +

1
2
By · x +

1
2
BHx · y − kc

2
‖y‖2.

Now, for any ε > 0, from
1
2
By · x +

1
2
BHx · y = < (By · x) ≤ ε

2
‖By‖2 +

1
2ε
‖x‖2,

and
‖By‖2 = BHBy · y ≤ max

b∈σ(BHB)
|b|‖y‖2,

we can choose k∗ = kε = εmax
b∈σ(BHB)

|b|/c > 0 to get

−Σk

[
x
y

]
·
[
x
y

]
≤
(

max
a∈σ(A)

<(a) +
kεc

2
+

1
2ε

)
‖x‖2.

Taking the least stringent value of ε > 0, we derive

max
a∈σ(A)

<(a) +
√

max
b∈σ(BHB)

|b| < 0

as a delay-independent stability sufficient condition.
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Vector-valued case (2)

Now, for any ε > 0, from

1
2
By · x +

1
2
BHx · y = < (By · x) ≤ ε

2
‖By‖2 +

1
2ε
‖x‖2,

and
‖By‖2 = BHBy · y ≤ max

b∈σ(BHB)
|b|‖y‖2,

we can choose k∗ = kε = εmax
b∈σ(BHB)

|b|/c > 0 to get

−Σk

[
x
y

]
·
[
x
y

]
≤
(

max
a∈σ(A)

<(a) +
kεc

2
+

1
2ε

)
‖x‖2.

Taking the least stringent value of ε > 0, we derive

max
a∈σ(A)

<(a) +
√

max
b∈σ(BHB)

|b| < 0

as a delay-independent stability sufficient condition.
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Long-memory impedance: link with heat equation

Monodimensional heat equation
(Matignon and Zwart in revision, Ex. 3.2){

∂tθ(t, x) = ∂2xθ(t, x) + u(t) δ0(x) (x ∈ R, t > 0)

y(t) = 4 θ(t, x = 0).

Take the Fourier and Laplace transform

θ̂(s, k) :=

ˆ ∞
0

ˆ
R
θ(t, x) e−ikxe−st dx dt (<[s] > 0, k ∈ R)

to get

θ̂(s, k) =
1

s + k2
û(s) ,

hence

ŷ(s) = 4× 1
2π

ˆ
R
θ̂(s, k) dk =

(ˆ
R

1
s + k2

2dk
π

)
︸ ︷︷ ︸

=1/
√

s

û(s) .
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Outline

5 Coupled formulation: stability results

6 An eigenvalue approach to stability
Discretisation of parabolic realisation
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Discretisation of parabolic representation

Discretisation problem (Laplace domain):

∀<(s) > 0, ĥ(s) =

ˆ ∞
0

1
s + ξ

dµ(ξ) '
∑

k∈J1,NξK

µk
1

s + ξk
= ĥnum(s).

Challenges:

• Parsimonious approximation

• Spectral accuracy (no spurious instabilities)

• Monotone convergence for Nξ →∞
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Discretisation of parabolic representation (2)
Discretisation problem (Laplace domain):

∀<(s) > 0, ĥ(s) =

ˆ ∞
0

1
s + ξ

dµ(ξ) '
∑

k∈J1,NξK

µk
1

s + ξk
= ĥnum(s).

Methods:

• Interpolation (Heleschewitz 2000)

• Optimisation (Hélie and Matignon 2006b, SP).

J(ξ,µ) =

ˆ ωmax

ωmin

|ĥ(iω)− ĥnum(iω)|2 w(ω) dω.

Parameters: ξmin, ξmax, Nξ and ωmin, ωmax and w .

⇒ Quadrature (analytical expressions for µk and ξk).
ˆ ∞

0
µα(ξ)ϕ(ξ, t) dξ =

ˆ 1

0
µα(Φ(v))ϕ(Φ(v), t) Φ

′
(v) dv ,

with Φ(v) := v2(1− v)−2 for regularity at ξ = 0, see (Shampine 2008,
S 4.2). Then Gauss-Legendre quadrature rule.
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