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Motivation: fractional delay systems in aeroacc

Context: Noise regulations = research into sound absorption.

Modelling of locally-reacting sound absorbing material

Passive LTI system:
assive system Perforated plate —

p(t,x) = [zxu-n(;,x)](t)

with kernel z € D/, (R)NS'(R).
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Motivation: fractional delay systems in aeroac

Context: Noise regulations = research into sound absorption.

Modelling of locally-reacting sound absorbing material

Passive LTI system:
assive system Perforated plate /

pt,x) = [z - (] (2)
3 "” !\l‘“

with kernel z € D/, (R)NS'(R). Rigid plate

Key components of z: (Monteghetti et al. 2016)
2(s) = ap + ap\/s + a;e

= Boundary condition of a PDE on (p, u).
= Spatial discretisation yields fractional delay equation (x € R"):

M-x(t)+ K -x(t) = Fy - d2x(t) + F2- x(t—7).

Objective: use parabolic- hyperbolic realisations to study stability.
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Theory: Stability Results

Existing stability results

Time-delay system of retarded type
X(t) = Aox(t) + > Aix(t — 1) & X = AX

1
e Roots of characteristic equation det A(A) =0 < X € g,(A).
(Michiels and Niculescu 2014, Chap. 1) (Curtain and Zwart 1995, § 2.4)
e Lyapunov-Krasovkii equivalence theorem.
(Fridman 2014, Chap. 3) (Briat 2014, Thm. 5.2.9)
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Existing stability results

Time-delay system of retarded type
X(t) = Aox(t) + > Aix(t — 1) & X = AX

1
e Roots of characteristic equation det A(A) =0 < X € g,(A).
(Michiels and Niculescu 2014, Chap. 1) (Curtain and Zwart 1995, § 2.4)
e Lyapunov-Krasovkii equivalence theorem.
(Fridman 2014, Chap. 3) (Briat 2014, Thm. 5.2.9)
Fractional differential equation
e BIBO & asymptotic stability with commensurate fractional
powers. (Matignon 1996)
Fractional delay differential equation
e BIBO stability with commensurate delays.
(Bonnet and Partington 2002)
e Asymptotic stability with non-commensurate delays.
(Deng, Li and Lii 2007)
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Toy model: Laplace technique
Objective: delay-independent stability of

x(t)=ax(t)+ bx(t—7) —g d¢x(t) fort>r71, ac(0,1)
x(t) = x%(t) for t €0,7].

Theorem. Toy model stability

Under the following algebraic condition:

R(a) < —|b| <0 and gec@@D

toy model is delay-independent stable.
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Toy model: Laplace technique
Objective: delay-independent stability of

x(t)=ax(t)+ bx(t—7) —g d¢x(t) fort>r71, ac(0,1)
x(t) = x%(t) for t €0,7].

Theorem. Toy model stability

Under the following algebraic condition:

R(a) < —|b| <0 and gec@@D

toy model is delay-independent stable.

Proof (Sketch). Expression of X(s) has 5 terms:
%(s) =g x°(0) he(s) + g x°(7) hy(s) +x°(7) he(s)
30 ha(s) + gL[dEx L] B(s).
ﬁc’d,e(s) . final-value theorem.

Bayb(s): Callier-Desoer A(0) class and dominated convergence.
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Toy model: coupled PDEs formulation (1)

x(t)=ax(t)+bx(t—7) —g dgx(t) fort>r1, aec(0,1)
x(t) = x%(t) for t €[0,7].

Proposition. Toy model stability

Under the algebraic condition
R(a) < —|b| <0 and g >0,

toy model with x°(0) = 0 is delay-independent stable.
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Toy model: coupled PDEs formulation (1)

x(t)=ax(t)+bx(t—7) —g dgx(t) fort>r1, aec(0,1)
x(t) = x%(t) for t €[0,7].

Proposition. Toy model stability

Under the algebraic condition
R(a) < —|b| <0 and g >0,

toy model with x°(0) = 0 is delay-independent stable.

Proof. Let E, := % |x|?. Decay rate along trajectories is
Ex =2R(a) Ex + R| X (bx, —g[Dg x —x°(0)/e=])|, (1)

whose sign is a priori indefinite.

However, energy decay can be proven using suitable realisations.
@ Hyperbolic for x-(t): transport equation.
@® Parabolic for Dg| x(t): heat equation.
© Extended energy £ = sufficient condition for decay.



Theory: Stability Results
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Toy model: coupled PDEs formulation (2)

Hyperbolic realisation z € (0,¢) Transport PDE.
(Engel and Nagel 2000, § VI1.6) (Curtain and Zwart 1995, § 2.4)
(Michiels and Niculescu 2014, § 2.2)

¥(t, ) Oep(t, z) = —c 0:9(t, 2)
x(t—1) W(t,z =0) = x(t)
x(t)(,) g— z x(t—7) =¢(t,z=10)

Initial data ¢(t = 7, z) := xO(7 — /).
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Toy model: coupled PDEs formulation (2)

Hyperbolic realisation z € (0,¢) Transport PDE.
(Engel and Nagel 2000, § VI1.6) (Curtain and Zwart 1995, § 2.4)
(Michiels and Niculescu 2014, § 2.2)

Q;Z)(ta ) at¢(tvz) = —Caﬂﬁ(ta Z)
x(t—7) P(t,z =0) = x(t)
x(t) ¢ ; z x(t—7) =¢(t,z=10)
0 {:=cT
Initial data ¢(t = 7,2) := XO(T — /).
Natural energy: / |(t z)]zdz
Energy baIance reflects lossless transport:
S, :—c/mzwz U(t.2)) dz
=73 [W(taz)\ 1o

=2 (IR - Ix(e=7)R).
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Toy model: coupled PDEs formulation (3)

Parabolic realisation § € (0,00) (Parabolic) ODE.
(Staffans 1994) (Montseny 1998) (Matignon 2009) (Hélie and Matignon 2006a)

8t90(’£a t) = _5 (P(gv t) + u(t)a 90(57 0) = 0,
DE, x(t) = /0 1o (€) [u(t) — € p(&, )] de

10
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Toy model: coupled PDEs formulation (3)

Parabolic realisation £ € (0,00) (Parabolic) ODE.
(Staffans 1994) (Montseny 1998) (Matignon 2009) (Hélie and Matignon 2006a)

8t90(£a t) = _5 (P(gv t) + u(t)a 90(57 O) = 0,
DE, x(t) = /0 1o (€) [u(t) — € p(&, )] de

1 o0
Natural energy:  E,(t) := 5 /o Elp(&, t)[? p1_a(€)dE.
Energy balance (expresses dissipativity of Dg; ):

d o
GEAD = REDRX) — [ e ple )P moale)de.

f; 3%(5? [)El X').

10
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Toy model: coupled PDEs formulation (4)

Extended energy & := E(t) + k Ey(t) +g Eo(t) ,
with k > 0 unknown.
e Parabolic realisation: cross terms g (X Dg| x ) cancel out

11
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[elelelel ]

Toy model: coupled PDEs formulation (4)

Extended energy & := E(t) + k Ey(t) +g Eo(t) ,
with k > 0 unknown.
e Parabolic realisation: cross terms g (X Dg| x ) cancel out

e Hyperbolic realisation leads to
& < —XxXMEx

where X := (x, x;)T and

R kS 2 ?
Zk:z—( (a);— 2 i£>>0.
2

Nl
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Toy model: coupled PDEs formulation (4)

Extended energy & := E(t) + k Ey(t) +g Eo(t) ,
with k > 0 unknown.
e Parabolic realisation: cross terms g (X Dg| x ) cancel out

e Hyperbolic realisation leads to
& < —XxXMEx

where X := (x, x;)T and

Tip=— ( §R(a):|— k% g ) ;0.

b
2 —k3
e Eigenvalues: \a(k) > A\i(k) = —w, with P(k) > 0.
e Least stringent condition:
min A1 (k) = _R(a) +[b] for k* = _&a)'
k>0 2 c

A1 > 0 <= R(a) < —|b|
11
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Vector-valued model

Vector-valued fractional system with delay:
x(t) = Ax(t) + Bx(t —7) — Gd¢x(t) fort>r7, a€c(0,1)

x(t) == x%(t) for t €0,7],
with x(t) € R".

Theorem. Stability.

Let G be a diagonalisable matrix with eigenvalues (g1, --- ,g,) > 0.
Under the algebraic condition

max R(a) < — |/ max |b| <0,
aco(A) beo(BHB)

the system with x°(0) = 0 is delay-independent stable.

Proof. Similar in spirit to toy model, with extended energy

E(t):= Y Eq(t)+k Ey(t) + & Exlt).
i€[1,n] 12
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© An eigenvalue approach to stability
@ State of the art
@ Eigenvalue approach to stability

13



Numerics: Eigenvalue Approach to Stability

Numerical methods for stability: state of th

Time-delay system of retarded type

e Design an approximate Lyapunov-Krasovkii functional, and
formulate a numerically-tractable LMI.
(Seuret, Gouaisbaut and Ariba 2015) (Baudouin, Seuret and Safi 2016)
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°

Numerical methods for stability: state of the

Time-delay system of retarded type
e Design an approximate Lyapunov-Krasovkii functional, and

formulate a numerically-tractable LMI.
(Seuret, Gouaisbaut and Ariba 2015) (Baudouin, Seuret and Safi 2016)

e Study of characteristic roots. (Michiels and Niculescu 2014, § 2)

m Count unstable roots. (Li, Niculescu and Cela 2015)

m Locate unstable roots : eigenvalue approach.

e Spectrum of operator semigroup e'**.

DDE-BIFTOOL (Engelborghs, Luzyanina and Roose 2002)
e Spectrum of generator A using hyperbolic realisation.
TRACE-DDE (Breda, Maset and Vermiglio 2005)
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Numerical methods for stability: state of the

Time-delay system of retarded type

e Design an approximate Lyapunov-Krasovkii functional, and
formulate a numerically-tractable LMI.
(Seuret, Gouaisbaut and Ariba 2015) (Baudouin, Seuret and Safi 2016)

e Study of characteristic roots. (Michiels and Niculescu 2014, § 2)

m Count unstable roots. (Li, Niculescu and Cela 2015)
m Locate unstable roots : eigenvalue approach.

e Spectrum of operator semigroup e'**.

DDE-BIFTOOL (Engelborghs, Luzyanina and Roose 2002)
e Spectrum of generator A using hyperbolic realisation.
TRACE-DDE (Breda, Maset and Vermiglio 2005)

Fractional delay differential equation
e YALTA. (Fioravanti et al. 2012) (Avanessoff, Fioravanti and Bonnet 2013)
e Count unstable roots. (Zhang et al. 2016)
= Eigenvalue approach using parabolic- hyperbolic realisation?
14
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Eigenvalue approach to stability: overview

Vector-valued fractional delay system:

x(t) = Ax(t) + B x(t — 1) — G d2x(t —7a) (1o > 0).

Hyperbolic realisation (PDE) Parabolic realisation (ODE)

z€(0,1) ¢ € (0,00)
| Awm=—r0n || Oeph = —Epn+x
¥n(0) = x dex =k on(ék)
x(t—-) =vYn(z =1) ke[1,Ne]
= High-order discretisation = Quadrature or optimisation

15
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®0000

Eigenvalue approach to stability: overview

Vector-valued fractional delay system:

x(t) = Ax(t) + B x(t — 1) — G d2x(t —7a) (1o > 0).

Hyperbolic realisation (PDE) Parabolic realisation (ODE)

z€(0,1) ¢ € (0,00)
| Awm=—r0n || Oeph = —Epn+x
¥n(0) = x dex =k on(ék)
x(t—-) =vYn(z =1) ke[1,Ne]
= High-order discretisation = Quadrature or optimisation

= Cauchy problem on C":
Xp(t) = An Xp(t), with X, = (x, ¥n, @n).

Challenge: ensure o(Ap) is “meaningful”.
15



Numerics: Eigenvalue Approach to Stability
0®000

Numerical experiment: spectral structure

Case 1: x(t) € R, x(t) = A-x(t) + B-x(t — 7) — g b - d*x(t),

with
max R(a) < — max |b| <0 verified.
aca(A) \/ bea(BHB)
o(A)
T hd ° T T T T I T
B 1 . ]
[ ] 1
21 ® o ! y
—~ [ ] ]
o} ®e : :
& e ° '
-2 ° ® : -
o * !
__4 L 7Y hd : | ]
0

| | | |
-0.2 -0.15 -01 _5.10°2
R(N)
Pure delay g =0 (o) 0(A) = 0p(.A) (discrete)

|
-03 -0.25
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Numerical experiment: spectral structure

Case 1: x(t) € R, x(t) = A-x(t) + B-x(t — 7) — g b - d*x(t),

with
max R(a) < — |/ max |b| <0 verified.
aca(A) beo(BHB)
o(A)
4 %UO 5 OI hd ° ; . T T T ? T ]
2 O o o ° i UC(-A) —
3 0 P S * ° . ; -
g o ° « ° |
-2 5 () ° ® : |
o) ° |
_4 ?r\o ° | Y b .l | | | : | |
-03 —-025 —-02 -015 —-0.1 _5.7072 0 5.10°2

R(A)
Pure delay g =0 (o) 0(A) = 0p(.A) (discrete)
Fractional derivative g # 0 = o(A) # 0 (essential)
(©) g =42 >0 = stable
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Numerical experiment: spectral structure

Case 1: x(t) € R, x(t) = A-x(t) + B-x(t — 7) — g b - d*x(t),

with
max R(a) < — max |b| <0 verified.
aca(A) \/ beo(BHB)
o(A)
i T hd T ¥ T T T T T
4 - © o o * [ ) ° ® ® o E |
—~ O [ ] ® ]
= 0 o ® o8 : =
e7) b (6] ° [ ] b ®
-2 5 o ° ® ® ? -
(e} [ ] ® !
_4 %f\o ° | Y b .l (%) ®l | | : | |
03 -025 02 -015 01 _5.102 0 5.10-2
R(N)
Pure delay g =0 (o) 0(A) = 0p(.A) (discrete)
Fractional derivative g # 0 = o.(A) # ) (essential)
(0) g =42 >0 = stable (®) g = —2 < 0 = unstable
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0®000

Numerical experiment: spectral structure

Case 1: x(t) € R, x(t) = A-x(t) + B-x(t — 7) — g b - d*x(t),

with
max R(a) < — max |b| <0 verified.
aco(A) \/ bea(BB)
o(A)
i T hd T ¥ T T T T T
4 - © (@) o * ) ° ® ® ® E B
—~~ O [ ] ® 1
= 0 o ® o8 : =
& [¢) © ® o & ®
-2 5 o ° ® ® ? -
o ° o * N !
_4 ?f\o | Y b | (%) ®l | | : | |
-03 —-025 —-02 -015 —-0.1 _5.7072 0 5.10°2

R(N)
Pure delay g =0 (o) 0(A) = 0p(.A) (discrete)
Fractional derivative g # 0 = o(A) # 0 (essential)
(0) g =42 >0 = stable (®) g = —2 < 0 = unstable
What about g € C? 16



Numerics: Eigenvalue Approach to Stability
00®00

Numerical experiment: delay-dependent stabi

Case 2: Scalar model x(t) = —x(t) + 3 x(t —7) — g dézx(t).
For delay-independent stability, g € .
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00®00

Numerical experiment: delay-dependent stabi

Case 2: Scalar model x(t) = —x(t) + 3 x(t —7) — g dézx(t).
For delay-independent stability, g € .

C\ % . }

S(e) a0 g: What about the

0 18 - delay-dependent stability
1 - R(g) region?

Lt

Tl T T T T n
0g> (7, lgl)

3 4 | | | |
T 4 6 8 10
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Numerical experiment: delay-dependent stabi

Case 2: Scalar model x(t) = —x(t) + 3 x(t —7) — g dé/zx(t).
For delay-independent stability, g € .

e % . }
S(e) 9 g: What about the
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1 - R(e) region?
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00®00

Numerical experiment: delay-dependent stabi

Case 2: Scalar model x(t) = —x(t) + 3 x(t —7) — g dé/zx(t).
For delay-independent stability, g € .

e % . }
S(e) 9 g: What about the
0 18 - delay-dependent stability
1 - R(e) region?
L B

—o—|g| = 3/4/a|
——|g| = 9/10lal
—=—|g| = |al
—lg| = 11/10lal
~o lgl =3/2Ja]

17
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Numerical experiment: composition (explorate

g = lal/a. g =lal.
® 7, =0(0).

18



Numerics: Eigenvalue Approach to Stability
000e0

Numerical experiment: composition (explorate

g = lal/a. ig: |al.
@ 7. =0(0). @ 7, =0(0)
@ 7, =7 (o). |

18



Numerics: Eigenvalue Approach to Stability
000e0

Numerical experiment: composition (explorate

g = lal/a.
® 7, =0(0).
@ 7, =7 ().

igzlal-
@ T =0(©
@ o =17 (4)

18



Numerics: Eigenvalue Approach to Stability
0o00e

Application in acoustics

Computational case Infinite 2D duct.
DG: N = 4. Mesh: Ny = 188.
Time-integration: CFL = 0.5. (LSERK (8,4) (Toulorge and Desmet 2012))

_ 2(s,x) = oo (Rigid Wall)

Acoustic pressure p
03 T T T T

0.2 |

0.1 |

19
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Numerics: Eigenvalue Approach to Stability
0o00e

Application in acoustics

Computational case Infinite 2D duct.
DG: N = 4. Mesh: Ny = 188.
Time-integration: CFL = 0.5. (LSERK (8,4) (Toulorge and Desmet 2012))

- () = a+ avs + 3¢ (Soft Wall

Acoustic pressure
03 T I\:) T p I

0.2 |

0.1} |

19
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Conclusion

Takeaways

e Parabolic- Hyperbolic PDE realisations = time-local coupled
system (x, ¢, ¢)
e Natural extended energy & = E, + E, + k Ey

= sufficient asymptotic stability condition
= eigenvalue approach to stability

o Application to aeroacoustics

e Composition: Dg x(t — 7)?

e Multiple delay case

e Semigroup formulation eigenvalue approach

3 e Theoretical study of

21
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Conclusion

© Introduction

© Coupled PDEs formulation: stability results
© An eigenvalue approach to stability

@ Conclusion

» Appendix

Thanks for your attention. Any questions?

(Contact: florian.monteghetti@onera.fr)
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Theory: Stability Results

Outline

© Coupled formulation: stability results
@ Toy model: Laplace analysis
@ Vector-valued case
@ Parabolic realisation and heat equation
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Theory: Stability Results

@00

Toy model: Laplace analysis

2(s) = (s — a)h(s) x°(s) +g h(s) Lo[d2x° Lo ](5)
(a) (b)
+ gx°(0) h(s)s* +gx°(r) h(s)s*e™*"
SN—— ———r
() (d)
+ XO(T) lA1(s)e*5T,

——
(e)

where h(s) := (s —a— b exp(—7s) + g s*)~L. his defined over C;
for 5 >0 (cut).
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Theory: Stability Results
oo

Toy model: Laplace analysis (2)

h(s) := (s —a— b exp(—7s) + g s*)~ ! is defined over (CZC for 5 >0
(cut).

Analyticity? Let s = x4+ iy = r exp(if) with {x > 0 and y € R} or
{r>0and |0 < 3}.

R(s —a— be ™ +gs*) =x—RN(a) — |ble ™ cos(ty — 0p) + R(gs*)
> x—R(a) — |b| + g][s]*
> —R(a) — |b],

using g € Jo. If R(a) < —|b|, then h analytic in Eg.
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Theory: Stability Results
ooe

Toy model: Laplace analysis (3)

If 65 € Jo and R(a) < —|b,
h(s) := (s —a— b exp(—7s) + g s*)~! € A(0), the Callier-Desoer
class. (Curtain and Zwart 1995, Thm. A.7.49)
e (s —a)~! € A(0), since R(a) < 0. It remains to show that
[1— (b exp(—7s) — gs®)/(s —a)] " € A(0).
We first notice that
f(s)=1— (b exp(—Ts) — gs*)/(s — a) € A(0).
Then, it is enough to prove that infy5)>o |#(s)| > 0 to ensure
that 1/f € A(0).
e As a consequence, h € A(0), i.e. can be decomposed into
h(t) = ha(t) + > ha6(t — ta), (2)
neN

with h, € LY(R*) and (h,)nen € I*(N); and

O=th<ti<tr<---.
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Theory: Stability Results
°0

Vector-valued case

The energy balance reads
s kc .
E=x-x+ 7[||><||2 —Ix(: = T)IP1+ > &5
i€[1,n]

G diagonal = no coupling btw diffusive variables p;:
delay/fractional coupling is straightforward.
Since g; > 0, it is sufficient for to prove that

A+ A" ke 1

+—=1 =B
Y= 21 2 2k <0,
-BH _f/
2 2

Let us denote A = (A+A")/> the symmetric part of A. We have for
all x and y in C"
—Zk[

X
y
Now, for any € > 0, from -

k 1 L k
H;]:Asx.w 7C||x|!2+§5y'x+ 5By - ?C”ynz'



Theory: Stability Results
oce

Vector-valued case (2)

Now, for any € > 0, from

1 1 € 1
ZBy-x+ =BMx .y =R(By-x) < Z|By|]> + —|x|]2
5By - x+ 5B x-y =R(By - x) < 5[|Byl| +25HXH7
and

By|2=B"By-y < max |bl|y|?,

1Byl y y_bEU(BHB)\ iyl

we can choose k* = k. = emax,, gHg Ibl/c > 0 to get

X X k.c 1 5
— i < - .
m )L = (amers e

Taking the least stringent value of £ > 0, we derive

max R(a) + max |b| <0
aco(A) \/ bea(BHB)

as a delay-independent stability sufficient condition.
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Theory: Stability Results
°

Long-memory impedance: link with heat equ

Monodimensional heat equation

(Matignon and Zwart in revision, Ex. 3.2)

0:0(t,x) = 020(t,x)+ u(t) do(x) (x €R,t>0)
y(t) =40(t,x =0).

Take the Fourier and Laplace transform

O(s, k) == /0 /Ré’(t,x) e ®e~stdxdt (R[s] >0,k € R)

to get
~ 1
(s, k) = st k2 a(s) ,
hence
1 ~ 1 2dk
y =4 x — k)dk = —— i(s).
#9) =4 5 [ ak=( [ a2 ats

:1/\/§
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Numerics: Eigenvalue Approach to Stability

Outline

@ An eigenvalue approach to stability
@ Discretisation of parabolic realisation
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Numerics: Eigenvalue Approach to Stability
®0

Discretisation of parabolic representation

Discretisation problem (Laplace domain):

WR(s) > 0, h(s) = /O — =~ Y — gk — P (5).

ke[[l Nel
Challenges:

e Parsimonious approximation
e Spectral accuracy (no spurious instabilities)

e Monotone convergence for N — oo
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Numerics: Eigenvalue Approach to Stability
oce

Discretisation of parabolic representation (2
Discretisation problem (Laplace domain):

WR(s) > 0, B(s)—/ooo L ~ 3

ke[[l Ne] + 5"
Methods:
o [nterpolation (Heleschewitz 2000)
o Optimisation (Hélie and Matignon 2006b, SP).
Wmax N N
I ) = [ () ~ (i) ()
Wmin
Parameters: &min, Emax, Ne and wmin, Wmax and w.

= Quadrature (analytical expressions for py and ).

’

| m@elende = [ (@) e(@).0¢ (.
0 0

with ®(v) == v?(1 — v)~2 for regularity at £ = 0, see (Shampine 2008,
S 4.2). Then Gauss-Legendre quadrature rule.
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