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Let
@ X be a Hilbert space,
e A:D(A) C X — X be a skew-adjoint operator,
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@ X be a Hilbert space,
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Considered systems: Given a« € R, let A = A+ ol

{ A(t) = Az(t), Vte0,00),
2(0) = 2y € D(A).
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Let
@ X be a Hilbert space,
e A:D(A) C X — X be a skew-adjoint operator,

Considered systems: Given a« € R, let A = A+ ol

{ A(t) = Az(t), Vte0,00),
2(0) = zp € D(A).
For instance:

A = —iA (+ Dirichlet boundary conditions) on Q C R™ and X = Hj(9).
U

the classical Schrodinger’s equation with constant potential.
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Let

@ Y be another Hilbert space
e CeL(X)Y)
e7>0
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We observe z via y(t) = Cz(t) for all t € [0, 7].
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@ Y be another Hilbert space
e CeL(X)Y)
e7>0

We observe z via y(t) = Cz(t) for all t € [0, 7].

The Schrddinger's equation case,
with locally distributed observation:

C = xo-

y(t) =xoz(t), Vtelo,r].
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Let
@ Y be another Hilbert space
e CeL(X)Y)
e7>0

We observe z via y(t) = Cz(t) for all t € [0, 7].

The Schrddinger's equation case,
with locally distributed observation:

C = xo-

y(t) =xoz(t), Vtelo,r].

Our problem

Reconstruct the unknown z; from the measurement y(t).
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© !dea of the reconstruction algorithm
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K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

<0

+
<0 ¢

t=20 t=rT1

2 iterations, observation on [0, T].
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We construct the forward observer

{ () = Azt (t) — C*Czt (t) + Cry(t), Vtelo,r],
21 (0) = z; € D(A).
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We construct the forward observer
ZH(t) = Az T (t) — C*CzT (t) + C*y(t), Vtelo,7],
21 (0) = 2, € D(A).

We subtract the observed system

{ 2(t) = Az(t), Vitelo,7],
Z(O) = 20,
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We construct the forward observer

2T(t) = Azt (t) — C*CzT(t) + C*y(t), Vit e|[o,7],
{ 21 (0) = z; € D(A).

We subtract the observed system

{ 2(t) = Az(t), Vitelo,7],
Z(O) = 20,

to obtain (remember that y(t) = C'z(t)), denoting

the estimation error,

{ é(t) = (A—C*C)e(t), vtelo,r],

6(0) = LJ — 20,
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We construct the forward observer

2T(t) = Azt (t) — C*CzT(t) + C*y(t), Vit e|[o,7],
{ 21 (0) = 2, € D(A).

We subtract the observed system

{ 2(t) = Az(t), Vitelo,7],
Z(O) = 20,

to obtain (remember that y(t) = C'z(t)), denoting

the estimation error,

{ é(t) = (A—C*C)e(t), vtelo,r],

6(0) = LJ — 20,

which is known to be exponentially stable if and only if (4, C) is exactly
observable, i.e.

3> 030 >0, [ lyOPdt = Rl’, Vi€ D)
0
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Exponential stability = 3M > 0,8 > 0 such that

I (1) = 2(T)| < Me™T||25 — 2.
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Exponential stability = 3M > 0,8 > 0 such that
I27(r) = 2(7)|| < Me 7|25 — 0l.
We construct a similar system: the backward observer,

{ Z7(t) = Az~ (t) + C*Cz= () — C*y(1), Vtelo,r],
27 (1) = 2% (7).
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Exponential stability = 3M > 0,8 > 0 such that
I27(r) = 2(7)|| < Me 7|25 — 0l.
We construct a similar system: the backward observer,

{ Z7(t) = Az~ (t) + C*Cz= () — C*y(1), Vtelo,r],
27 (1) = 2% (7).

After a time reversal Z7(t) = 1,27 (t) := 2= (7 — t), we get

{ Z7(t) = —AZ~(t) — C*CZ(t) + C*y(r — t), vtelo,r],
Z=(0) = 2t (7).
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Exponential stability = 3M > 0,8 > 0 such that
I27(r) = 2(7)|| < Me 7|25 — 0l.
We construct a similar system: the backward observer,

{ Z7(t) = Az~ (t) + C*Cz= () — C*y(1), Vtelo,r],
27 (1) = 2% (7).

After a time reversal Z7(t) = 1,27 (t) := 2= (7 — t), we get

Z=(t) = —AZ~(t) — C*CZ~(t) + C*y(T — 1), vtelo, 7],
Z=(0) = 27 (7).

And from similar computations for A~ := —A — C*C as those for

At = A - C*C:

127(0) = zoll < Me™PT[|2* (1) — 2(7)l| < M7z — 2]

Recovering the initial state of a WPLS



If the system is exactly observable in time 7 > 0, that is if:
3k, > 0, / ly(®)]|2dt > k2|02, V zo € D(A),
0

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that
o= M?e 7 < 1.
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If the system is exactly observable in time 7 > 0, that is if:

Z()||2, V2o € D(A),

B> 0, [ uto)Pae = 12
0

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)

proved that
o= M%7 < 1.

Iterating n-times the forward—backward observers with z;(0) = z,,_,(0)
leads to
Iz (0) = zoll < @™[lz5 = 2o

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z, from y(t).
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© Main result

itial state of a WPLS 11/ 23



In this work, the exact observability assumption in time 7
T
B >0, [ lu@Pd 2 Rl Va0e DIA),
0

is not supposed to be satisfied !
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In this work, the exact observability assumption in time 7
T
B >0, [ lu@Pd 2 Rl Va0e DIA),
0

is not supposed to be satisfied !
However, the observers don't need this assumption to make sense.
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In this work, the exact observability assumption in time 7
T
B >0, [ lu@Pd 2 Rl Va0e DIA),
0

is not supposed to be satisfied !
However, the observers don't need this assumption to make sense.

Questions

@ Given arbitrary C' and 7 > 0, does the algorithm converge ?
o If it does, what is the limit of z,, (0) and how is it related to z; ?
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Decomposition of X:

@ Let us denote .. the following continuous linear operator

v, : X — L%([0,7],Y),
20 y(t).
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Decomposition of X:

@ Let us denote .. the following continuous linear operator

v, : X — L%([0,7],Y),
20 y(t).

Intuitively, if z, is in Ker U, then y(¢) =0, and we have no
information on z; !
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Decomposition of X:

@ Let us denote .. the following continuous linear operator

v, : X — L%([0,7],Y),
20 y(t).

Intuitively, if z, is in Ker U, then y(¢) =0, and we have no
information on z; !

o We decompose X = Ker U, @ (Ker ¥,)" and define

Vinobs = Ker W, Vops = (Ker U,)" = Ran 0%,
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Decomposition of X:

@ Let us denote .. the following continuous linear operator

v, : X — L%([0,7],Y),
20 y(t).

Intuitively, if z, is in Ker U, then y(¢) =0, and we have no
information on z; !

o We decompose X = Ker U, @ (Ker ¥,)" and define
VUnobs = Ker \IJT, VObS = (Ker \I/q—)L = Ran \I/;k_

Note that the exact observability assumption is equivalent to
U, is bounded from below and then = X = Ran U*.
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Stability of the decomposition under the algorithm:
Let us denote T+ (resp. T~) the semigroup generated by
At = A—C*C (resp. A= :=—-A—C*C) on X.
@ Forward—backward observers cycle = operator T T, i.e.

z7(0) — 20 =T, T (20 — 20)

obtained thanks to the fact that AT = A% 4 oI generates the
semigroup e=*'Ti.
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Stability of the decomposition under the algorithm:
Let us denote T+ (resp. T~) the semigroup generated by
At = A—C*C (resp. A= :=—-A—C*C) on X.
e Forward—backward observers cycle = operator T[T}, i.e.
z7(0) — 20 =T, T (20 — 20)
obtained thanks to the fact that AT = A% 4 oI generates the
semigroup e=*'Ti.

@ Denote S the group generated by A, then (since A = AT + C*C)

S;zo = TiZo + / T;’;tC* CS;z dt, V2o € X.
0 v

W,z
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Stability of the decomposition under the algorithm:
Let us denote T+ (resp. T~) the semigroup generated by
At = A—C*C (resp. A= :=—-A—C*C) on X.

@ Forward—backward observers cycle = operator T T, i.e.

z7(0) — 20 =T, T (20 — 20)
obtained thanks to the fact that AT = A% 4 oI generates the
semigroup e=*'Ti.
@ Denote S the group generated by A, then (since A = AT + C*C)

-
S;zo = TiZo —|—/ T;’;tC* CS;z dt, V2o € X.
0 4
20

@ Using this (type of) Duhamel formula(s), we obtain

T; TjVUnobs C VUnobSv T; T:—LVObS C VObs~

G. Haine Recovering the initial state of a WPLS 14/ 23



Stability of the decomposition under the algorithm:
Let us denote T+ (resp. T~) the semigroup generated by
At = A—C*C (resp. A= :=—-A—C*C) on X.

@ Forward—backward observers cycle = operator T T, i.e.

z7(0) — 20 =T, T (20 — 20)
obtained thanks to the fact that AT = A% 4 oI generates the
semigroup e=*'Ti.
@ Denote S the group generated by A, then (since A = AT + C*C)

-
S;zo = TiZo —|—/ T;’;tC* CS;z dt, V2o € X.
0 4
20

@ Using this (type of) Duhamel formula(s), we obtain
T; TjVUnobs C VUnobsa T; T;—LVObs C VObs~

The algorithm preserves the decomposition of X !
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Theorem

Denote by IT the orthogonal projection from X onto Vgps. Then the
following statements hold true for all 2o € X and 2, € Vops:

Q@ Foralln>1,
|(Z = 10) (27 (0) = 20) || = | = II) 2ol -
@ The sequence ([|[II(z, (0) — 20)|),,>, is strictly decreasing and

|1 (27, (0) — 20) || = ||z (0) — Izo|| — O.

n— o0

© There exists a constant « € (0, 1), independent of z; and :“’ ,
such that for all n > 1,

T (25, (0) — 20) || < @™ ||z5 — Mo

)

if and only if Ran W is closed in X.
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O Application
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Example

Consider the following Scrédinger’s equation
0 2
5° = fi%z +az Vze(0,1),t>0,

2(t,0) = 2(¢t,1) =0 Vi >0,
2(0,z) = zo(x) vz € (0,1),

with z; the initial state.
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Example

Consider the following Scrédinger’s equation
0 0?
s = - >
55° 18x22+az Vo € (0,1),t >0,
2(t,0) = 2(¢t,1) =0 Vi >0,
z(0,2) = zo(x) Vz € (0,1),

with z; the initial state.

Observation

We observe the system on (0,0.1) during a time 7 = 0.2, via one of
the three following ways

yl(t7x) = Z(tvx)|z€(070.1) vt € (Oa 02)7
y2(t,x) = Rez(t,7)|ze0,01) Vt € (0,0.2),
y3(t,x) = ilm 2(t, )| zc0,01) VYt € (0,0.2).
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The algorithm reads, for alln € N, kK =1,2,3:
Forward observers:

o . 9? n

= —172 +azt —yxzt +yr Vo e (0,1),t >0,
Z(t,0) =25 (t,1) =0 vt >0,
z:{(O,x)fzn (1, x) Vo € (0,1),n > 1,
27 (0,2) =0 vz € (0,1),
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The algorithm reads, for alln € N, kK =1,2,3:
Forward observers:

2
gz,f = 71872 +azt —yxzt +yr Vo e (0,1),t >0,
a:
zy (6,0) = 27 (t,1) =0 vt >0,
Zi(O,x)*Zn 1 (7, 7) vz e (0,1),n>1,
27 (0,2) =0 vz € (0,1),
Backward observers:
o _ .0
%0 =iasz, —azy +yxz, — vy Vo e (0,1),t >0,
Z;(t,O)— ;(7):0 vt >0,
2, (0,z) = 2;F (1, x) vz € (0,1),n >0,
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We test with a@ = £15 and 0, and find in the three cases

Initial real part

maginary part

To reconstruct

——— With imaginary obs.

—— With ex. obs.
—— Wit real obs.
—— With imaginary obs.

To reconstruct

with the L2 errors

G. Haine
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Locally distributed perturbation on (0.75, 1)

Initial real part

To reconstruct

ith imaginary obs.




Locally distributed perturbation on (0.75, 1)

Initial imaginary part

Initial real part

To reconstruct
With ex. obs.
With real obs.
With imaginary obs.

Conjecture

Let X and Y be Hilbert spaces. Assume that X is a well-posed linear
system such that A = A+ P, for some P € £(X) and skew-adjoint
operator A. Then the conclusions of the main theorem hold.
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© Conclusion
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Conclusion

More ?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), January 2014)
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Conclusion

More ?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

Application to thermo-acoustic tomography:

G. Haine

An observer-based approach for thermoacoustic tomography
(Mathematical Theory of Networks and Systems (MTNS — Gréningen),
July 2014)
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Conclusion

More ?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

Application to thermo-acoustic tomography:

G. Haine

An observer-based approach for thermoacoustic tomography
(Mathematical Theory of Networks and Systems (MTNS — Gréningen),
July 2014)

Still to be done:

@ Stability of Vopns and Vynebs With noisy observation y

@ More general perturbations

G. Haine Recovering the initial state of a WPLS 22/ 23



Thank you for your
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