

Recovering the initial state of a Well-Posed Linear System with perturbed skew-adjoint generator

Ghislain Haine

ISAE – Supported by IDEX- "Nouveaux Entrants"

European Control Conference July, 15–17

Session "State Observation and Parameter Estimation of Systems Involving PDEs"

1 Introduction

2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

1 Introduction

2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

Let

- X be a Hilbert space,
- $\mathcal{A} : \mathcal{D}(\mathcal{A}) \subset X \rightarrow X$ be a skew-adjoint operator,

Let

- X be a Hilbert space,
- $\mathcal{A} : \mathcal{D}(\mathcal{A}) \subset X \rightarrow X$ be a skew-adjoint operator,

Considered systems: Given $\alpha \in \mathbb{R}$, let $A = \mathcal{A} + \alpha I$,

$$\begin{cases} \dot{z}(t) = Az(t), & \forall t \in [0, \infty), \\ z(0) = z_0 \in \mathcal{D}(\mathcal{A}). \end{cases}$$

Let

- X be a Hilbert space,
- $\mathcal{A} : \mathcal{D}(\mathcal{A}) \subset X \rightarrow X$ be a skew-adjoint operator,

Considered systems: Given $\alpha \in \mathbb{R}$, let $A = \mathcal{A} + \alpha I$,

$$\begin{cases} \dot{z}(t) = Az(t), & \forall t \in [0, \infty), \\ z(0) = z_0 \in \mathcal{D}(\mathcal{A}). \end{cases}$$

For instance:

$\mathcal{A} = -i\Delta$ (+ Dirichlet boundary conditions) on $\Omega \subset \mathbb{R}^n$ and $X = H_0^1(\Omega)$.

the classical Schrödinger's equation with constant potential.

Let

- Y be another Hilbert space
- $C \in \mathcal{L}(X, Y)$
- $\tau > 0$

Let

- Y be another Hilbert space
- $C \in \mathcal{L}(X, Y)$
- $\tau > 0$

We observe z via $y(t) = Cz(t)$ for all $t \in [0, \tau]$.

Let

- Y be another Hilbert space
- $C \in \mathcal{L}(X, Y)$
- $\tau > 0$

We observe z via $y(t) = Cz(t)$ for all $t \in [0, \tau]$.

The Schrödinger's equation case,
with locally distributed observation:

$$C = \chi_{\mathcal{O}} \cdot$$

and

$$y(t) = \chi_{\mathcal{O}} z(t), \quad \forall t \in [0, \tau].$$



Let

- Y be another Hilbert space
- $C \in \mathcal{L}(X, Y)$
- $\tau > 0$

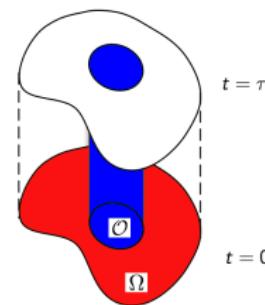
We observe z via $y(t) = Cz(t)$ for all $t \in [0, \tau]$.

The Schrödinger's equation case,
with locally distributed observation:

$$C = \chi_{\mathcal{O}} \cdot$$

and

$$y(t) = \chi_{\mathcal{O}} z(t), \quad \forall t \in [0, \tau].$$



Our problem

Reconstruct the unknown z_0 from the measurement $y(t)$.

1 Introduction

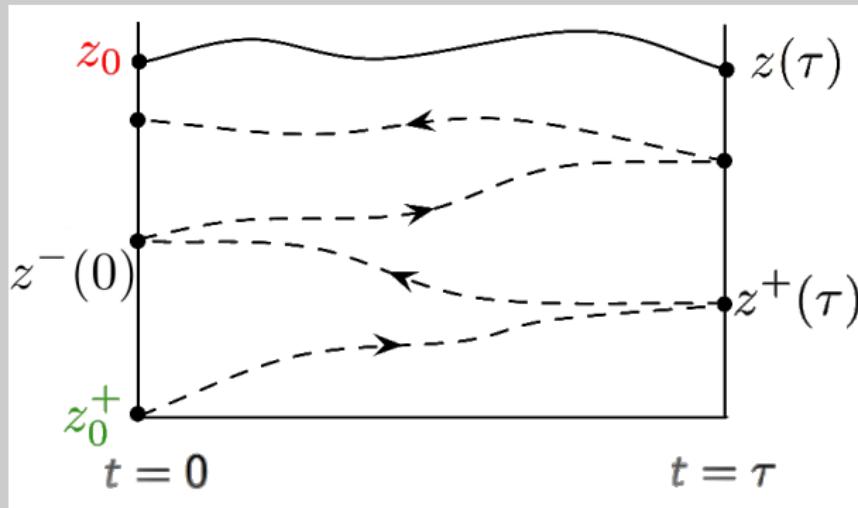
2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

Intuitive representation



2 iterations, observation on $[0, \tau]$.

We construct the **forward observer**

$$\begin{cases} \dot{z}^+(t) = Az^+(t) - C^*Cz^+(t) + C^*y(t), \\ z^+(0) = z_0^+ \in \mathcal{D}(A). \end{cases} \quad \forall t \in [0, \tau],$$

We construct the **forward observer**

$$\begin{cases} \dot{z}^+(t) = Az^+(t) - C^*Cz^+(t) + C^*y(t), \\ z^+(0) = z_0^+ \in \mathcal{D}(A). \end{cases} \quad \forall t \in [0, \tau],$$

We subtract the observed system

$$\begin{cases} \dot{z}(t) = Az(t), \\ z(0) = z_0, \end{cases} \quad \forall t \in [0, \tau],$$

We construct the **forward observer**

$$\begin{cases} \dot{z}^+(t) = Az^+(t) - C^*Cz^+(t) + C^*y(t), \\ z^+(0) = z_0^+ \in \mathcal{D}(A). \end{cases} \quad \forall t \in [0, \tau],$$

We subtract the observed system

$$\begin{cases} \dot{z}(t) = Az(t), \\ z(0) = z_0, \end{cases} \quad \forall t \in [0, \tau],$$

to obtain (*remember that $y(t) = Cz(t)$*), denoting

$$e = z^+ - z,$$

the estimation error,

$$\begin{cases} \dot{e}(t) = (A - C^*C)e(t), \\ e(0) = z_0^+ - z_0, \end{cases} \quad \forall t \in [0, \tau],$$

We construct the **forward observer**

$$\begin{cases} \dot{z}^+(t) = Az^+(t) - C^*Cz^+(t) + C^*y(t), \\ z^+(0) = z_0^+ \in \mathcal{D}(A). \end{cases} \quad \forall t \in [0, \tau],$$

We subtract the observed system

$$\begin{cases} \dot{z}(t) = Az(t), \\ z(0) = z_0, \end{cases} \quad \forall t \in [0, \tau],$$

to obtain (*remember that $y(t) = Cz(t)$*), denoting

$$e = z^+ - z,$$

the estimation error,

$$\begin{cases} \dot{e}(t) = (A - C^*C)e(t), \\ e(0) = z_0^+ - z_0, \end{cases} \quad \forall t \in [0, \tau],$$

which is known to be exponentially stable if and only if (A, C) is exactly observable, *i.e.*

$$\exists \tau > 0, \exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(A).$$

Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that

$$\|z^+(\tau) - z(\tau)\| \leq M e^{-\beta\tau} \|z_0^+ - z_0\|.$$

Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that

$$\|z^+(\tau) - z(\tau)\| \leq M e^{-\beta\tau} \|z_0^+ - z_0\|.$$

We construct a similar system: the **backward observer**,

$$\begin{cases} \dot{z}^-(t) = Az^-(t) + C^*Cz^-(t) - C^*y(t), & \forall t \in [0, \tau], \\ z^-(\tau) = z^+(\tau). \end{cases}$$

Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that

$$\|z^+(\tau) - z(\tau)\| \leq M e^{-\beta\tau} \|z_0^+ - z_0\|.$$

We construct a similar system: the **backward observer**,

$$\begin{cases} \dot{z}^-(t) = Az^-(t) + C^*Cz^-(t) - C^*y(t), & \forall t \in [0, \tau], \\ z^-(\tau) = z^+(\tau). \end{cases}$$

After a time reversal $Z^-(t) = \mathfrak{R}_\tau z^-(t) := z^-(\tau - t)$, we get

$$\begin{cases} \dot{Z}^-(t) = -AZ^-(t) - C^*CZ^-(t) + C^*y(\tau - t), & \forall t \in [0, \tau], \\ Z^-(0) = z^+(\tau). \end{cases}$$

Exponential stability $\Rightarrow \exists M > 0, \beta > 0$ such that

$$\|z^+(\tau) - z(\tau)\| \leq M e^{-\beta\tau} \|z_0^+ - z_0\|.$$

We construct a similar system: the **backward observer**,

$$\begin{cases} \dot{z}^-(t) = Az^-(t) + C^*Cz^-(t) - C^*y(t), & \forall t \in [0, \tau], \\ z^-(\tau) = z^+(\tau). \end{cases}$$

After a time reversal $Z^-(t) = \mathfrak{R}_\tau z^-(t) := z^-(\tau - t)$, we get

$$\begin{cases} \dot{Z}^-(t) = -AZ^-(t) - C^*CZ^-(t) + C^*y(\tau - t), & \forall t \in [0, \tau], \\ Z^-(0) = z^+(\tau). \end{cases}$$

And from similar computations for $A^- := -A - C^*C$ as those for $A^+ := A - C^*C$:

$$\|z^-(0) - z_0\| \leq M e^{-\beta\tau} \|z^+(\tau) - z(\tau)\| \leq M^2 e^{-2\beta\tau} \|z_0^+ - z_0\|.$$

If the system is exactly observable in time $\tau > 0$, that is if:

$$\exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|\textcolor{red}{z}_0\|^2, \quad \forall \textcolor{red}{z}_0 \in \mathcal{D}(A),$$

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011) proved that

$$\alpha := M^2 e^{-2\beta\tau} < 1.$$

If the system is exactly observable in time $\tau > 0$, that is if:

$$\exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(A),$$

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011) proved that

$$\alpha := M^2 e^{-2\beta\tau} < 1.$$

Iterating n -times the forward–backward observers with $z_n^+(0) = z_{n-1}^-(0)$ leads to

$$\|z_n^-(0) - z_0\| \leq \alpha^n \|z_0^+ - z_0\|.$$

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to reconstruct z_0 from $y(t)$.

1 Introduction

2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

In this work, the exact observability assumption in time τ

$$\exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(\mathcal{A}),$$

is not supposed to be satisfied !

In this work, the exact observability assumption in time τ

$$\exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(\mathcal{A}),$$

is not supposed to be satisfied !

However, the observers don't need this assumption to make sense.

In this work, the exact observability assumption in time τ

$$\exists k_\tau > 0, \int_0^\tau \|y(t)\|^2 dt \geq k_\tau^2 \|z_0\|^2, \quad \forall z_0 \in \mathcal{D}(\mathcal{A}),$$

is not supposed to be satisfied !

However, the observers don't need this assumption to make sense.

Questions

- Given arbitrary C and $\tau > 0$, does the algorithm converge ?
- If it does, what is the limit of $z_n^-(0)$ and how is it related to z_0 ?

Decomposition of X :

- Let us denote Ψ_τ the following continuous linear operator

$$\begin{aligned}\Psi_\tau &: X \longrightarrow L^2([0, \tau], Y), \\ z_0 &\mapsto y(t).\end{aligned}$$

Decomposition of X :

- Let us denote Ψ_τ the following continuous linear operator

$$\begin{aligned}\Psi_\tau &: X \longrightarrow L^2([0, \tau], Y), \\ z_0 &\mapsto y(t).\end{aligned}$$

Intuitively, if z_0 is in $\text{Ker } \Psi_\tau$, then $y(t) \equiv 0$, and we have no information on z_0 !

Decomposition of X :

- Let us denote Ψ_τ the following continuous linear operator

$$\begin{aligned}\Psi_\tau &: X \longrightarrow L^2([0, \tau], Y), \\ z_0 &\mapsto y(t).\end{aligned}$$

Intuitively, if z_0 is in $\text{Ker } \Psi_\tau$, then $y(t) \equiv 0$, and we have no information on z_0 !

- We decompose $X = \text{Ker } \Psi_\tau \oplus (\text{Ker } \Psi_\tau)^\perp$ and define

$$V_{\text{Unobs}} = \text{Ker } \Psi_\tau, \quad V_{\text{Obs}} = (\text{Ker } \Psi_\tau)^\perp = \overline{\text{Ran } \Psi_\tau^*}.$$

Decomposition of X :

- Let us denote Ψ_τ the following continuous linear operator

$$\begin{aligned}\Psi_\tau &: X \longrightarrow L^2([0, \tau], Y), \\ z_0 &\mapsto y(t).\end{aligned}$$

Intuitively, if z_0 is in $\text{Ker } \Psi_\tau$, then $y(t) \equiv 0$, and we have no information on z_0 !

- We decompose $X = \text{Ker } \Psi_\tau \oplus (\text{Ker } \Psi_\tau)^\perp$ and define

$$V_{\text{Unobs}} = \text{Ker } \Psi_\tau, \quad V_{\text{Obs}} = (\text{Ker } \Psi_\tau)^\perp = \overline{\text{Ran } \Psi_\tau^*}.$$

Note that the exact observability assumption is equivalent to Ψ_τ is bounded from below and then $\Rightarrow X = \text{Ran } \Psi_\tau^*$.

Stability of the decomposition under the algorithm:

Let us denote \mathbb{T}^+ (resp. \mathbb{T}^-) the semigroup generated by $\mathcal{A}^+ := \mathcal{A} - C^*C$ (resp. $\mathcal{A}^- := -\mathcal{A} - C^*C$) on X .

- Forward-backward observers cycle \Rightarrow operator $\mathbb{T}_\tau^- \mathbb{T}_\tau^+$, i.e.

$$z^-(0) - z_0 = \mathbb{T}_\tau^- \mathbb{T}_\tau^+ (z_0^+ - z_0),$$

obtained thanks to the fact that $A^\pm = \mathcal{A}^\pm \pm \alpha I$ generates the semigroup $e^{\pm \alpha t} \mathbb{T}_t^\pm$.

Stability of the decomposition under the algorithm:

Let us denote \mathbb{T}^+ (resp. \mathbb{T}^-) the semigroup generated by $\mathcal{A}^+ := \mathcal{A} - C^*C$ (resp. $\mathcal{A}^- := -\mathcal{A} - C^*C$) on X .

- Forward-backward observers cycle \Rightarrow operator $\mathbb{T}_\tau^- \mathbb{T}_\tau^+$, i.e.

$$z^-(0) - \textcolor{red}{z}_0 = \mathbb{T}_\tau^- \mathbb{T}_\tau^+ (\textcolor{green}{z}_0^+ - \textcolor{red}{z}_0),$$

obtained thanks to the fact that $A^\pm = \mathcal{A}^\pm \pm \alpha I$ generates the semigroup $e^{\pm \alpha t} \mathbb{T}_t^\pm$.

- Denote \mathbb{S} the group generated by \mathcal{A} , then (since $\mathcal{A} = \mathcal{A}^+ + C^*C$)

$$\mathbb{S}_\tau \textcolor{red}{z}_0 = \mathbb{T}_\tau^+ \textcolor{red}{z}_0 + \int_0^\tau \mathbb{T}_{\tau-t}^+ C^* \underbrace{C \mathbb{S}_t \textcolor{red}{z}_0}_{\Psi_\tau \textcolor{red}{z}_0} dt, \quad \forall \textcolor{red}{z}_0 \in X.$$

Stability of the decomposition under the algorithm:

Let us denote \mathbb{T}^+ (resp. \mathbb{T}^-) the semigroup generated by $\mathcal{A}^+ := \mathcal{A} - C^*C$ (resp. $\mathcal{A}^- := -\mathcal{A} - C^*C$) on X .

- Forward-backward observers cycle \Rightarrow operator $\mathbb{T}_\tau^- \mathbb{T}_\tau^+$, i.e.

$$z^-(0) - \textcolor{red}{z}_0 = \mathbb{T}_\tau^- \mathbb{T}_\tau^+ (\textcolor{green}{z}_0^+ - \textcolor{red}{z}_0),$$

obtained thanks to the fact that $A^\pm = \mathcal{A}^\pm \pm \alpha I$ generates the semigroup $e^{\pm \alpha t} \mathbb{T}_t^\pm$.

- Denote \mathbb{S} the group generated by \mathcal{A} , then (since $\mathcal{A} = \mathcal{A}^+ + C^*C$)

$$\mathbb{S}_\tau \textcolor{red}{z}_0 = \mathbb{T}_\tau^+ \textcolor{red}{z}_0 + \int_0^\tau \mathbb{T}_{\tau-t}^+ C^* \underbrace{C \mathbb{S}_t \textcolor{red}{z}_0}_{\Psi_\tau \textcolor{red}{z}_0} dt, \quad \forall \textcolor{red}{z}_0 \in X.$$

- Using this (type of) Duhamel formula(s), we obtain

$$\mathbb{T}_\tau^- \mathbb{T}_\tau^+ V_{\text{Unobs}} \subset V_{\text{Unobs}}, \quad \mathbb{T}_\tau^- \mathbb{T}_\tau^+ V_{\text{Obs}} \subset V_{\text{Obs}}.$$

Stability of the decomposition under the algorithm:

Let us denote \mathbb{T}^+ (resp. \mathbb{T}^-) the semigroup generated by $\mathcal{A}^+ := \mathcal{A} - C^*C$ (resp. $\mathcal{A}^- := -\mathcal{A} - C^*C$) on X .

- Forward-backward observers cycle \Rightarrow operator $\mathbb{T}_\tau^- \mathbb{T}_\tau^+$, i.e.

$$z^-(0) - \textcolor{red}{z}_0 = \mathbb{T}_\tau^- \mathbb{T}_\tau^+ (\textcolor{green}{z}_0^+ - \textcolor{red}{z}_0),$$

obtained thanks to the fact that $A^\pm = \mathcal{A}^\pm \pm \alpha I$ generates the semigroup $e^{\pm \alpha t} \mathbb{T}_t^\pm$.

- Denote \mathbb{S} the group generated by \mathcal{A} , then (since $\mathcal{A} = \mathcal{A}^+ + C^*C$)

$$\mathbb{S}_\tau \textcolor{red}{z}_0 = \mathbb{T}_\tau^+ \textcolor{red}{z}_0 + \int_0^\tau \mathbb{T}_{\tau-t}^+ C^* \underbrace{C \mathbb{S}_t \textcolor{red}{z}_0}_{\Psi_\tau \textcolor{red}{z}_0} dt, \quad \forall \textcolor{red}{z}_0 \in X.$$

- Using this (type of) Duhamel formula(s), we obtain

$$\mathbb{T}_\tau^- \mathbb{T}_\tau^+ V_{\text{Unobs}} \subset V_{\text{Unobs}}, \quad \mathbb{T}_\tau^- \mathbb{T}_\tau^+ V_{\text{Obs}} \subset V_{\text{Obs}}.$$

The algorithm preserves the decomposition of X !

Theorem

Denote by Π the orthogonal projection from X onto V_{Obs} . Then the following statements hold true for all $z_0 \in X$ and $z_0^+ \in V_{\text{Obs}}$:

- ❶ For all $n \geq 1$,

$$\|(I - \Pi)(z_n^-(0) - z_0)\| = \|(I - \Pi)z_0\|.$$

- ❷ The sequence $(\|\Pi(z_n^-(0) - z_0)\|)_{n \geq 1}$ is strictly decreasing and

$$\|\Pi(z_n^-(0) - z_0)\| = \|z_n^-(0) - \Pi z_0\| \xrightarrow{n \rightarrow \infty} 0.$$

- ❸ There exists a constant $\alpha \in (0, 1)$, independent of z_0 and z_0^+ , such that for all $n \geq 1$,

$$\|\Pi(z_n^-(0) - z_0)\| \leq \alpha^n \|z_0^+ - \Pi z_0\|,$$

if and only if $\text{Ran } \Psi_\tau^*$ is closed in X .

1 Introduction

2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

Example

Consider the following Scrödinger's equation

$$\begin{cases} \frac{\partial}{\partial t}z = -\mathbf{i}\frac{\partial^2}{\partial x^2}z + \alpha z & \forall x \in (0, 1), t \geq 0, \\ z(t, 0) = z(t, 1) = 0 & \forall t \geq 0, \\ z(0, x) = z_0(x) & \forall x \in (0, 1), \end{cases}$$

with z_0 the initial state.

Example

Consider the following Scrödinger's equation

$$\begin{cases} \frac{\partial}{\partial t} z = -i \frac{\partial^2}{\partial x^2} z + \alpha z & \forall x \in (0, 1), t \geq 0, \\ z(t, 0) = z(t, 1) = 0 & \forall t \geq 0, \\ z(0, x) = z_0(x) & \forall x \in (0, 1), \end{cases}$$

with z_0 the initial state.

Observation

We observe the system on $(0, 0.1)$ during a time $\tau = 0.2$, via one of the three following ways

$$\begin{cases} y_1(t, x) = z(t, x)|_{x \in (0, 0.1)} & \forall t \in (0, 0.2), \\ y_2(t, x) = \operatorname{Re} z(t, x)|_{x \in (0, 0.1)} & \forall t \in (0, 0.2), \\ y_3(t, x) = i \operatorname{Im} z(t, x)|_{x \in (0, 0.1)} & \forall t \in (0, 0.2). \end{cases}$$

The algorithm reads, for all $n \in \mathbb{N}$, $k = 1, 2, 3$:

Forward observers:

$$\begin{cases} \frac{\partial}{\partial t} z_n^+ = -\mathbf{i} \frac{\partial^2}{\partial x^2} z_n^+ + \alpha z_n^+ - \gamma \chi z_n^+ + \textcolor{green}{y}_k & \forall x \in (0, 1), t \geq 0, \\ z_n^+(t, 0) = z_n^+(t, 1) = 0 & \forall t \geq 0, \\ z_n^+(0, x) = z_{n-1}^-(\tau, x) & \forall x \in (0, 1), n \geq 1, \\ z_1^+(0, x) = 0 & \forall x \in (0, 1), \end{cases}$$

The algorithm reads, for all $n \in \mathbb{N}$, $k = 1, 2, 3$:

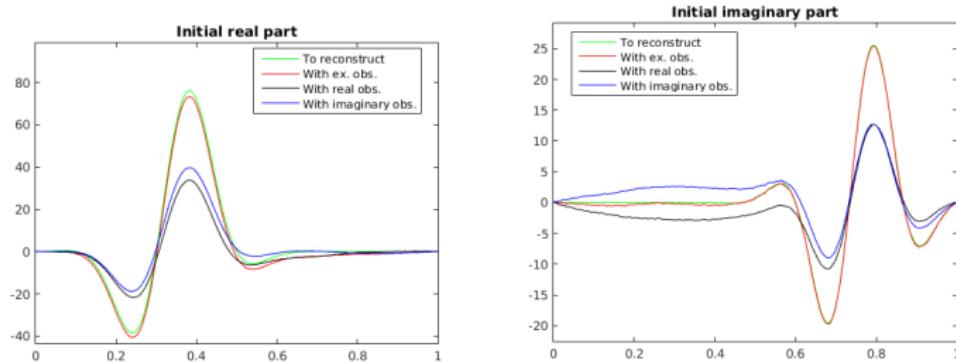
Forward observers:

$$\begin{cases} \frac{\partial}{\partial t} z_n^+ = -\mathbf{i} \frac{\partial^2}{\partial x^2} z_n^+ + \alpha z_n^+ - \gamma \chi z_n^+ + \gamma \mathbf{y}_k & \forall x \in (0, 1), t \geq 0, \\ z_n^+(t, 0) = z_n^+(t, 1) = 0 & \forall t \geq 0, \\ z_n^+(0, x) = z_{n-1}^-(\tau, x) & \forall x \in (0, 1), n \geq 1, \\ z_1^+(0, x) = 0 & \forall x \in (0, 1), \end{cases}$$

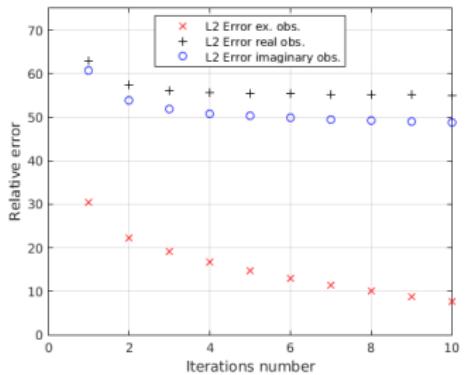
Backward observers:

$$\begin{cases} \frac{\partial}{\partial t} z_n^- = \mathbf{i} \frac{\partial^2}{\partial x^2} z_n^- - \alpha z_n^- + \gamma \chi z_n^- - \gamma \mathbf{A}_\tau \mathbf{y}_k & \forall x \in (0, 1), t \geq 0, \\ z_n^-(t, 0) = z_n^-(t, 1) = 0 & \forall t \geq 0, \\ z_n^-(0, x) = z_n^+(\tau, x) & \forall x \in (0, 1), n \geq 0, \end{cases}$$

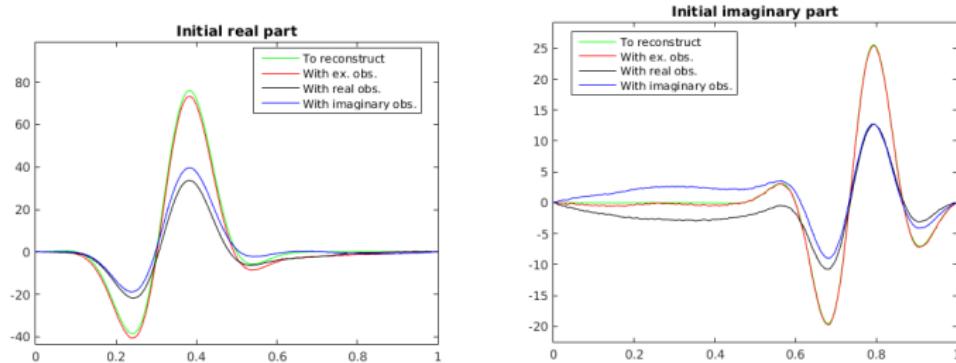
We test with $\alpha = \pm 15$ and 0, and find in the three cases



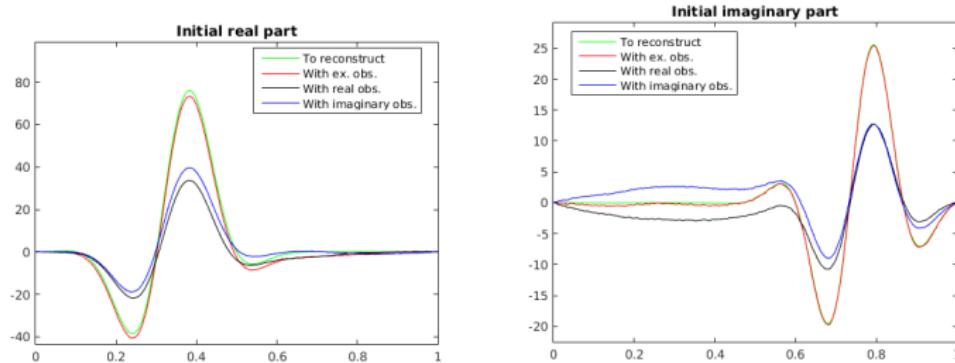
with the L^2 errors



Locally distributed perturbation on $(0.75, 1)$



Locally distributed perturbation on $(0.75, 1)$



Conjecture

Let X and Y be Hilbert spaces. Assume that Σ is a well-posed linear system such that $A = \mathcal{A} + P$, for some $P \in \mathcal{L}(X)$ and skew-adjoint operator \mathcal{A} . Then the conclusions of the main theorem hold.

1 Introduction

2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

Conclusion

More ?

[G. Haine](#)

Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint operator

[\(Mathematics of Control, Signals, and Systems \(MCSS\), January 2014\)](#)

Conclusion

More ?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

Application to thermo-acoustic tomography:

G. Haine

An observer-based approach for thermoacoustic tomography

(Mathematical Theory of Networks and Systems (MTNS – Gröningen), July 2014)

Conclusion

More ?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

Application to thermo-acoustic tomography:

G. Haine

An observer-based approach for thermoacoustic tomography

(Mathematical Theory of Networks and Systems (MTNS – Gröningen), July 2014)

Still to be done:

- Stability of V_{Obs} and V_{Unobs} with noisy observation y
- More general perturbations

Thank you for your
attention