
Institut Supérieur de l’Aéronautique et de l’Espace

Recovering the initial state of a Well-Posed Linear
System with perturbed skew-adjoint generator

Ghislain Haine
ISAE – Supported by IDEX-"Nouveaux Entrants"

European Control Conference July, 15–17
Session “State Observation and Parameter Estimation of Systems Involving PDEs”

G. Haine Recovering the initial state of a WPLS 1/ 23



1 Introduction

2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

G. Haine Recovering the initial state of a WPLS 2/ 23



1 Introduction

2 Idea of the reconstruction algorithm

3 Main result

4 Application

5 Conclusion

G. Haine Recovering the initial state of a WPLS 3/ 23



Let
X be a Hilbert space,
A : D(A) ⊂ X → X be a skew-adjoint operator,

Considered systems: Given α ∈ R, let A = A+ αI,{
ż(t) = Az(t), ∀ t ∈ [0,∞),
z(0) = z0 ∈ D(A).

For instance:

A = −i∆ (+ Dirichlet boundary conditions) on Ω ⊂ Rn and X = H1
0 (Ω).

⇓
the classical Schrödinger’s equation with constant potential.
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Let
Y be another Hilbert space
C ∈ L(X,Y )

τ > 0

We observe z via y(t) = Cz(t) for all t ∈ [0, τ ].

The Schrödinger’s equation case,
with locally distributed observation:

C = χO·
and

y(t) = χOz(t), ∀t ∈ [0, τ ].

Our problem
Reconstruct the unknown z0 from the measurement y(t).
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K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on [0, τ ].
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We construct the forward observer{
ż+(t) = Az+(t)− C∗Cz+(t) + C∗y(t), ∀ t ∈ [0, τ ],
z+(0) = z+

0 ∈ D(A).

We subtract the observed system{
ż(t) = Az(t), ∀ t ∈ [0, τ ],
z(0) = z0,

to obtain (remember that y(t) = Cz(t)), denoting

e = z+ − z,

the estimation error,{
ė(t) = (A− C∗C) e(t), ∀ t ∈ [0, τ ],
e(0) = z+

0 − z0,

which is known to be exponentially stable if and only if (A,C) is exactly
observable, i.e.

∃τ > 0,∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A).
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ż+(t) = Az+(t)− C∗Cz+(t) + C∗y(t), ∀ t ∈ [0, τ ],
z+(0) = z+

0 ∈ D(A).

We subtract the observed system{
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Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
ż−(t) = Az−(t) + C∗Cz−(t)− C∗y(t), ∀ t ∈ [0, τ ],
z−(τ) = z+(τ).

After a time reversal Z−(t) = Rτz−(t) := z−(τ − t), we get{
Ż−(t) = −AZ−(t)− C∗CZ−(t) + C∗y(τ − t), ∀ t ∈ [0, τ ],
Z−(0) = z+(τ).

And from similar computations for A− := −A− C∗C as those for
A+ := A− C∗C:

‖z−(0)− z0‖ ≤Me−βτ‖z+(τ)− z(τ)‖ ≤M2e−2βτ‖z+
0 − z0‖.
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Ż−(t) = −AZ−(t)− C∗CZ−(t) + C∗y(τ − t), ∀ t ∈ [0, τ ],
Z−(0) = z+(τ).

And from similar computations for A− := −A− C∗C as those for
A+ := A− C∗C:

‖z−(0)− z0‖ ≤Me−βτ‖z+(τ)− z(τ)‖ ≤M2e−2βτ‖z+
0 − z0‖.

G. Haine Recovering the initial state of a WPLS 9/ 23



Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
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If the system is exactly observable in time τ > 0, that is if:

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that

α := M2e−2βτ < 1.

Iterating n-times the forward–backward observers with z+
n (0) = z−n−1(0)

leads to
‖z−n (0)− z0‖ ≤ αn‖z+

0 − z0‖.

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z0 from y(t).
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In this work, the exact observability assumption in time τ

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

is not supposed to be satisfied !

However, the observers don’t need this assumption to make sense.

Questions

Given arbitrary C and τ > 0, does the algorithm converge ?
If it does, what is the limit of z−n (0) and how is it related to z0 ?
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Decomposition of X:

Let us denote Ψτ the following continuous linear operator

Ψτ : X −→ L2 ([0, τ ], Y ) ,
z0 7→ y(t).

Intuitively, if z0 is in Ker Ψτ , then y(t) ≡ 0, and we have no
information on z0 !

We decompose X = Ker Ψτ ⊕ (Ker Ψτ )
⊥ and define

VUnobs = Ker Ψτ , VObs = (Ker Ψτ )
⊥

= Ran Ψ∗τ .

Note that the exact observability assumption is equivalent to
Ψτ is bounded from below and then ⇒ X = Ran Ψ∗τ .
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Stability of the decomposition under the algorithm:
Let us denote T+ (resp. T−) the semigroup generated by
A+ := A− C∗C (resp. A− := −A− C∗C) on X.

Forward–backward observers cycle ⇒ operator T−τ T+
τ , i.e.

z−(0)− z0 = T−τ T+
τ

(
z+

0 − z0

)
,

obtained thanks to the fact that A± = A± ± αI generates the
semigroup e±αtT±t .

Denote S the group generated by A, then (since A = A+ + C∗C)

Sτz0 = T+
τ z0 +

∫ τ

0

T+
τ−tC

∗ CStz0︸ ︷︷ ︸
Ψτz0

dt, ∀ z0 ∈ X.

Using this (type of) Duhamel formula(s), we obtain

T−τ T+
τ VUnobs ⊂ VUnobs, T−τ T+

τ VObs ⊂ VObs.

The algorithm preserves the decomposition of X !
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Theorem
Denote by Π the orthogonal projection from X onto VObs. Then the
following statements hold true for all z0 ∈ X and z+

0 ∈ VObs:
1 For all n ≥ 1,∥∥(I −Π)

(
z−n (0)− z0

)∥∥ = ‖(I −Π) z0‖ .

2 The sequence (‖Π (z−n (0)− z0)‖)n≥1 is strictly decreasing and∥∥Π
(
z−n (0)− z0

)∥∥ =
∥∥z−n (0)−Πz0

∥∥ −→
n→∞

0.

3 There exists a constant α ∈ (0, 1), independent of z0 and z+
0 ,

such that for all n ≥ 1,∥∥Π
(
z−n (0)− z0

)∥∥ ≤ αn ∥∥z+
0 −Πz0

∥∥ ,
if and only if Ran Ψ∗τ is closed in X.
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Example
Consider the following Scrödinger’s equation

∂

∂t
z = −i

∂2

∂x2
z + αz ∀x ∈ (0, 1), t ≥ 0,

z(t, 0) = z(t, 1) = 0 ∀t ≥ 0,
z(0, x) = z0(x) ∀x ∈ (0, 1),

with z0 the initial state.

Observation
We observe the system on (0, 0.1) during a time τ = 0.2, via one of
the three following ways y1(t, x) = z(t, x)|x∈(0,0.1) ∀t ∈ (0, 0.2),

y2(t, x) = Re z(t, x)|x∈(0,0.1) ∀t ∈ (0, 0.2),
y3(t, x) = iIm z(t, x)|x∈(0,0.1) ∀t ∈ (0, 0.2).
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The algorithm reads, for all n ∈ N, k = 1, 2, 3:
Forward observers:

∂

∂t
z+
n = −i

∂2

∂x2
z+
n + αz+

n − γχz+
n + γyk ∀x ∈ (0, 1), t ≥ 0,

z+
n (t, 0) = z+

n (t, 1) = 0 ∀t ≥ 0,
z+
n (0, x) = z−n−1(τ, x) ∀x ∈ (0, 1), n ≥ 1,
z+

1 (0, x) = 0 ∀x ∈ (0, 1),

Backward observers:
∂

∂t
z−n = i

∂2

∂x2
z−n − αz−n + γχz−n − γ Rτyk ∀x ∈ (0, 1), t ≥ 0,

z−n (t, 0) = z−n (t, 1) = 0 ∀t ≥ 0,
z−n (0, x) = z+

n (τ, x) ∀x ∈ (0, 1), n ≥ 0,
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n (t, 0) = z+

n (t, 1) = 0 ∀t ≥ 0,
z+
n (0, x) = z−n−1(τ, x) ∀x ∈ (0, 1), n ≥ 1,
z+

1 (0, x) = 0 ∀x ∈ (0, 1),

Backward observers:
∂

∂t
z−n = i

∂2

∂x2
z−n − αz−n + γχz−n − γ Rτyk ∀x ∈ (0, 1), t ≥ 0,

z−n (t, 0) = z−n (t, 1) = 0 ∀t ≥ 0,
z−n (0, x) = z+

n (τ, x) ∀x ∈ (0, 1), n ≥ 0,
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We test with α = ±15 and 0, and find in the three cases

with the L2 errors
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Locally distributed perturbation on (0.75, 1)

Conjecture
Let X and Y be Hilbert spaces. Assume that Σ is a well-posed linear
system such that A = A+ P , for some P ∈ L(X) and skew-adjoint
operator A. Then the conclusions of the main theorem hold.
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Conclusion

More ?

G. Haine
Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator
(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

Application to thermo-acoustic tomography:

G. Haine
An observer-based approach for thermoacoustic tomography
(Mathematical Theory of Networks and Systems (MTNS – Gröningen),
July 2014)

Still to be done:

Stability of VObs and VUnobs with noisy observation y
More general perturbations
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Thank you for your
attention
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