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pulse absorption expansion waves detection formation
Image : RECENDT
The generated outward wave w satisfies
d*w
_ 2 3
iz (z,t) = *(z)Aw(x, 1), vVt>0,zeR,
w(z,0) = wo(z), Ve RS,
dw
—(z,0) =0, VazeRS,
dt

where
@ c is the known velocity of the wave,
@ (wo,0) is the unknown containing information on the distribution of

energy absorption (which is related to cell’s health).
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Mathematical setting

Let
Q@ X.,Y be two Hilbert spaces,
Q@ A : D(A) C X — X a skew-adjoint operator,
@ C € L(X,Y) an observation operator.
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y(t) = C2(t), Vte(0,7).
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Mathematical setting

Let
Q@ X.,Y be two Hilbert spaces,
Q@ A : D(A) C X — X a skew-adjoint operator,
@ C € L(X,Y) an observation operator.

Then, we consider

{ i(t) = Az(t), Vit>0,
Z(O) =z € X.

We observe z through C during a time interval (0,7), with 7 > 0

y(t) = C(t), Vite(0,7).

Inverse problem

Can we reconstruct zy from the knowledge of y(t)?
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The algorithm

K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on [0, T].

G. Haine An observer-based approach for TAT 7/ 28



Some bibliography

@ 2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalman's filters.

G. Haine An observer-based approach for TAT 8/ 28



Some bibliography

@ 2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalman's filters.

@ 2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation.

G. Haine An observer-based approach for TAT 8/ 28



Some bibliography

@ 2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalman's filters.

@ 2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation.

e 2009-2011: Uhlmann et al. (SIAM J. Imaging Sciences, Inverse
Problems, ...) use time reversal methods for solving TAT, leading to a
Neumann series expansion.

G. Haine An observer-based approach for TAT 8/ 28



Some bibliography

G. Haine

@ 2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalman's filters.

@ 2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation.

e 2009-2011: Uhlmann et al. (SIAM J. Imaging Sciences, Inverse
Problems, ...) use time reversal methods for solving TAT, leading to a
Neumann series expansion.

e 2010: Ramdani, Tucsnak and Weiss (Automatica) generalized the
TREF, based on the generalization of Luenberger’s observers.

An observer-based approach for TAT 8/ 28



Some bibliography

G. Haine

2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalman's filters.

2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation.

2009-2011: Uhlmann et al. (SIAM J. Imaging Sciences, Inverse
Problems, ...) use time reversal methods for solving TAT, leading to a
Neumann series expansion.

Our algorithm can lead to the same expansion (when >/ = 0),
even in ill-posed cases, and only need direct wave solver in
practice.

2010: Ramdani, Tucsnak and Weiss (Automatica) generalized the
TREF, based on the generalization of Luenberger’s observers.
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We construct the forward observer

2T (t) = AzT(t) — yC*C2 T (t) + vC*y(t), Vtelo,7],
{ 21(0) = 2z, € D(A).

G. Haine An observer-based approach for TAT 9/ 28



We construct the forward observer

2T (t) = AzT(t) — yC*C2 T (t) + vC*y(t), Vtelo,7],
2T(0) = 2z, € D(A).
We subtract the observed system
2(t) = Az(t), Vtelo,7],
Z(O) = 20,

G. Haine An observer-based approach for TAT 9/ 28



We construct the forward observer

ZH(t) = Azt (t) —yC*Czt(t) + vC*y(t), Vtelo,r],
2T(0) = 2z, € D(A).
We subtract the observed system
2(t) = Az(t), Vtelo,7],
Z(O) = 20,
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We construct the forward observer

ZH(t) = Azt (t) —yC*Czt(t) + vC*y(t), Vtelo,r],
2T(0) = 2z, € D(A).
We subtract the observed system
2(t) = Az(t), Vtelo,7],
Z(O) = 20,

to obtain (remember that y(t) = C'z(t)), denoting

e=2z"—2z,
the estimation error,
{ é(t) = (A—1C"C)e(t), vtelo,r],
6(0) = Z(T — 20,

which is known to be exponentially stable if and only if (4, C) is exactly
observable, i.e.

3> 030 >0, [ lyOPdt = Rl’, Vi€ D)
0
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Exponential stability = 3M > 0,8 > 0 such that

I (1) = 2(T)| < Me™T||25 — 2.
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Exponential stability = 3M > 0,8 > 0 such that
I27(r) = 2(7)|| < Me 7|25 — 0l.
We construct a similar system: the backward observer,

{ 27 (t) = Az~ (t) + vC*Cz= (t) — vC*y(t), Vtelo,T],
27 (1) = 2+ (7).

After a time reversal Z7(t) = 1,27 (t) := 2= (7 — t), we get

Z=(t) = —AZ~(t) — yC*CZ~(t) + 7C*y(T — t), vtelo,r],
Z=(0) = 27 (7).
And from similar computations for A~ := —A — yvC*C as those for

AT :=A—~C*C:

127(0) = zoll < Me™?T[|2* (1) — 2(7)l| < M7z — 2]
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If the system is exactly observable in time 7 > 0, that is if:
3k, >0, / ly(®)|12dt > k2|20, V zy € D(A),
0

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that
o= M?e 7 < 1.
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If the system is exactly observable in time 7 > 0, that is if:

Z()||2, V2o € D(A),

B> 0, [ uto)Pae = 12
0

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)

proved that
o= M%7 < 1.

Iterating n-times the forward—backward observers with z;(0) = z,,_,(0)
leads to
Iz (0) = zoll < @™[lz5 = 2o

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z, from y(t).
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e Application to TAT
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Modelling the problem

We perform external observation —> w(z,t) on a “boundary” S.

G. Haine An observer-based approach for TAT 13/ 28



Modelling the problem

We perform external observation —> w(z,t) on a “boundary” S.
Observation during a finite time interval =— measurement until time
0 <7 <o0.

G. Haine An observer-based approach for TAT 13/ 28



Modelling the problem

We perform external observation —> w(z,t) on a “boundary” S.
Observation during a finite time interval =— measurement until time
0 <7 <o0.
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Modelling the problem

We perform external observation —> w(z,t) on a “boundary” S.
Observation during a finite time interval =— measurement until time
0 <7 <o0.

We choose T such that all information “comes out” (Huygens’ principle).

Hence
y(x,t) = w(x,t), VzedS,telo,r]
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Writing the wave system as 2 = Az, y = Cz

© Main issue = Unbounded domain R? : the exact observability
property can not hold !
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Poisson-Kirchhoff formula
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© Main issue = Unbounded domain R? : the exact observability
property can not hold !

Q@ wy € C°(R3) compactly supported in ) (support = body).
Poisson-Kirchhoff formula

w(z,t) = % (tSwo(x)), VreR3t>0,

with S f(z)(®) :/l_lf(x—i—tv)da(v).

© Huygens’ principle = for all t > 0, the support of w(z,t) is in

UG ={yeR’ ||z -yl <tz eQ}.

An observer-based approach for TAT

14/ 28



Writing the wave system as 2 = Az, y = Cz
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© Main issue = Unbounded domain R? : the exact observability
property can not hold !

Q@ wy € C°(R3) compactly supported in ) (support = body).
Poisson-Kirchhoff formula

% (tSwo(x)), VreR3t>0,

with SF(z)(t) = / £ + tv)do(v).

|v|=1
© Huygens’ principle = for all t > 0, the support of w(z,t) is in

w(z,t) =

UG ={yeR’ ||z -yl <tz eQ}.

@ Since we measure during 7 > 0 seconds —> we bound “the
computation domain” by

Qi ={yecR3||jz—y|<T4e,x€Q),

for some fixed € > 0.
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Writing the wave system as 2 = Az, y = Cz

On Q.+, w(z,t) is also the solution of

2

%w(m,t):Aw(x,t), Ve +,tel0,1],
w(z,t) = Vxed+,tel0r],
(, )_U'()() VI'EQ7

w(z,0) =0, VzeQ+\Q,

aw(x,O) =0, Vred .
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Writing the wave system as 2 = Az, y = Cz

On Q.+, w(z,t) is also the solution of

2
%w(m,t} = Aw(z,t), Ve +,tel0,1],
w(z,t) =0, Vaed+,tel0,r1],
w(z,0) = wo(x), Ve,
w(z,0) =0, VzeQ+\Q,
%w(m,O) =0, Vred .

Let vo € £ (H&(QTJr), H%(aﬂ)) be the Dirichlet operator on 92. We

define
D (Ao) = Hz(QT"') n H&(QT‘*)a H = LQ(QT"')a
AO =—-A: D(Ao) —)H,
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Writing the wave system as 2 = Az, y = Cz

On Q.+, w(z,t) is also the solution of

2
%w(m,t} = Aw(z,t), Ve +,tel0,1],
w(zx,t) =0, Vaed+,tel0,7],
w(z,0) = wo(x), Ve,

w(z,0) =0, VzeQ+\Q,
0

il = Q. +.
8tw(ar:,O) 0, Vet

Let o€ L (H&(QTJr), H%(aﬂ)) be the Dirichlet operator on 9. We

define
D (Ao) :Hz(QT‘*)mHé(QT‘*)a H:L2(QT+)a

AOZ—A ZD(Ao)—)H,
and

D (Aé) — HIQ,) = HE0Q), Y =L*0Q),
Co=r0:D (Aé) 5 HE(99) = Y.

G. Haine An observer-based approach for TAT 15/ 28



Writing the wave system as 2 = Az, y = Cz

Then
w(t) + Aow(t) =0, Vtelo,7],
w(0) = wy € D (Ag) :
w(0) =0¢€ H.
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Writing the wave system as 2 = Az, y = Cz

Then
w(t) + Aow(t) =0, Vtelo,7],
w(0) = wy € D (Ag) :
w(0) =0¢€ H.

Finally, rewriting the model as a first-order system

(t) = [ggﬂ : %= [/Lﬂ , X=D <A§ ) x H,
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Writing the wave system as 2 = Az, y = Cz

Then
w(t) + Aow(t) =0, Vtelo,7],
w(0) = wy € D (Aé) ,
W(0) =0 € H.
Finally, rewriting the model as a first-order system
2(t) = [ggﬂ : 20 = [/Lﬂ : X =D (45) x H,

A:(?% é) D(4)=D () xD(43), C=[C 0],

and then

with
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Reconstruction algorithm

We show easily that
© A is skew-adjoint
Q@ CeL(X)Y)
© (4, C) is not exactly observable (V7 > 0)
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Reconstruction algorithm

We show easily that
© A is skew-adjoint

Q@ CeL(X)Y)
© (4, C) is not exactly observable (V7 > 0)
Indeed

Some rays are trapped (Bardos, Lebeau, Rauch 1992).
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Decomposition of X:

@ Let us denote .. the following continuous linear operator

v, : X — L%([0,7],Y),
20 y(t).
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Intuitively, if z, is in Ker U, then y(¢) =0, and we have no
information on z; !
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Decomposition of X:

@ Let us denote .. the following continuous linear operator

v, : X — L%([0,7],Y),
20 y(t).

Intuitively, if z, is in Ker U, then y(¢) =0, and we have no
information on z; !

o We decompose X = Ker U, @ (Ker ¥,)" and define
VUnobs = Ker \IJT, VObS = (Ker \I/q—)L = Ran \I/;k_

Note that the exact observability assumption is equivalent to
U, is bounded from below and then = X = Ran U*.

G. Haine An observer-based approach for TAT 18/ 28



Theorem

Denote by IT the orthogonal projection from X onto Vgps. Then the
following statements hold true for all 2o € X and 2, € Vops:

Q@ Foralln>1,
|(Z = 10) (27 (0) = 20) || = | = II) 2ol -
@ The sequence ([|[II(z, (0) — 20)|),,>, is strictly decreasing and

|1 (27, (0) — 20) || = ||z (0) — Izo|| — O.

n— o0

© There exists a constant « € (0, 1), independent of z; and :“’ ,
such that for all n > 1,

T (25, (0) — 20) || < @™ ||z5 — Mo

)

if and only if Ran W is closed in X.
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Reconstruction algorithm

The forward observer reads

Wt (t) = = C5Cowt () + wyt (1) +1Cgy(t), Vtelo,r],
@y (1) = —Agwi (1), Vie o,
wi (0) =0,

wy (0) =0,

w;F(0) = w,_4(0), Yn>2,
w,r (0) = w,_1(0), V> 2,
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Reconstruction algorithm

The forward observer reads

Wt (t) = = C5Cowt () + wyt (1) +1Cgy(t), Vtelo,r],
@y (1) = —Agwi (1), Vie o,
wi (0) =0,

wy (0) =0,

w;F(0) = w,_4(0), Yn>2,
w,r (0) = w,_1(0), V> 2,

Uy, (t) = 1G5 Cowy, (1) + w, (8) = 7 Coy(t), vitelo,7],
w,, (1) = —Agw, (1)(1), vitelo,T],
wy (1) = wi(7), Vn>1,
W, (1) =y (1), V> 1.
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3D Simulations

@ We use Gmsh and GetDP to simulate our problem: P1 FEM scheme
in space and BFD1 scheme in time
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3D Simulations

@ We use Gmsh and GetDP to simulate our problem: P1 FEM scheme
in space and BFD1 scheme in time

@ We know that there exists an optimal number of iterations (Haine
and Ramdani, 2012). Furthermore, under some hypothesis, we have

lwo —wonadly < M| (h+ Aty n(h + At) (||w0||%)

K
i 49183 o) ~ 3]
=0
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3D Simulations

@ We use Gmsh and GetDP to simulate our problem: P1 FEM scheme
in space and BFD1 scheme in time

@ We know that there exists an optimal number of iterations (Haine
and Ramdani, 2012). Furthermore, under some hypothesis, we have

lJwo — wo,mm”% < M, | (h+ At)In*(h + At) (||wo||g)
K
i 49183 o) ~ 3]

£=0

@ We simulate the outward wave and measure it on a sphere
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3D Simulations
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We use Gmsh and GetDP to simulate our problem: P1 FEM scheme
in space and BFD1 scheme in time

We know that there exists an optimal number of iterations (Haine
and Ramdani, 2012). Furthermore, under some hypothesis, we have

lwo —wonadly < M| (h+ Aty n(h + At) (||w0||%)

K
+n(h+ A ALY [ly(te) - vih| } :
=0

We simulate the outward wave and measure it on a sphere

We add gaussian noise with 0.25 of standard deviation on the
observation
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3D Simulations
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We use Gmsh and GetDP to simulate our problem: P1 FEM scheme
in space and BFD1 scheme in time

We know that there exists an optimal number of iterations (Haine
and Ramdani, 2012). Furthermore, under some hypothesis, we have

lwo —wonadly < M| (h+ Aty n(h + At) (||w0||%)

K
+ In(h+ AL AL " y(te) — | } .
£=0
We simulate the outward wave and measure it on a sphere

We add gaussian noise with 0.25 of standard deviation on the
observation

We use this noisy observation on several configurations:
© We test the influence of the gain parameter

© We test ill-posed cases: lack of observation
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Simulations with observation on a sphere

Simulations with observation on a sphere: well-posed inverse problem !
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Simulations with observation on a half-sphere

Simulations with observation on a half-sphere
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What about real life applications:

Frr

Small Animal Scanner — 2D Array TAT — Wikipedia (EN)
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What about real life applications?

Small Animal Scanner — 2D Array TAT — Wikipedia (EN)
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Simulations with observation on a 2D array

Simulations with observation on a 2D array on the half-sphere
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Influence of paramete

Relative orror in L2, with hi = 0.1 2 = 0.08; db = 0.0125; T = 1.05; qain = 1.3 Relative error in L2, with hi = 0,13 h2 = 0,08: dt = 0,01253 05 gain = B,z

N

[£3]

Relative Error (1)

Relative Error

Munber of iteratians Musber of iterations

Relative errors in L? with gain parameter v =1 (left) and v = 5 (right)
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Conclusion

Read more on the subject?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

G. Haine and K. Ramdani

Reconstructing initial data using observers: error analysis of the
semi-discrete and fully discrete approximations

(Numerische Mathematik (Numer. Math.), 2012)
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Conclusion

Read more on the subject?

G. Haine

Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator

(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

G. Haine and K. Ramdani

Reconstructing initial data using observers: error analysis of the
semi-discrete and fully discrete approximations

(Numerische Mathematik (Numer. Math.), 2012)

But there is still a lot to be done:

@ Stability of Vops and Vypeps With noisy observation y
o Generalization (A* # —A)
@ Optimization of 4

G. Haine An observer-based approach for TAT 28/ 28



	Introduction
	The algorithm
	Application to TAT
	Conclusion

