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Introduction

Image : RECENDT

The generated outward wave w satisfies
d2w

dt2
(x, t) = c2(x)∆w(x, t), ∀ t ≥ 0, x ∈ R3,

w(x, 0) = w0(x), ∀ x ∈ R3,
dw

dt
(x, 0) = 0, ∀ x ∈ R3,

where
c is the known velocity of the wave,
(w0, 0) is the unknown containing information on the distribution of
energy absorption (which is related to cell’s health).
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Mathematical setting

Let
1 X,Y be two Hilbert spaces,
2 A : D(A) ⊂ X → X a skew-adjoint operator,
3 C ∈ L(X,Y ) an observation operator.

Then, we consider {
ż(t) = Az(t), ∀ t ≥ 0,
z(0) = z0 ∈ X.

We observe z through C during a time interval (0, τ), with τ > 0

y(t) = Cz(t), ∀ t ∈ (0, τ).

Inverse problem
Can we reconstruct z0 from the knowledge of y(t)?
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The algorithm

K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on [0, τ ].
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Some bibliography

2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalman’s filters.

2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation.

2009-2011: Uhlmann et al. (SIAM J. Imaging Sciences, Inverse
Problems, ...) use time reversal methods for solving TAT, leading to a
Neumann series expansion.
Our algorithm can lead to the same expansion (when z+

0 = 0),
even in ill-posed cases, and only need direct wave solver in
practice.

2010: Ramdani, Tucsnak and Weiss (Automatica) generalized the
TRF, based on the generalization of Luenberger’s observers.
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We construct the forward observer{
ż+(t) = Az+(t)− γC∗Cz+(t) + γC∗y(t), ∀ t ∈ [0, τ ],
z+(0) = z+

0 ∈ D(A).

We subtract the observed system{
ż(t) = Az(t), ∀ t ∈ [0, τ ],
z(0) = z0,

to obtain (remember that y(t) = Cz(t)), denoting

e = z+ − z,

the estimation error,{
ė(t) = (A− γC∗C) e(t), ∀ t ∈ [0, τ ],
e(0) = z+

0 − z0,

which is known to be exponentially stable if and only if (A,C) is exactly
observable, i.e.

∃τ > 0,∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A).
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Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
ż−(t) = Az−(t) + γC∗Cz−(t)− γC∗y(t), ∀ t ∈ [0, τ ],
z−(τ) = z+(τ).

After a time reversal Z−(t) = Rτz−(t) := z−(τ − t), we get{
Ż−(t) = −AZ−(t)− γC∗CZ−(t) + γC∗y(τ − t), ∀ t ∈ [0, τ ],
Z−(0) = z+(τ).

And from similar computations for A− := −A− γC∗C as those for
A+ := A− γC∗C:

‖z−(0)− z0‖ ≤Me−βτ‖z+(τ)− z(τ)‖ ≤M2e−2βτ‖z+
0 − z0‖.

G. Haine An observer-based approach for TAT 10/ 28



Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
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If the system is exactly observable in time τ > 0, that is if:

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that

α := M2e−2βτ < 1.

Iterating n-times the forward–backward observers with z+
n (0) = z−n−1(0)

leads to
‖z−n (0)− z0‖ ≤ αn‖z+

0 − z0‖.

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z0 from y(t).

G. Haine An observer-based approach for TAT 11/ 28



If the system is exactly observable in time τ > 0, that is if:

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that

α := M2e−2βτ < 1.

Iterating n-times the forward–backward observers with z+
n (0) = z−n−1(0)

leads to
‖z−n (0)− z0‖ ≤ αn‖z+

0 − z0‖.

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z0 from y(t).

G. Haine An observer-based approach for TAT 11/ 28



1 Introduction

2 The algorithm

3 Application to TAT

4 Conclusion

G. Haine An observer-based approach for TAT 12/ 28



Modelling the problem

We perform external observation =⇒ w(x, t) on a “boundary” S.

Observation during a finite time interval =⇒ measurement until time
0 < τ <∞.

We choose τ such that all information “comes out” (Huygens’ principle).

Hence
y(x, t) = w(x, t), ∀ x ∈ S, t ∈ [0, τ ].
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Writing the wave system as ż = Az, y = Cz

1 Main issue =⇒ Unbounded domain R3 : the exact observability
property can not hold !

2 w0 ∈ C∞(R3) compactly supported in Ω (support = body).
Poisson-Kirchhoff formula

w(x, t) =
∂

∂t
(tSw0(x)) , ∀ x ∈ R3, t ≥ 0,

with Sf(x)(t) =

∫
|v|=1

f(x+ tv)dσ(v).

3 Huygens’ principle =⇒ for all t ≥ 0, the support of w(x, t) is in

Ωt = {y ∈ R3 | |x− y| ≤ t, x ∈ Ω}.

4 Since we measure during τ > 0 seconds =⇒ we bound “the
computation domain” by

Ωτ+ = {y ∈ R3 | |x− y| ≤ τ + ε, x ∈ Ω},

for some fixed ε > 0.
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Writing the wave system as ż = Az, y = Cz

On Ωτ+ , w(x, t) is also the solution of

∂2

∂t2
w(x, t) = ∆w(x, t), ∀ x ∈ Ωτ+ , t ∈ [0, τ ],

w(x, t) = 0, ∀ x ∈ ∂Ωτ+ , t ∈ [0, τ ],
w(x, 0) = w0(x), ∀ x ∈ Ω,
w(x, 0) = 0, ∀ x ∈ Ωτ+ \ Ω,
∂

∂t
w(x, 0) = 0, ∀ x ∈ Ωτ+ .

Let γ0 ∈ L
(
H1

0 (Ωτ+), H
1
2 (∂Ω)

)
be the Dirichlet operator on ∂Ω. We

define

D (A0) = H2(Ωτ+) ∩H1
0 (Ωτ+), H = L2(Ωτ+),

A0 = −∆ : D (A0) −→ H,

and
D
(
A

1
2
0

)
= H1

0 (Ωτ+)→ H
1
2 (∂Ω), Y = L2(∂Ω),

C0 = γ0 : D
(
A

1
2
0

)
→ H

1
2 (∂Ω) ↪→ Y.
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define

D (A0) = H2(Ωτ+) ∩H1
0 (Ωτ+), H = L2(Ωτ+),

A0 = −∆ : D (A0) −→ H,

and
D
(
A

1
2
0

)
= H1

0 (Ωτ+)→ H
1
2 (∂Ω), Y = L2(∂Ω),

C0 = γ0 : D
(
A

1
2
0

)
→ H

1
2 (∂Ω) ↪→ Y.
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Writing the wave system as ż = Az, y = Cz

Then 
ẅ(t) +A0w(t) = 0, ∀ t ∈ [0, τ ],

w(0) = w0 ∈ D
(
A

1
2
0

)
,

ẇ(0) = 0 ∈ H.

Finally, rewriting the model as a first-order system

z(t) =

[
w(t)
ẇ(t)

]
, z0 =

[
w0

0

]
, X = D

(
A

1
2
0

)
×H,

A =

(
0 I
−A0 0

)
, D (A) = D (A0)×D

(
A

1
2
0

)
, C =

[
C0 0

]
,

and then {
ż(t) = Az(t), ∀ t ∈ [0, τ ],
z(0) = z0 ∈ X,

with
y(t) = Cz(t), ∀ t ∈ [0, τ ].
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Reconstruction algorithm

We show easily that
1 A is skew-adjoint
2 C ∈ L(X,Y )
3 (A,C) is not exactly observable (∀τ > 0)

Indeed

Some rays are trapped (Bardos, Lebeau, Rauch 1992).
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Decomposition of X:

Let us denote Ψτ the following continuous linear operator

Ψτ : X −→ L2 ([0, τ ], Y ) ,
z0 7→ y(t).

Intuitively, if z0 is in Ker Ψτ , then y(t) ≡ 0, and we have no
information on z0 !

We decompose X = Ker Ψτ ⊕ (Ker Ψτ )
⊥ and define

VUnobs = Ker Ψτ , VObs = (Ker Ψτ )
⊥

= Ran Ψ∗τ .

Note that the exact observability assumption is equivalent to
Ψτ is bounded from below and then ⇒ X = Ran Ψ∗τ .
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Theorem
Denote by Π the orthogonal projection from X onto VObs. Then the
following statements hold true for all z0 ∈ X and z+

0 ∈ VObs:
1 For all n ≥ 1,∥∥(I −Π)

(
z−n (0)− z0

)∥∥ = ‖(I −Π) z0‖ .

2 The sequence (‖Π (z−n (0)− z0)‖)n≥1 is strictly decreasing and∥∥Π
(
z−n (0)− z0

)∥∥ =
∥∥z−n (0)−Πz0

∥∥ −→
n→∞

0.

3 There exists a constant α ∈ (0, 1), independent of z0 and z+
0 ,

such that for all n ≥ 1,∥∥Π
(
z−n (0)− z0

)∥∥ ≤ αn ∥∥z+
0 −Πz0

∥∥ ,
if and only if Ran Ψ∗τ is closed in X.
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Reconstruction algorithm

The forward observer reads

ẇ+
n (t) = −γC∗0C0w

+
n (t) + w̃+

n (t) + γC∗0y(t), ∀ t ∈ [0, τ ],
˙̃w

+

n (t) = −A0w
+
n (t), ∀ t ∈ [0, τ ],

w+
1 (0) = 0,

w̃+
1 (0) = 0,

w+
n (0) = w−n−1(0), ∀ n ≥ 2,

w̃+
n (0) = w̃−n−1(0), ∀ n ≥ 2,

and the backward observer is
ẇ−n (t) = γC∗0C0w

−
n (t) + w̃−n (t)− γC∗0y(t), ∀ t ∈ [0, τ ],

˙̃w
−
n (t) = −A0w

−
n (t)(t), ∀ t ∈ [0, τ ],

w−n (τ) = w+
n (τ), ∀ n ≥ 1,

w̃−n (τ) = w̃+
n (τ), ∀ n ≥ 1.
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3D Simulations

We use Gmsh and GetDP to simulate our problem: P1 FEM scheme
in space and BFD1 scheme in time

We know that there exists an optimal number of iterations (Haine
and Ramdani, 2012). Furthermore, under some hypothesis, we have

‖w0 − w0,h,∆t‖ 1
2
≤Mτ

[
(h+ ∆t) ln2(h+ ∆t)

(
‖w0‖ 3

2

)
+ |ln(h+ ∆t)|∆t

K∑
`=0

∥∥y(t`)− y`h
∥∥ ].

We simulate the outward wave and measure it on a sphere
We add gaussian noise with 0.25 of standard deviation on the
observation
We use this noisy observation on several configurations:

1 We test the influence of the gain parameter γ
2 We test ill-posed cases: lack of observation
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Simulations with observation on a sphere

Simulations with observation on a sphere: well-posed inverse problem !
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Simulations with observation on a half-sphere

Simulations with observation on a half-sphere
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What about real life applications?

Small Animal Scanner – 2D Array TAT – Wikipedia (EN)
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Simulations with observation on a 2D array

Simulations with observation on a 2D array on the half-sphere

G. Haine An observer-based approach for TAT 25/ 28



Influence of parameter γ

Relative errors in L2 with gain parameter γ = 1 (left) and γ = 5 (right)
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Conclusion

Read more on the subject?

G. Haine
Recovering the observable part of the initial data of an infinite-dimensional
linear system with skew-adjoint operator
(Mathematics of Control, Signals, and Systems (MCSS), January 2014)

G. Haine and K. Ramdani
Reconstructing initial data using observers: error analysis of the
semi-discrete and fully discrete approximations
(Numerische Mathematik (Numer. Math.), 2012)

But there is still a lot to be done:

Stability of VObs and VUnobs with noisy observation y
Generalization (A∗ 6= −A)
Optimization of γ
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