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Let

X be a Hilbert space,

A : D(A)→ X be a skew-adjoint operator,

Conservative systems{
ż(t) = Az(t), ∀ t ∈ [0,∞),
z(0) = z0 ∈ D(A).

For instance:

A =

(
0 I
∆ 0

)
(+ Dirichlet boundary conditions) on Ω ⊂ Rn

and X = H1
0 (Ω)× L2(Ω)
⇓

the classical wave equation with z =

[
w
ẇ

]
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Let

Y be another Hilbert space

C ∈ L(X,Y )

τ > 0

We observe z via y(t) = Cz(t) for all t ∈ [0, τ ].

For instance, for the classical wave
equation, let O ⊂ Ω:

y(t) =
[
0 χO

] [w(t)
ẇ(t)

]
, ∀t ∈ [0, τ ],

= χOẇ(t), ∀t ∈ [0, τ ].

Our problem

Reconstruct the unknown z0 in X from the measurement y(t).
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K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on [0, τ ].
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Some remarks

2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalmann’s filters

2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation

2010: Ramdani, Tucsnak and Weiss (Automatica) generalized the
TRF, based on the generalization of Luenberger’s observers
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We construct the forward observer{
ż+(t) = Az+(t)− C∗Cz+(t) + C∗y(t), ∀ t ∈ [0, τ ],
z+(0) = z+

0 ∈ D(A).

If we subtract the observed system{
ż(t) = Az(t), ∀ t ∈ [0, τ ],
z(0) = z0,

to obtain (remember that y(t) = Cz(t)), denoting e = z+ − z,{
ė(t) = (A− C∗C) e(t), ∀ t ∈ [0, τ ],
e(0) = z+

0 − z0,

which is known to be exponentially stable if and only if (A,C) is exactly
observable, i.e.

∃T > 0,∃kT > 0,

∫ T

0

‖y(t)‖2dt ≥ k2
T ‖z0‖2, ∀ z0 ∈ D(A).
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Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
ż−(t) = Az−(t) + C∗Cz−(t)− C∗y(t), ∀ t ∈ [0, τ ],
z−(τ) = z+(τ).

From similar computations

‖z−(0)− z0‖ ≤Me−βτ‖z+(τ)− z(τ)‖ ≤M2e−2βτ‖z+
0 − z0‖.

G. Haine Reconstructing initial data for wave



Introduction The reconstruction algorithm Main result Conclusion

Exponential stability ⇒ ∃M > 0, β > 0 such that

‖z+(τ)− z(τ)‖ ≤Me−βτ‖z+
0 − z0‖.

We construct a similar system: the backward observer,{
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If

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that

α := M2e−2βτ < 1.

Iterating n-times the forward–backward observers with z+
n (0) = z−n−1(0)

leads to
‖z−n (0)− z0‖ ≤ αn‖z+

0 − z0‖.

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z0 from y(t).
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In this work, the exact observability assumption in time τ

∃kτ > 0,

∫ τ

0

‖y(t)‖2dt ≥ k2
τ‖z0‖2, ∀ z0 ∈ D(A),

is not supposed to be satisfied !
However, the algorithm doesn’t need this assumption to be well-posed.

Questions

Given arbitrary C and τ > 0, does the algorithm converge ?

If it does, what is the limit of z−n (0) and how is it related to z0 ?
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Decomposition of X:

Let us denote Ψτ the following continuous linear operator

Ψτ : X −→ L2 ([0, τ ], Y ) ,
z0 7→ y(t).

Intuitively, if z0 is in Ker Ψτ , then y(t) ≡ 0, and we have no
information on z0 !

We decompose X = Ker Ψτ ⊕ (Ker Ψτ )
⊥ and define

VUnobs = Ker Ψτ , VObs = (Ker Ψτ )
⊥

= Ran Ψ∗τ .

Note that the exact observability assumption is equivalent to Ψτ is
bounded from below and then ⇒ X = Ran Ψ∗τ .

G. Haine Reconstructing initial data for wave
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Stability under the algorithm:
Let us denote T+ (resp. T−) the semigroup generated by
A+ := A− C∗C (resp. A− := −A− C∗C) on X.

Forward–backward observers cycle ⇒ operator T−τ T+
τ , i.e.

z−(0)− z0 = T−τ T+
τ

(
z+

0 − z0

)
.

Denote S the group generated by A, then (since A = A+ + C∗C)

Sτz0 = T+
τ z0 +

∫ τ

0

T+
τ−tC

∗ CStz0︸ ︷︷ ︸
Ψτz0

dt, ∀ z0 ∈ X.

Using this (type of) Duhamel formula(s), we obtain

T−τ T+
τ VUnobs ⊂ VUnobs, T−τ T+

τ VObs ⊂ VObs.

The algorithm preserves the decomposition of X !

G. Haine Reconstructing initial data for wave
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Convergence of the algorithm:

It is obvious that the algorithm has no influence on VUnobs.

Let us denote L = T−τ T+
τ |VObs

, we have:
1

lim
n→∞

Lnz = 0, ∀ z ∈ X

2

‖L‖L(VObs) < 1⇐⇒ Ran Ψ∗τ is closed in X

Sketch of proof

1 L is positive self-adjoint.
Ln+1 < Ln from which we get limn→∞ Ln = L∞ ∈ L(VObs).
L2
∞ = L∞ and ‖L∞z‖ < ‖z‖ for all z ∈ VObs =⇒ Ran L∞ = {0}.

2 Duhamel formulas =⇒ ‖L‖L(VObs) in term of inf
‖z‖=1,z∈VObs

‖Ψτz‖.

Ran Ψ∗τ closed in X ⇐⇒ Ψτ bounded from below on VObs.

Furthermore, it is easy to prove that:

z+
0 ∈ VObs =⇒ z−n (0) ∈ VObs, ∀n ≥ 1.

G. Haine Reconstructing initial data for wave
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Theorem

Denote by Π the orthogonal projection from X onto VObs. Then the
following statements hold true for all z0 ∈ X and z+

0 ∈ VObs:

1 For all n ≥ 1,∥∥(I −Π)
(
z−n (0)− z0

)∥∥ = ‖(I −Π) z0‖ .

2 The sequence (‖Π (z−n (0)− z0)‖)n≥1 is strictly decreasing and∥∥Π
(
z−n (0)− z0

)∥∥ =
∥∥z−n (0)−Πz0

∥∥ −→
n→∞

0.

3 There exists a constant α ∈ (0, 1), independent of z0 and z+
0 , such

that for all n ≥ 1,∥∥Π
(
z−n (0)− z0

)∥∥ ≤ αn ∥∥z+
0 −Πz0

∥∥ ,
if and only if Ran Ψ∗τ is closed in X.
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Remark

Using the framework of well-posed linear systems, we obtain the same
result for some unbounded observation operator C ∈ L(D(A), Y ).

Example

Let

Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω

∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅
Consider the following wave system

ẅ(x, t)−∆w(x, t) = 0, ∀x ∈ Ω, t > 0,
w(x, t) = 0, ∀x ∈ Γ0, t > 0,
w(x, t) = u(x, t), ∀x ∈ Γ1, t > 0,
w(x, 0) = w0(x), ẇ(x, 0) = w1(x), ∀x ∈ Ω,

with u the control, and (w0, w1) the initial state.
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w(x, 0) = w0(x), ẇ(x, 0) = w1(x), ∀x ∈ Ω,

with u the control, and (w0, w1) the initial state.

G. Haine Reconstructing initial data for wave



Introduction The reconstruction algorithm Main result Conclusion

Remark

Using the framework of well-posed linear systems, we obtain the same
result for some unbounded observation operator C ∈ L(D(A), Y ).

Example

Let

Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω

∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅
Consider the following wave system
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Observation

Let ν be the unit normal vector of Γ1 pointing towards the exterior of Ω,
we observe the system via

y(x, t) = −∂(−∆)−1ẇ(x, t)

∂ν
, ∀x ∈ Γ1, t > 0.

Guo and Zhang (SIAM J. Control Optim., 2005) ⇒ well-posed linear
system.

Curtain and Weiss (SIAM J. Control Optim., 2006) ⇒ construction
of forward and backward observers (formally A± = ±A− C∗C).

So we can use the algorithm.
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Choosing a suitable initial data

Supp w0 has three components W1,W2 and W3, such that

W1 ⊂ VObs

W2 ⊂ VUnobs

W3 ∩VObs 6= ∅ and W3 ∩VUnobs 6= ∅
w1 ≡ 0

To perform the test, we use

Gmsh: a 3D finite element grid generator

GetDP: a general finite element solver
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The initial position and its reconstruction after 3 iterations

⇒ 6% of relative error in L2(Ω) on the “observable part”.
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Work-in-progress:

Application to thermo-acoustic tomography (simulations in progress)

Still to be done:

Stability of VObs and VUnobs with noisy observation y

Generalization (A∗ 6= −A)
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Thanks for your attention !

G. Haine
Recovering the observable part of the initial data of an
infinite-dimensional linear system with skew-adjoint operator
(Mathematics of Control, Signals, and Systems (MCSS), In
Revision)
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