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Introduction

Let
@ X be a Hilbert space,
e A:D(A) — X be a skew-adjoint operator,
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Introduction

Let
@ X be a Hilbert space,
e A:D(A) — X be a skew-adjoint operator,

Conservative systems

{ 2(t) = Az(t), Vtel0,00),
Z(O) =2p € D(A)

For instance:

A= (O I) (+ Dirichlet boundary conditions) on 2 C R”

A0
and X = H}(Q) x L2(Q)
U

the classical wave equation with z = {w]
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Introduction

Let
@ Y be another Hilbert space
e CeL(X)Y)
e7>0
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Let
@ Y be another Hilbert space
e CeL(X)Y)
e7>0

We observe z via y(t) = Cz(t) for all t € [0, 7].
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Introduction

Let

@ Y be another Hilbert space
e CeL(X)Y)
e7>0

We observe z via y(t) = Cz(t) for all t € [0, 7].

For instance, for the classical wave
equation, let O C Q:

.U(f') = [0 XO] {Zéiﬂ , Vte [077—]7
= xouw(t), vt € [0, 7].
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Introduction

Let

@ Y be another Hilbert space
e CeL(X)Y)
e7>0

We observe z via y(t) = Cz(t) for all t € [0, 7].

For instance, for the classical wave
equation, let O C Q:

y(t) =1[0 xo] Bgﬂ vt € [0, 7],
= xow(t), vt € [0, 7].

Our problem

Reconstruct the unknown z; in X from the measurement y (). J

G. Haine
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The reconstruction algorithm

@ The reconstruction algorithm
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The reconstruction algorithm

K. RAMDANI, M. TUCSNAK, AND G. WEISS
Recovering the initial state of an infinite-dimensional system using
observers (AUTOMATICA, 2010)

Intuitive representation

2 iterations, observation on [0, T].
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The reconstruction algorithm

Some remarks

@ 2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalmann's filters
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The reconstruction algorithm

Some remarks

@ 2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalmann's filters

@ 2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation
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The reconstruction algorithm

Some remarks

@ 2005: Auroux and Blum (C. R. Math. Acad. Sci. Paris) introduced
the Back and Forth Nuding (BFN), based on the generalization of
Kalmann's filters

@ 2008: Phung and Zhang (SIAM J. Appl. Math.) introduced the
Time Reversal Focusing (TRF), for the Kirchhoff plate equation

@ 2010: Ramdani, Tucsnak and Weiss (Automatica) generalized the
TRF, based on the generalization of Luenberger’'s observers
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The reconstruction algorithm

We construct the forward observer

2(t) = Az T (t) — C*CzT(t) + C*y(t), Vitel[o,7],
{ zH(0) = 2§ € D(A).
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The reconstruction algorithm

We construct the forward observer

2(t) = Az T (t) — C*CzT(t) + C*y(t), Vitel[o,7],
{ zH(0) = 2§ € D(A).

If we subtract the observed system
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The reconstruction algorithm

We construct the forward observer

2(t) = Az T (t) — C*CzT(t) + C*y(t), Vitel[o,7],
{ zH(0) = 2§ € D(A).

If we subtract the observed system

{ 2(t) = Az(t), vVitelo,7],
Z(O) = 20,

to obtain (remember that y(t) = Cz(t)), denoting e = 2T — z,

{ é(t) = (A—C*C)elt), Vtelo,r],
e(0) = 25 — 20,
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The reconstruction algorithm

We construct the forward observer

2(t) = Az T (t) — C*CzT(t) + C*y(t), Vitel[o,7],
{ zH(0) = 2§ € D(A).

If we subtract the observed system

{ 2(t) = Az(t), vVitelo,7],
Z(O) = 20,

to obtain (remember that y(t) = Cz(t)), denoting e = 2T — z,

{ é(t) = (A—C*C)elt), Vtelo,r],
e(0) = 25 — 20,

which is known to be exponentially stable if and only if (A, C) is exactly
observable, i.e.

T
r > 0,3kr > 0, / ly(t)||2dt > k2 ||20||%, Y 29 € D(A).
0
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The reconstruction algorithm

Exponential stability = 3M > 0, 8 > 0 such that

I () = 2(7)| < Me™T||2g — 2.
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The reconstruction algorithm

Exponential stability = 3M > 0, 8 > 0 such that
Iz4(r) = 2(7)Il < Me 7|28 — 2.
We construct a similar system: the backward observer,

{ 27(t) = Az~ (t) + C*Cz=(t) — C*y(t), Vtelo,T],
27 (1) = 2+ (7).
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The reconstruction algorithm

Exponential stability = 3M > 0, 8 > 0 such that
Iz4(r) = 2(7)Il < Me 7|28 — 2.
We construct a similar system: the backward observer,

{ 27 (t) = Az~ (t) + C*Cz(t) — C*y(t), Vtelo,T],
27 (1) = 2+ (7).

From similar computations

127(0) = zoll < Me™?T||2* (1) — 2(7)I| < M2e™||2f" — 20

G. Haine Reconstructing initial data for wave



The reconstruction algorithm

>

20 2, Y2y € D(A),

3k, > 0, / ly(t)||2dt > k2
0
Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)

proved that
o= M?e %7 < 1.
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The reconstruction algorithm

2, VZO € D(A),

20

3k, > 0, / ly(t)||2dt > k2
0

Ito, Ramdani and Tucsnak (Discrete Contin. Dyn. Syst. Ser. S, 2011)
proved that
o= M?e 287 < 1.

Iterating n-times the forward—backward observers with z;(0) = z,,_,(0)
leads to
< a"|lzg — zoll-

Iz (0) = =0

This is the iterative algorithm of Ramdani, Tucsnak and Weiss to
reconstruct z, from y(t).
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Main result

© Main result
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In this work, the exact observability assumption in time 7
T
k, >0, / ly(O)|2dt > K2]|z0]2, ¥ 20 € D(A),
0

is not supposed to be satisfied !
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In this work, the exact observability assumption in time 7
T
k, >0, / ly(O)|2dt > K2]|z0]2, ¥ 20 € D(A),
0

is not supposed to be satisfied !
However, the algorithm doesn’t need this assumption to be well-posed.
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In this work, the exact observability assumption in time 7
T
Ik, >0, / ly()lI>dt > k2| z0]1?, V 2 € D(A),
0

is not supposed to be satisfied !
However, the algorithm doesn’t need this assumption to be well-posed.

Questions
@ Given arbitrary C' and 7 > 0, does the algorithm converge ?

o If it does, what is the limit of z; (0) and how is it related to zy ?
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Decomposition of X:

@ Let us denote W, the following continuous linear operator

U X — L2([0,7]Y),
Zog > y(t).
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Decomposition of X:

@ Let us denote W, the following continuous linear operator

U X — L2([0,7]Y),
Zog > y(t).

Intuitively, if zy is in Ker U, then y(t) =0, and we have no
information on zg !
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Decomposition of X:

@ Let us denote W, the following continuous linear operator

U X — L2([0,7]Y),
Zog > y(t).

Intuitively, if zy is in Ker U, then y(t) =0, and we have no
information on zg !

@ We decompose X = Ker U, @ (Ker \I'T)l and define

Vunobs = Ker U0 Vops = (Ker \I/T)L = Ran ¥zx.

G. Haine Reconstructing initial data for wave



Decomposition of X:

@ Let us denote W, the following continuous linear operator

U X — L2([0,7]Y),
Zog > y(t).

Intuitively, if zy is in Ker U, then y(t) =0, and we have no
information on zg !

@ We decompose X = Ker U, @ (Ker \I'T)l and define
VUnobs = Ker V., Vops = (Ker \117—)L = Ran \If;‘_

Note that the exact observability assumption is equivalent to V.. is
bounded from below and then = X = Ran UZ.
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Stability under the algorithm:
Let us denote T (resp. T™) the semigroup generated by
AT :=A—C*C (resp. A=:=—A—-C*C)on X.
e Forward—backward observers cycle = operator T, T, i.e.

T

27(0) — 20 = T, T} (2§ — 20) -
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Stability under the algorithm:
Let us denote T (resp. T™) the semigroup generated by
AT :=A—C*C (resp. A=:=—A—-C*C)on X.

e Forward—backward observers cycle = operator T, T, i.e.

T

27(0) — 20 = T, T} (2§ — 20) -

@ Denote S the group generated by A, then (since A = A* + C*C)

Srzg = TiZ() + / ']I‘:LtC* CS;zg dt, Yz € X.
0 S~

Wz
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Stability under the algorithm:
Let us denote T (resp. T™) the semigroup generated by
AT :=A—C*C (resp. A=:=—A—-C*C)on X.

e Forward—backward observers cycle = operator T, T, i.e.

27(0) — 20 = T, T} (2§ — 20) -
@ Denote S the group generated by A, then (since A = A* + C*C)

STZ() = TiZ() + / ']I‘:LtC* CStZ() dt, V2o € X.
0 N——

Wz

o Using this (type of) Duhamel formula(s), we obtain

T;']F;—FVUnobs C VUnob37 T; TjVObs - VOlos-
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Stability under the algorithm:
Let us denote T (resp. T™) the semigroup generated by
AT :=A—C*C (resp. A=:=—A—-C*C)on X.

e Forward—backward observers cycle = operator T, T, i.e.

T

27(0) — 20 = T, T} (2§ — 20) -

@ Denote S the group generated by A, then (since A = A* + C*C)

Srzg = TiZ() + / ']I‘:LtC* CS;zg dt, Yz € X.
0 S——
Wz
o Using this (type of) Duhamel formula(s), we obtain
T;TjVUnobs C VUnob37 T; TjVObs C VOlos-

The algorithm preserves the decomposition of X !
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Convergence of the algorithm:
@ It is obvious that the algorithm has no influence on Vyyops-
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Convergence of the algorithm:
@ It is obvious that the algorithm has no influence on Vyyops-

o Let us denote L = T, T} |v,,., we have:
o
lim L"z =0, Vze X

n—0o
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Convergence of the algorithm:
@ It is obvious that the algorithm has no influence on Vyyops-

o Let us denote L = T, T} |v,,., we have:
o
lim L"z =0, Vze X
n— oo
(2]

1Ll 2(vone) < 1 <= Ran U7 is closed in X

G. Haine Reconstructing initial data for wave



Convergence of the algorithm:
@ It is obvious that the algorithm has no influence on Vyyops-

o Let us denote L = T, T} |v,,., we have:
o
lim L"z =0, Vze X
n— oo
(2]

1Ll 2(vone) < 1 <= Ran U7 is closed in X

Sketch of proof

©@ o L is positive self-adjoint.
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Convergence of the algorithm:
@ It is obvious that the algorithm has no influence on Vyyops-
o Let us denote L = T, T} |v,,., we have:
o
lim L"z =0, Vze X

n—0o

(2]
1Ll 2(vone) < 1 <= Ran U7 is closed in X

Sketch of proof

©@ o L is positive self-adjoint.
o L™ < L™ from which we get lim, 00 L™ = Loo € L(Vobs).
o L2 = Lo and ||[Looz|| < ||2|| for all z € Vors = Ran Lo, = {0}.
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Convergence of the algorithm:
@ It is obvious that the algorithm has no influence on Vyyops-
o Let us denote L = T, T} |v,,., we have:
o
lim L"z =0, Vze X

n—0o

(2]
1Ll 2(vone) < 1 <= Ran U7 is closed in X

Sketch of proof

©@ o L is positive self-adjoint.
o L™ < L™ from which we get lim, 00 L™ = Loo € L(Vobs).
o L2 = Lo and ||[Looz|| < ||2|| for all z € Vors = Ran Lo, = {0}.

© o Duhamel formulas = ||L||z(v,.) in term of inf |-z
llzllI=1,2€Vons
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Convergence of the algorithm:

@ It is obvious that the algorithm has no influence on Vyyops-
o Let us denote L = T, T} |v,,., we have:

(1]
lim L"z =0, Vze X

n—0o

(2]
1Ll 2(vone) < 1 <= Ran U7 is closed in X

Sketch of proof
o

L is positive self-adjoint.
o L™ < L™ from which we get lim, 00 L™ = Loo € L(Vobs).
o L% = Lo and ||Leoz| < ||2]|| for all z € Vobs = Ran Leo = {0}.

© o Duhamel formulas = ||L||z(v,.) in term of inf |-z
llzlI=1,2€Vons

e Ran U7 closed in X <= V. bounded from below on Vops.
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Convergence of the algorithm:

@ It is obvious that the algorithm has no influence on Vyyops-
o Let us denote L = T, T} |v,,., we have:

(1]
lim L"z =0, Vze X

n—0o

(2]
1Ll 2(vone) < 1 <= Ran U7 is closed in X

Sketch of proof
o

L is positive self-adjoint.
o L™ < L™ from which we get lim, 00 L™ = Loo € L(Vobs).
o L% = Lo and ||Leoz| < ||2]|| for all z € Vobs = Ran Leo = {0}.

© o Duhamel formulas = ||L||z(v,.) in term of inf |-z
llzlI=1,2€Vons

e Ran U7 closed in X <= V. bounded from below on Vops.

Furthermore, it is easy to prove that:
23 € Vobs = 2, (0) € Vops, Vn > 1.
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Main result

Denote by II the orthogonal projection from X onto Vops. Then the
following statements hold true for all zy € X and zar € Vobs:

Q Foralln>1,
|(I = 10) (2 (0) — 20)|| = I(T = IT) 2| -
@ The sequence ([|I1(z, (0) — 20)||),,>, is strictly decreasing and

ITL (2, (0) — 20)|| = ||25 (0) — Tz

— 0.
n— 00

@ There exists a constant a € (0, 1), independent of z; and zar, such
that for all n > 1,

ITE (=0 (0) = 20) | < @™ []2g" — o[,

if and only if Ran ¥ is closed in X.
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Using the framework of well-posed linear systems, we obtain the same
result for some unbounded observation operator C € L(D(A),Y).
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Using the framework of well-posed linear systems, we obtain the same
result for some unbounded observation operator C € L(D(A),Y).

Let

e O c RN, N > 2, with smooth boundary 99
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Using the framework of well-posed linear systems, we obtain the same
result for some unbounded observation operator C € L(D(A),Y).

Let
e O c RN, N > 2, with smooth boundary 99
0 N =T ul'|, TyNT; =0
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Using the framework of well-posed linear systems, we obtain the same
result for some unbounded observation operator C € L(D(A),Y).

Example

Let
e O c RN, N > 2, with smooth boundary 99
0 00 =TquUTy, [yNI; =0

Consider the following wave system

w(z,t) — Aw(z,t) =0, VreQ,t>0,
w(z,t) =0, Vo € T'g,t >0,

w(z,t) = u(z,t), VeeTli,t>0,

w(z,0) = wo(x), w(z,0) =w(x), Vo € Q,

with w the control, and (wg,w;) the initial state.
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Let v be the unit normal vector of I'; pointing towards the exterior of €2,
we observe the system via

A(—A)"hi(z, t)

V. I'y,t>0.
o : relq,t>

y(z,t) = —
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Let v be the unit normal vector of I'; pointing towards the exterior of €2,
we observe the system via

A(—A)"hi(z, t)

V. I'i,t>0.
o : relq,t>

y(z,t) = —

@ Guo and Zhang (SIAM J. Control Optim., 2005) = well-posed linear
system.
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Observation

Let v be the unit normal vector of I'; pointing towards the exterior of €2,
we observe the system via

—A) (¢
1/(;1:,7%):—%, Ve el'q,t>0.

@ Guo and Zhang (SIAM J. Control Optim., 2005) = well-posed linear
system.

e Curtain and Weiss (SIAM J. Control Optim., 2006) = construction
of forward and backward observers (formally A* = +4 — C*C).
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Let v be the unit normal vector of I'; pointing towards the exterior of €2,
we observe the system via

—A) (¢
1/(;1:,7%):—%, Ve el'q,t>0.

@ Guo and Zhang (SIAM J. Control Optim., 2005) = well-posed linear
system.

e Curtain and Weiss (SIAM J. Control Optim., 2006) = construction
of forward and backward observers (formally A* = +4 — C*C).

@ So we can use the algorithm.
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For instance, let us consider the following configuration

I'o

Iy
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For instance, let us consider the following configuration

I'o

Iy

G. Haine Reconstructing initial data for wave



For instance, let us consider the following configuration

I'o

AL

Iy
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For instance, let us consider the following configuration

C VUnubs

I'o

AL

Iy
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For instance, let us consider the following configuration

C VUnubs

I'o
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Choosing a suitable initial data
@ Supp wq has three components Wy, W5 and W3, such that

° Wl C VObs
° W2 - VUnobs
° W3 N VObs 3& @ and W3 N VUnobs # @

o w =0
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Choosing a suitable initial data
@ Supp wq has three components Wy, W5 and W3, such that

° Wl C VObs
° W2 - VUnobs
o W3NVons # 0 and W3 N Vunobs # 0

o w =0
To perform the test, we use

@ Gmsh: a 3D finite element grid generator
@ GetDP: a general finite element solver
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The initial position and its reconstruction after 3 iterations

= 6% of relative error in L?(2) on the “observable part”.
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Conclusion

© Conclusion
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Conclusion

Work-in-progress:

Application to thermo-acoustic tomography (simulations in progress)

Still to be done:

@ Stability of Vops and Vypeps With noisy observation
o Generalization (A* # —A)
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Conclusion

Thanks for your attention !

G. HAINE

Recovering the observable part of the initial data of an
infinite-dimensional linear system with skew-adjoint operator
(MATHEMATICS OF CONTROL, SIGNALS, AND SYSTEMS (MCSS), In
Revision)
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