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Let

H be a Hilbert space,

A0 : D(A0)→ H be a positive self-adjoint operator,

Wave-type system
ẅ(t) + A0w(t) = 0, ∀ t ∈ [0,∞),
w(0) = w0 ∈ D(A0),

ẇ(0) = w1 ∈ D
(

A
1
2
0

)
.

For instance, if A0 = −∆ with some suitable boundary conditions on a
domain Ω ⊂ Rn and H = L2(Ω), we get the classical wave equation.
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We observe the velocity ẇ of this
system on a non-empty subdomain
O, over a time interval [0, τ ],
leading to the measurement

y(t) = χ|O ẇ(t).

Observation on O × [0, τ ].

Our problem

Reconstruct the unknown (w0,w1) in D
(

A
1
2
0

)
× H from the

measurement y(t).

A similar problem arises for instance in Thermo-Acoustic Tomography.
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K. Ramdani, M. Tucsnak, and G. Weiss
Recovering the initial state of an infinite-dimensional system using
observers (Automatica, 2010)

Intuitive representation

2 iterations, observation on [0, τ ].
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We construct the forward observer ẅ +(t) + A0w +(t)+γχ|O ẇ +(t) = γy(t), ∀ t ∈ [0, τ ],
w +(0) = 0,
ẇ +(0) = 0,

–

 ẅ(t) + A0w(t) = 0, ∀ t ∈ [0, τ ],
w(0) = w0,
ẇ(0) = w1,

remember that y(t) = χ|O ẇ(t)

=

 ë(t) + A0e(t)+γχ|O ė(t) = 0, ∀ t ∈ [0, τ ],
e(0) = −w0,
ė(0) = −w1,

which is known to be exponentially stable for suitable O and τ (for
instance verifying Geometric Optic Condition of Bardos, Lebeau and
Rauch (1992) in the classical wave case) and all γ > 0.
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The exponential stability gives the existence of two constants M > 0 and
β > 0 such that

‖ẇ +(τ)− ẇ(τ)‖+ ‖w +(τ)− w(τ)‖ 1
2
≤ Me−βτ

(
‖w1‖+ ‖w0‖ 1

2

)
.

We construct a similar system, called backward observer. ẅ−(t) + A0w−(t)−γχ|O ẇ−(t) = −γy(t), ∀ t ∈ [0, τ ],
w−(τ) = w +(τ),
ẇ−(τ) = w +(τ),

Then, we easily get that

‖ẇ−(0)− w1‖+ ‖w−(0)− w0‖ 1
2

≤ Me−βτ
(
‖ẇ +(τ)− ẇ(τ)‖+ ‖w +(τ)− w(τ)‖ 1

2

)
,

≤ Me−2βτ
(
‖w1‖+ ‖w0‖ 1

2

)
.
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‖ẇ +(τ)− ẇ(τ)‖+ ‖w +(τ)− w(τ)‖ 1
2
≤ Me−βτ

(
‖w1‖+ ‖w0‖ 1

2

)
.

We construct a similar system, called backward observer. ẅ−(t) + A0w−(t)−γχ|O ẇ−(t) = −γy(t), ∀ t ∈ [0, τ ],
w−(τ) = w +(τ),
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Ito, Ramdani and Tucsnak (2011) showed that α := Me−2βτ < 1. Thus
the reconstruction of (w0,w1) can be achieved by iterating these two
systems by taking (w +(0), ẇ +(0)) = (w−(0), ẇ−(0)). This leads to the
algorithm


ẅ +
n (t) + A0w +

n (t)+γχ|O ẇ +
n (t) = γy(t), ∀ t ∈ [0, τ ],

w +
n (0) = w−n−1(0), n ≥ 1, w +

0 (0) = 0,
ẇ +
n (0) = ẇ−n−1(0), n ≥ 1, ẇ +

0 (0) = 0, ẅ−n (t) + A0w−n (t)−γχ|O ẇ−n (t) = −γy(t), ∀ t ∈ [0, τ ],
w−n (τ) = w +

n (τ), n ≥ 0,
ẇ−n (τ) = w +

n (τ), n ≥ 0.

For all N ≥ 1, we then have

‖ẇ−N (0)− w1‖+ ‖w−N (0)− w0‖ 1
2
≤ αN

(
‖w1‖+ ‖w0‖ 1

2

)
.
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Question

Can we obtain an error estimate for the reconstruction algorithm in its
fully discretized version ?

We need some regularity assumptions

w0 ∈ D
(

A
3
2
0

)
,w1 ∈ D(A0),

χ|O will be replaced by a smooth cut-off function.

In the sequel, let

h be the mesh size of the space discretization,

∆t be the time step of the time discretization,

Nh,∆t be the (finite) number of iterations.
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Galerkin space discretization

(Hh)h>0 is a family of finite-dimensional subspaces of D
(

A
1
2
0

)
such

that there exist M > 0, θ > 0 and h∗ > 0 such that

‖πhϕ− ϕ‖ ≤ Mhθ ‖ϕ‖ 1
2
, ∀ ϕ ∈ D

(
A

1
2
0

)
, h ∈ (0, h∗).

Implicit finite difference discretization in time
[0, τ ] is splitting with a time step ∆t > 0 : tk = k∆t, with
0 ≤ k ≤ K . We approximate the first and second derivative at time
tk of a function f by

f ′(tk) ' f (tk)− f (tk−1)

∆t
,

f ′′(tk) ' f (tk)− 2f (tk−1) + f (tk−2)

∆t2
.

G. Haine, K. Ramdani Reconstructing initial data for waves



Introduction The reconstruction algorithm Main result Numerical study Conclusion

12 / 24

Galerkin space discretization

(Hh)h>0 is a family of finite-dimensional subspaces of D
(

A
1
2
0

)
such

that there exist M > 0, θ > 0 and h∗ > 0 such that

‖πhϕ− ϕ‖ ≤ Mhθ ‖ϕ‖ 1
2
, ∀ ϕ ∈ D

(
A

1
2
0

)
, h ∈ (0, h∗).

Implicit finite difference discretization in time
[0, τ ] is splitting with a time step ∆t > 0 : tk = k∆t, with
0 ≤ k ≤ K . We approximate the first and second derivative at time
tk of a function f by

f ′(tk) ' f (tk)− f (tk−1)

∆t
,

f ′′(tk) ' f (tk)− 2f (tk−1) + f (tk−2)

∆t2
.

G. Haine, K. Ramdani Reconstructing initial data for waves



Introduction The reconstruction algorithm Main result Numerical study Conclusion

13 / 24

Theorem

Let (w0,w1) ∈ D
(

A
3
2
0

)
×D(A0) and denote (w0,h,∆t ,w1,h,∆t) the

numerical reconstruction of (w0,w1).

Taking Nh,∆t = ln(hθ+∆t)
lnα iterations, there exist Mτ > 0, h∗ > 0 and

∆t∗ > 0 such that for all h ∈ (0, h∗) and ∆t ∈ (0,∆t∗)

‖w0 − w0,h,∆t‖ 1
2

+ ‖w1 − w1,h,∆t‖

≤ Mτ

[
(hθ + ∆t) ln2(hθ + ∆t)

(
‖w0‖ 3

2
+ ‖w1‖1

)
+
∣∣ln(hθ + ∆t)

∣∣∆t
K∑
`=0

∥∥y(t`)− y `h
∥∥ ].

G. Haine, K. Ramdani Reconstructing initial data for waves



Introduction The reconstruction algorithm Main result Numerical study Conclusion

14 / 24

To prove this, we split the error

‖w0 − w0,h,∆t‖ 1
2

+ ‖w1 − w1,h,∆t‖

into three parts, taking into
account the fact that

1 we stop the iteration,

2 we discretize the observers,

3 we take approximation as
initial and final data.

3 error types.
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Consider the 1D wave equation with unit speed on (0, 1) and observe the
velocity of the sub-interval (0, 0.1) (in red) during 2 seconds.

We code the algorithm presented above on Matlab, and focus our
attention on three aspects

Quality of the reconstruction

Influence of the gain coefficient (parameter γ)

Robustness to noise
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γ = 10, h = 2.10−4 and ∆t = 4.10−5
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Influence of the gain coefficient : γ = 1, 10, 25
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Robustness to noise : 1%, 5%, 10%
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• Maxwell’s equations

εĖ − rotH = 0, Ω,

µḢ + rotE = 0, Ω,
divE = 0, divH = 0, Ω,
E ∧ ν = 0, H · ν = 0, ∂Ω,
E (., 0) = E0, Ω,
H(., 0) = H0, Ω,

y = χE .

We are able to reconstruct (E0,H0) from y .
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• Source identification


ẅ(x , t)−∆w(x , t) = λ(t)j(x), Ω× R+,
w(x , t) = 0, ∂Ω× R+,
w(x , 0) = 0, Ω,
ẇ(x , 0) = 0, Ω,

y(t) = χẇ(t).

We are able to reconstruct j from y .
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• Stability under perturbations
ẅ −∆w = 0, Ω,
w = 0, ∂Ω,
w(., 0) = w0, Ω,
ẇ(., 0) = w1, Ω.

=⇒ ?
ẅ −∆w + w 3 = 0, Ω,
w = 0, ∂Ω,
w(., 0) = w0, Ω,
ẇ(., 0) = w1, Ω.
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Thanks for your attention !

G. Haine and K. Ramdani
Reconstructing initial data using observers : error analysis of the
semi-discrete and fully discrete approximations
(Numerische Mathematik, In Revision)
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