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Abstract—The objective of this work is to provide a systematic
procedure for Reduced Order Modelling of the 2D Maxwell’s
equations with collocated boundary control and observation, on
the basis of frequency domain data obtained thanks to a Mixed
Finite Element Method: both the High Fidelity and the Low
Fidelity Models share the so-called port-Hamiltonian structure
(pHs) of the original PDE, which is preserved through the
different steps. The efficient reduction technique relies on the
Loewner framework, it is based on Benner et al. contribution [1]],
which has been recently adapted to handle non-strictly passive
model, and numerical issues observed when dealing with complex
configurations.

I. INTRODUCTION

An efficient numerical representation of Maxwell’s equa-
tions on a 2D domain with boundary-collocated actuators
and sensors is given as a port-Hamiltonian system (pHs), [2]].
Recasting the PDE as a pHs [3]], and applying a structure-
preserving method (the Partitioned Finite Element Method
(PFEM) [4]) leads to a high-fidelity full-order model (FOM),
which mimics the power balance with Poynting vector. How-
ever, such a high dimension is a limiting factor for simulation,
optimisation, analysis and control. The goal is to use the
Loewner framework, [Sl], [[1] to approximate the FOM with
a smaller and simpler system with the same pHs struc-
ture and similar response characteristics as the original, the
low-complexity model, a reduced-order model (ROM). The
worked out example of a transverse electric (TE) field in a
waveguide is provided.

Outline. The paper is organized as follows: writing
2D Maxwell’s equations as an infinite-dimensional port-
Hamiltonian system is recalled in § making use of
the Mixed Finite Element Method (MFEM) to pass from
the infinite-dimensional pHs to a finite-dimensional port-
Hamiltonian system of high dimension is detailed in §
then, § explains how to obtain a low-dimensional pHs,
using the Loewner framework.

II. PDE MODEL

As main example, we shall concentrate on the 2D
Maxwell’s equation on a 2D waveguide for sake of sim-
plicity. Let us consider a bidimensional waveguide ) =
[1>_,(0,L;) C R? with L, = 7 and Ly = 0.1, sketched
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Figure 1. Waveguide sketch (arrows indicate propagation direction)

in Figure [T} Maxwell formulations yield a transverse electric
(TE) field (E, H, yg,us), where E is a 2D vector field, and
H is a 2D scalar field.

We consider the macroscopic Maxwell equations

(2)9,D -V x H = —j,
(C)V'D:pv

(b)0:B+V x E =0,

A V-B=0. M

In the 2D case, (I)) hold with the definitions, see e.g. [6, § 9.2]:

o, H.
~0,H.,
V x E = curhyp(E) := 0, E, — 0,E, = divap(0" E),

V x H = grad*(H,) := [ } = Ograd(H.),

where © is the rotation of angle 7. Let us define 7;(E) :=
(E-t)t, and v(H,) := H,t, where t is the unit tangent
vector to 012, defined by t := © n, with n the outward unit
normal vector. For smooth fields, the transverse differential

operators satisfy the following Green formula:
(grad H.. E)Q = (H.,cuthyp E)q, + (1:(E), ¢ (H.)) g, -

This shows that gradL and curlyp are formal adjoints. More-
over the boundary term is exactly related to the opposite of
the normal trace of the Poynting vector, since: Il := EAH =
[ E,H, —-E;H, 0 ]T, and IT-n = H, (Eyn, — Eyny).
Taking as Hamiltonian the total electromagnetic energy

Et) =+ / (E(,y) - D(.y) + H.(z,y) B.(x.)) dedy.

2
and using as boundary collocated control and observations:
ug = E -t and yg := —H,, we get the following power
balance of a passive dynamical system:

d
%5(0 =—(0 E,E)q + (us, ys)oa < / upysds. (2)
o0



ITII. HIGH-FIDELITY MODEL

In order to spatially discretize the system, PFEM is
used, see [4], which allows discretizing pHs in a structure-
preserving way. The method boils down to three steps:

1) write a weak formulation of the problem,

2) select a partition of the variables, use Stokes theorem
to perform an integration by parts which makes appear
the useful control in the boundary term,

3) choose a set of finite element families for the state and
control variables.

Following [7] and [8]], and using specific finite elements [9]],
a finite-dimensional dynamical system is found to be:

(B () (O o

with conjugated output: Mpy 5= —T7" H. Then, the power
balance reads, at the discrete level:

%5%) = —E(t) " {0) E(t)+y,(t) " Mouy(t) < (un(t), y,(1))-

meaning that the open dynamical system is passive.
Numerical Results. The effective application of the PFEM
has been done using continuous Lagrange finite elements of
order 2 for the magnetic field H, while the vectorial electric
field E and the boundary variables are both approximated with
discontinuous polynomials of order 1 on each component.
Two mesh size parameters have been chosen, leading respec-
tively to about NV = 6,000 and 50,000 degrees of freedom.

IV. LOW-FIDELITY MODEL

The Loewner framework (LF) employed in this work is
a data-driven model identification and reduction technique
that was originally introduced in [5]. Using only (complex)
frequency-domain data obtained from a simulator or an ex-
perimental setup, the LF directly constructs surrogate models
directly with a low computational effort. Its extension to pHs
is proposed in [[1]. It has been tested on 1D models in [10].
An application to the 2D wave PDE was made in [L1], where
the non-strict passivity could be tackled thanks to ad-hoc
modifications of the original algorithm.

Numerical results. For the illustration, we consider a setup
where all inputs and outputs are merged, thus leading to a
SISO model. Figure [2] presents the Bode phase response of
the original model (data, used for the LF) and the identified
pH-Loewner both the full interpolant (n = 204) and a reduced
one (n = 59). In both cases, models are passive and embed the
expected pH-structure. In addition, Figure [3] shows the time
response of the original and identified models in response to
a left input on the wave-guide. In both cases, the response is
well reproduced by the pH-ROM.
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Figure 2. Frequency phase response of the original data (N = 6,000), the
pH-Loewner models n = 114 and the reduced pH-Loewner (n = 59).
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Figure 3. Reconstructed signals with low fidelity models with n = 114 or
n = 59 (in each case, the pH model is delay free, i.e. 7 = 0).
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