
IFAC PapersOnLine 58-17 (2024) 238–243

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2024.10.174

1. INTRODUCTION

Port-Hamiltonian systems (pHs) have been developed for
the modelling, (co-)simulation and control of complex
multiphysics systems (see van der Schaft et al. (2014)
for an introductive textbook ). This framework has been
extended to the case of distributed parameter systems
(DPS) with boundary energy flows in the seminal paper
van der Schaft and Maschke (2002). Since 2002, the
literature on distributed pHs has grown considerably, with
both theoretical and application papers (see Rashad et al.
(2020), Skrepek (2021) and Philipp et al. (2023)).

PHs dynamics with algebraic constraints have been consid-
ered as well, leading to finite-dimensional pH Differential-
Algebraic Equations systems (pH-DAEs, see Beattie et al.
(2018)). These algebraic constraints arise either from the
underlying Dirac structure between flow and effort vari-
ables, or from the constitutive equations, resulting in con-
straints between effort and energy state variables defined
in some Lagrangian submanifold (see van der Schaft and
Maschke (2020)).

Recently, examples of distributed parameter models given
in implicit form have been considered in the pHs set-
ting (see for instance Yaghi et al. (2022) for an implicit
formulation of the Allen-Cahn equation, Jacob and Mor-
ris (2022) considering the Dzektser equation (seepage of
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underground water) or Heidari and Zwart (2019) con-
sidering a nanorod with non-local visco-elastic constitu-
tive equations), along with structure-preserving numerical
methods, see Bendimerad-Hohl et al. (2023). Maschke and
van der Schaft (2023) extend boundary control pHs to a
class of systems where the variational derivative of the
Hamiltonian is replaced by a pair of reciprocal operators,
generalizing – in the infinite-dimensional settings – the
implicit definition of the energy by a so-called Stokes-
Lagrange subspace associated to the reciprocal operators.
Allowing the representation of some of the previously cited
distributed parameter models given in implicit form. In
particular, the example of an elastic rod with non-local
elasticity relation.

In this paper, we propose first an application of this
Stokes-Lagrange subspace approach to dissipative systems,
in the case of local dissipation only (Dzekster equation,
§ 3.1), and in the case with local and non-local dissipative
ports (see the nanorod example in § 3.2). In both cases,
classical explicit formulations and representations using
Stokes-Lagrange structures are proposed. Note that in
the considered Stokes-Lagrange representations, spatial
derivative operators are present inside the Hamiltonian
as proposed for instance in Schöberl and Siuka (2014),
where infinite-dimensional pHs are defined on jet bundles.
In Preuster et al. (2024), Boussinesq, elastic rod and
Allen-Cahn equations are considered as examples of such
systems. The authors propose a lift in the jet space where
the Hamiltonian density only depends on the extended
state variable. Then, geometric formulations with Stokes-
Dirac structures are applicable.
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On Stokes-Lagrange and Stokes-Dirac
representations for 1D distributed

port-Hamiltonian systems ⋆



Antoine Bendimerad-Hohl  et al. / IFAC PapersOnLine 58-17 (2024) 238–243 239

In the second part of the paper, we derive similarly Stokes-
Dirac and Stokes-Lagrange representations for the Tim-
oshenko and Euler-Bernoulli beams. The Euler-Bernoulli
model may be seen as flow-constrained version of the
Stokes-Dirac Timoshenko beam and is therefore an ex-
ample of constrained pHs with a definition of the energy
via a Stokes-Lagrange subspace. Bijective operators which
transform Stokes-Dirac formulations to Stokes-Lagrange
ones are proposed for the Timoshenko beam model and for
the Euler-Bernouilli reduced model. These operators are
similar to transformations between DAEs and geometric
representations analyzed in Mehrmann and van der Schaft
(2023), in the finite-dimensional LTI case.

2. PRELIMINARY RESULTS

2.1 Variational derivatives

Theorem 1. Let K : D(K) ⊆ L2(Ω,Rn) → L2(Ω,Rm)
be a closed and densely-defined linear operator, and let
∀α ∈ D(K), H(α) := 1

2


Ω
|K(α)|2 dx, be a functional.

Assume that the following abstract Green’s identity holds
for all α ∈ D(K), β ∈ D(K†)

Ω

K(α) · β =



Ω

α · K†(β) + ⟨γ(α), C(β)⟩U,Y , (1)

where K† : D(K†) ⊆ L2(Ω,Rm) → L2(Ω,Rn) is another
closed and densely-defined linear operator, called the for-
mal adjoint of K, γ ∈ L(D(K),U) is a (boundary) control
operator on the Hilbert space U , and C ∈ L(D(K†),Y)
its colocated observation operator, with Y := U ′. Then,
assuming that C∞

c (Ω,Rm) ⊂ ker(γ), the weak variational
derivative of H with respect to α exists and is given as

δwαH(α) = K†(K(α)).

Proof. Let α ∈ D(K), ε ∈ R, then, for all β ∈
C∞

c (Ω,Rm) =: W, then, defining the weak variational
derivative in the sense of distribution (thanks to (1))

⟨δwαH(α), β⟩W′,W :=



Ω

α · K†(K(β)) dx,

gives the result.

Corollary 2. Given the Hamiltonians H1 and H2, defined
on H1(Ω,R), H2(Ω,R), resp., by

H1(α) =
1

2



Ω

(∂xα)
2 dx, H2(α) =

1

2



Ω

(∂2
x2α)2 dx,

their weak variational derivatives are given, resp., by

δwαH1(α) = −∂2
x2α, δwαH2(α) = ∂4

x4α.

Proof. Take K = ∂x, K† = −∂x in the first case, and
K = K† = ∂2

x2 in the second case.

2.2 Operator transposition

In the following, the superscript notations on a variable
xE , xI refers to the Stokes-Dirac or Stokes-Lagrange rep-
resentation of a system, respectively.

Let us consider K as before, two distributed second order
tensors κ ∈ L∞(Ω,Mn(R)), η ∈ L∞(Ω,Mm(R)), with

∀x ∈ Ω, κ(x) = κ⊤(x) ≥ κ > 0,η(x) = η⊤(x) ≥ η > 0
almost everywhere, and a pHs defined as

∂tα
E
1

∂tα
E
2


=


0 K†

−K 0



  
=:JE


e1
e2


,


eE1 = δα1HE ,

eE2 = δα2HE ,

with the corresponding Hamiltonian defined as

HE =
1

2



Ω

αE
1 · καE

1 + αE
2 · η αE

2 dx.

Now consider a second pHs defined as
∂tα

I
1

∂tα
I
2


=


0 Id

−Id 0



  
=:J I


eI1
eI2


,


eI1 = δαI

1
HI ,

eI2 = δwαI
2
HI ,

with the corresponding Hamiltonian defined as

HI =
1

2



Ω

αI
1 · καI

1 +K(αI
2) · ηK(αI

2) dx.

For the sake of readability, weak variational derivative will
be denoted with the same symbol as usual variational
derivative δ in the sequel of the paper. Finally, let us
define an operator G : L2(Ω,Rn) × D(K) → L2(Ω,Rn) ×
L2(Ω,Rm) and its †-companion

G := Diag [Id, K] , and G† := Diag

Id, K† ,

We then get the following theorem:

Theorem 3. The previously defined operator G allows
passing from one representation to the other, the trans-
formation being given as

GαI = αE , eI = G†eE , J E = GJ IG†.

The two systems are said to be equivalent.

Proof. A direct computation gives the results.

Remark 4. Note that given such a transformation G, each
state αI ∈ ker(G) has zero energy, hence does not con-
tribute to the Hamiltonian; hence, they are removed by
G. This explains why, when writing the wave equation in
pH formulation, the deformation ε is used instead of the
displacement w: indeed H = 1

2


Ω
p2 + |grad(w)|2 dx, the

Hamiltonian, only depends on the momentum p and defor-
mation grad(w) = ε, hence the transformation removing
grad from the Hamiltonian yields (p, ε) as the state. And
because the kernel of grad is the set of constant functions,
rigid body motion is lost during the transformation.

3. TWO EXAMPLES WITH DAMPING

In § 3.1, the seepage model is considered, and in § 3.2,
the example of the nanorod is studied. In this paper, the
1D domain Ω is defined as a bounded interval Ω = [a, b].

3.1 Dzektser

Following Dzektser (1972), let us consider the following
seepage model of underground water in 1D

(Id− ε2∂2
x2) ∂th = α∂2

x2h− β ∂4
x4h,

with α > 0, β > 0. The system admits a pH representation
given as

(Id− ε2∂2
x2) 0 0

0 Id 0
0 0 Id




h
F∇
F∆


=




0 ∂x −∂2
x2

∂x 0 0
∂2
x2 0 0




  
:=J


h
E∇
E∆


, (2)
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with the resistive relations


E∇
E∆


=


α 0
0 β



  
:=R


F∇
F∆


. Follow-

ing Maschke and van der Schaft (2023) one can define the
Lagrange subspace operators S = (Id − ε2∂2

x2), P = Id,
the Dirac structure operator J and the resistive struc-
ture operator R. Finally, following (Maschke and van der
Schaft, 2023, Section 5.), the Hamiltonian is given as

H =
1

2



Ω

hS†Ph dx+
1

2
[ε2h∂xh]

b
a,

=
1

2



Ω

h2 + ε2 (∂xh)
2 dx.

Theorem 5. (Dzektser Power balance) The power balance
related to (2) reads:

d

dt
H = [αh∂xh− βh ∂3

x3h+ β∂xh ∂
2
x2h]ba

−


Ω

�
a(∂xh)

2 + β(∂2
x2h)2


dx+ [ε2∂xh ∂th]

b
a.

Making use of tr as the Dirichlet trace operator, one can
then define (f∂ , e∂) the power boundary port related to the
Stokes-Dirac structure as f∂ = tr([h, h, ∂xh ]), e∂ =

tr(

α∂xh, −β∂3

x3h, β∂2
x2h


), and (χ∂ , ε∂) the energy

boundary port related to the Stokes-Lagrange subspace as
χ∂ = tr(h), ε∂ = tr(ε2∂xh). The power balance then
reads:

d

dt
H= [f∂ · e∂ +

d

dt
(χ∂)ε∂ ]

b
a −



Ω

(αF 2
∇ + βF 2

∆) dx ,

≤ [f∂ · e∂ +
d

dt
(χ∂)ε∂ ]

b
a .

Remark 6. The previous inequality is the extension to the
case of lossy systems of the equality established in Maschke
and van der Schaft (2023) for the case of lossless systems.

Remark 7. The energy boundary port (χ∂ , ε∂) vanishes
when ε → 0, i.e., when the nonlocal term is removed,
leading to a classical dissipative pHs.

3.2 Nanorod

Let us start by writing down both versions of the nanorod
example and then comparing them.

Stokes-Dirac representation Following Heidari and Zwart
(2019), the Hamiltonian of the system reads

H :=
1

2



Ω

a2w2 + ρA (∂tw)
2
+ µρA

�
∂2
txw

2

+
�
EA+ µa2


(∂xw)

2
dx,

and the state variable is given as

z := [w, ρA∂tw, µρA∂2
txw, ∂xw, N ]⊤,

with w is the displacement, ρA∂tw the momentum density,
µρA∂2

tx the flow variable of the non locality, ∂xw the
strain and N the stress resultant. Let us now define
E := Diag(Id, Id, Id, Id, 0) and

Q := Diag


a2,

1

ρA
,

1

µρA
, (EA+ µa2), Id


,

which allows us to rewrite the Hamiltonian H as H =
1
2


Ω
z⊤E⊤Qz, with the algebraic property E⊤Q = Q⊤E .

Defining furthermore

J :=




0 Id 0 0 0
−Id 0 0 0 ∂x
0 0 0 −Id Id
0 0 Id 0 0
0 ∂x −Id 0 0


 ,

R := Diag(0, b2, τdEA+ µb2, 0, 0),

where b is the damping coefficient of the viscoelastic layer
and τd the viscous damping of the nanorod. The dynamics
of the system is given by

E∂tz = (J −R) e, e = Qz. (3)

Stokes-Lagrange representation Let us now write this
system with a Stokes-Lagrange subspace, i.e., as a state-
space representation where differential operators are present
in the Hamiltonian



∂tw
∂tε
∂tp
fd
fσ


 =




0 0 Id 0 0
0 0 ∂x 0 0

−Id ∂x 0 −Id ∂x
0 0 Id 0 0
0 0 ∂x 0 0







F
σ
v
ed
eσ


 , (4)

with p the momentum, w the displacement, ε the strain,
fd and ed the local and nonlocal dissipative ports, v the
velocity, F the force of the media applied to the nanorod, σ
the nonlocal stress, and ed, eσ the local and nonlocal efforts
linked to the dissipative port. The constitutive relations
are F = aw, (Id− µ∂2

x2)σ = Eε, v = p
ρA , ed = bfd, (Id−

µ∂2
x2)eσ = τdfσ. Notice that (Id−µ∂2

x2) is now inside the
constitutive relations, and that two constitutive relations
have become non-local.

Let us denote by z = (w, ε, p) the state and eS = (F, σ, v)
the effort variable corresponding to the storage port. We
can now define the S and P matrices as

P := Diag

Id, (Id− µ∂2

x2), Id

, S := Diag


a, E,

1

ρ


.

(5)
And we get the constitutive relation S†z = P†eS . In
particular, we have that S†P = P†S ≥ 0, which shows
that the corresponding Hamiltonian is non-negative. More-
over, the resistive matrices: RL = Diag


Id, (Id− µ∂2

x2)

,

RR = Diag [b, τd] , yield an implicit resistive structure,

RLer = RRfr, with R†
LRR ≥ 0, where fr = (fd, fσ)

⊤ and
er = (ed, eσ)

⊤. Let us finally define the structure matrix

J =




0 0 Id 0 0
0 0 ∂x 0 0

−Id ∂x 0 −Id ∂x
0 0 Id 0 0
0 0 ∂x 0 0


 ,

then, the system becomes
∂tz
fr


= J


eS
er


,


RLer = RRfr,

S†z = P†eS .

Let us now write it using the image representation of the
Lagrange subspace

P∂tξ
fr


= J


eS
er


,


RLer = RRfr,

eS = Sξ.
with Pξ = z being the latent space variable. Following
(Maschke and van der Schaft, 2023, Section 5.), this
representation allows us to define the Hamiltonian
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HI :=
1

2



Ω

ξ⊤P†Sξ dx+
1

2
[µEξ2∂xξ2]

b
a,

=
1

2



Ω

aξ1
2 + Eξ2

2 + µE(∂xξ2)
2 +

1

ρ
ξ3

2 dx.

Theorem 8. (Nanorod) The power balance reads

d

dt
HI = [µE∂tξ2∂xξ2 + σv + eσv − µeσ∂xeσ ]

b
a

−


Ω

bf2
d +

1

τd
(e2σ + µ(∂xeσ)

2) dx. (6)

One can then identify the power boundary ports (f∂ , e∂)
and energy boundary ports (χ∂ , ε∂) as

f∂ = tr(


v, v, −µ

1

τd
∂xeσ


), e∂ = tr([σ, eσ, eσ]),

χ∂ = tr(ξ2), ε∂ = tr(µE∂xξ2).

The power balance then reads

d

dt
HI= [f∂ ·e∂+

d

dt
(χ∂)ε∂ ]

b
a−



Ω

bf2
d+

1

τd
(e2σ+µ(∂xeσ)

2)dx,

≤ [ f∂ · e∂ +
d

dt
(χ∂)ε∂ ]

b
a .

4. EQUIVALENT REPRESENTATIONS FOR
CLASSICAL BEAM MODELS

In § 4.1, Stokes-Dirac representations both for the Tim-
oshenko and the Euler-Bernoulli beam are recalled, then
in § 4.2, Stokes-Lagrange representations are derived, thus
recovering the examples treated in the jet bundle formal-
ism first presented in Schöberl and Siuka (2014) for Tim-
oshenko, and in (Schöberl and Schlacher, 2015, Example
5.1) for Euler-Bernoulli. Finally in § 4.3, the equivalence
between these representations is proved, and the passage
to the limit from Timoshenko to Euler-Bernoulli well un-
derstood in a common setting.

4.1 Stokes-Dirac representations

Timoshenko The Timoshenko beam equation reads
(Ducceschi and Bilbao, 2019)

ρA∂2
tw = T0∂

2
x2w +AκG∂x(∂xw − ϕ),

ρI∂2
t ϕ = EI∂2

x2ϕ+AκG(∂xw − ϕ),

with ρ the mass density, A the cross section area, T0

the tension, κ the sheer coefficient, G the shear modulus,
I moment of inertia, E the young’s modulus, w the
transverse displacement and ϕ the shear angle. Let us
firstly write it as an explicit pHs



∂tεw
∂tpw
∂tεϕ
∂tpϕ
∂tεw,ϕ


 =




0 ∂x 0 0 0
∂x 0 0 0 ∂x
0 0 0 ∂x 0
0 0 ∂x 0 Id
0 ∂x 0 −Id 0




  
=:JE




σw

v
σϕ

ω
N


 , (7)

with pw the linear momentum, pϕ the angular momentum,
εw = ∂xw the deformation, εϕ = ∂xϕ the spatial derivative
of the shear angle, and εw,ϕ = ∂xw − ϕ the difference

between the deformation and the shear angle. With the fol-
lowing constitutive relations: v = pw

ρA , σw = T0εw, ω =
pϕ

ρI σϕ = EIεϕ, N = AκGεw,ϕ. And Hamiltonian

HE :=
1

2



Ω

 pw
ρA

2
+ T0ε

2
w +

pϕ
ρI

2
+ EIε2ϕ+AκGε2w,ϕ


dx.

Moreover, one can define the matrices

SE = Id, PE = Diag


T0,

1

ρA
, EI,

1

ρI
, AκG


,

with PE⊤SE = SE⊤PE > 0. Finally one gets the following
power balance:

Theorem 9. (Timoshenko power balance - Stokes-Dirac
case) The power balance of (7) reads

d

dt
HE = [vσw + vN + ωσϕ]

b
a . (8)

One can identify the power boundary port variables f∂ =

tr([v v ω]
⊤
), e∂ = tr([σw N σϕ]

⊤
), tr being the trace

operator; yielding d
dtH

E = [f∂ · e∂ ]ba.

Euler–Bernoulli To reduce the Timoshenko model to
the Euler–Bernoulli model, one simply needs to add two
constraints by setting ∂tpϕ and ∂tεw,ϕ to zero in (7)



∂tεw
∂tpw
∂tεϕ
0
0


 = J E




σw

v
σϕ

ω
N


 . (9)

One can then define the constrained Hamiltonian

HE
c =

1

2



Ω

pw
ρA

2
+ T0ε

2
w + EIε2ϕ dx, (10)

and get the following power balance

Theorem 10. (Euler-Bernoulli power balance - Stokes-
Dirac case) The power balance of (9) reads

d

dt
HE

c = [vσw − v∂xσϕ + σϕ∂xv]
b
a . (11)

One can identify the power boundary port variables

f c
∂ = tr([v v ∂xv]

⊤
), ec∂ = tr([σw −∂xσϕ σϕ]

⊤
). This yields

d
dtH

E = [f c
∂ · ec∂ ]ba.

Remark 11. One can solve the constraints analytically:
∂xσϕ = −N, ∂xv = ω. Which yields the following
reduced system

∂tεw
∂tεϕ
∂tpw


=



0 0 ∂x
0 0 ∂2

x2

∂x −∂2
x2 0




  
=:JE

r


σw

σϕ

v


. (12)

Note that by hypothesis, ∂tεw,ϕ = ∂t(∂xϕ−w) = 0, hence
∂xϕ− w is constant over time, however, this constraint is
not written explicitly in the previous set of equations.

4.2 Stokes-Lagrange representations

Timoshenko Let us now write the Timoshenko beam
equation in Stokes-Lagrange form, i.e. by putting the
differential operators in the Hamiltonian.


∂tw
∂tpw
∂tϕ
∂tpϕ


 =




0 Id 0 0
−Id 0 0 0
0 0 0 Id
0 0 −Id 0






δwHI

δpw
HI

δϕHI

δpϕ
HI


 , (13)
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with Hamiltonian

HI :=
1

2



Ω

 1

ρA
p2w +

1

ρI
p2ϕ + T0(∂xw)

2

+ EI(∂xϕ)
2 +AκG(∂xw − ϕ)2


dx.

(14)

Note that boundary terms will then appear in the constitu-
tive relations. Moreover, this formulation allows for direct
access to the displacement w instead of its gradient εw.
Let us use Corollary 2 to write the constitutive relations



δwHI =−∂x(T0∂xw)−∂x(AκG(∂xw − ϕ)), δpw

HI=
pw
ρA

,

δϕHI = −∂x(EI∂xϕ)−AκG(∂xw − ϕ), δpϕ
HI=

pϕ
ρI

.

We can now define the structure matrix J and the
Lagrange subspace operators S and P as

J I =




0 Id 0 0
−Id 0 0 0
0 0 0 Id
0 0 −Id 0


 , PI =



Id 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 Id


 ,

SI =




S1,1 0 ∂x(AκG·) 0

0
1

ρA
0 0

−AκG∂x· 0 S3,3 0

0 0 0
1

ρI



,

with SI
1,1 := −∂x(T0∂x·) − ∂x(AκG(∂x·)) and SI

3,3 :=
−∂x(EI∂x·) +AκG Id.

Then, writing zI = (w, pw, ϕ, pϕ)
⊤, and

eI = (δwH, δpw
H, δϕH, δpϕ

H)⊤, we get

∂tz

I = J IeI ,

PI†eI = SI†zI ,
and


PI∂tξ

I = J IeI ,

eI = SIξI ,

the latter being the image representation. Note that,
S†P = P†S ≥ 0, which comes from the non-negativity

of the Hamiltonian (14). Moreover, defining R := [P S]⊤,
since S is invertible, the associated polynomial matrix of
the operator R(s) satisfies rank(R(s)) = 4 , ∀s ∈ C, giving
the maximal reciprocity of the operator R (see Maschke
and van der Schaft (2023) for details).

Theorem 12. (Timoshenko power balance - Stokes-Lagrange
case) The power balance of (14) reads

d

dt
HI =[ ∂tw (T0 ∂xw +AκG (∂xw − ϕ))+∂tϕEI∂xϕ ]ba.

One can identify the energy boundary port variable

χ∂ = tr([w, w, ϕ]
⊤
),

ε∂ = tr([T0 ∂xw, AκG (∂xw − ϕ), EI ∂xϕ]
⊤
),

this yields d
dtH

I = [ d
dt (χ∂) · ε∂ ]ba.

Euler–Bernoulli Let us reduce the previously defined
system by putting 1

ρAp2ϕ = 0 and AκG(∂xw − ϕ)2 = 0

in the Hamiltonian (14). One gets: ∂tpϕ = 0, ϕ = ∂xw.
This allows us to define the constrained Hamiltonian as

HI
c =

1

2



Ω


1

ρA
p2w + T0(∂xw)

2 + EI(∂2
x2w)2


dx.

The constrained dynamic reads



Id 0 0 0
0 Id 0 0
∂x 0 0 0
0 0 0 0






∂tw
∂tpw
∂tϕ
∂tpϕ


=




0 Id 0 0
−Id 0 0 0
0 0 0 Id
0 0 −Id 0






δwHI

δpw
HI

δϕHI

δpϕ
HI


. (15)

Theorem 13. (Euler–Bernoulli power balance - Stokes-
Lagrange case)

d

dt
HI

c = [ ∂tw (T0∂xw−∂x(EI∂2
x2w))+∂t(∂xw)EI ∂2

x2w ]ba.

One can identify the energy boundary port variable

χc
∂ = tr([w, w, ∂xw]

⊤
),

εc∂ = tr(

T0 ∂xw, −∂x(EI ∂2

x2w), EI ∂2
x2w

⊤
),

this yields d
dtH

I = [ d
dt (χ

c
∂) · εc∂ ]ba.

Remark 14. Solving the two constraints ∂tpϕ and ∂xw = ϕ
yields the reduced unconstrained system

∂tw
∂tpw


=


0 Id

−Id 0



  
=:J I

r


δwHI

c

δpwHI
c


, (16)

together with the constitutive relations:
δwHI

c = −∂x(T0∂xw) + ∂2
x2(EI∂2

x2w),

δpw
HI

c =
pw
ρA

.

4.3 From Stokes-Lagrange to Stokes-Dirac formulations

Timoshenko In this subsection, we will denote by zE , eE

the state and effort variables in the Stokes-Dirac formu-
lation and by zI , eI the state and effort in the Stokes-
Lagrange formulation. J E ,SE ,PE denote the structure
and constitutive matrices in the Stokes-Dirac case and
J I ,SI ,PI the structure and constitutive matrices in the
Stokes-Lagrange case. Let us now describe a procedure
that allows to pass from the Stokes-Lagrange to the Stokes-
Dirac representation, this procedure is similar to the one
described in (Mehrmann and van der Schaft, 2023, Section
6.) but now makes use of differential operators instead of
matrices. First let us define a transformation operator G
from (H1 ∩ L2

0)× L2 ×H1 × L2 to (L2)5, where L2
0 is the

space of zero mean functions,

Ω
w = 0, as

G :=




∂x 0 0 0
0 Id 0 0
0 0 ∂x 0
0 0 0 Id
∂x 0 −Id 0


 .

Its inverse is actually well-defined, thanks to Poincaré-
Wirtinger’s inequality, since


Ω
w = 0. Physically speak-

ing, it means that one neglects rigid body motions of the
beam. The inverse F of G is given by

F(z) := z →




x →

 x

a

z2 dy −
1

b− a

 b

a

z2 dy



z1
z2 − z5

z3



. (17)

A direct computation then yields GzI = zE , eI =
G†eE , zI = FzE , F†eI = eE .

Note that a geometric interpretation might be useful to
understand these transformations, since states are often
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described as vectors and co-states as covectors, hence they
are contravariant and covariant, respectively. Then, one
can compute the time derivative in the Stokes-Lagrange
case and compare it to the Stokes-Dirac case

∂tG(zI) = GJ IeI = GJ IG†eE .

Hence GJ IG† = J E . And, regarding the Lagrange sub-
space SE⊤zE = PE⊤eE . Let us premultiply this equation
by G† and replace the state and effort variables by their
Stokes-Dirac counterparts. We get to

G†SE⊤GzI = G†PE⊤F†eI ,

and we have G†SE⊤G = SI† and G†PE⊤F† = PI†.

From Timoshenko to Euler–Bernoulli Let us denote
by ΠE := Diag [Id, Id, Id, 0, 0] , the (singular) operator
that allows to constrain system (7); when pre-multiplying
the left-hand side of equation (7) with ΠE , one gets
the constrained system (9). In order to get the Stokes-
Lagrange counterpart ΠI , let us apply G to pass from (13)
to (7), then ΠE to pass from (7) to (9), and finally F to
pass from (9) to (15). Therefore, let us compute F ΠE G

ΠI := F ΠE G =



Id 0 0 0
0 Id 0 0
∂x 0 0 0
0 0 0 0


 .

Finally, one can represent these transformations as a
commutative diagram, shown in Fig. 1.

(7), HE (13), HI

(9), HE
c (15), HI

c

G,F

ΠE ΠI

G,F

Fig. 1. Transformations between beam models and repre-
sentations

Euler–Bernoulli Let us now apply the same procedure
to the Euler–Bernoulli reduced case, i.e., let us pass from

(12) to (16). Let us denote by Gr :=


Id 0 0
0 ∂x ∂2

x2

⊤
, the

transformation operator between the two reduced systems.
Then, assuming εϕ = ∂xw, i.e., on the subspace where this
constraint is satisfied, we have

Gr


w
pw


=


εw
εϕ
pw


, and G†

r


σw

σϕ

v


=


δwHI

δpwHI


.

Additionally, one has: GrJ I
r G†

r = J E
r .

5. CONCLUSION & OUTLOOK

Stokes-Lagrange representations have been proposed for
two examples of pHs, respectively with local and non-
local dissipation. The corresponding Hamiltonian and
power boundary and energy boundary port-variables have
been derived. Stokes-Lagrange representations have also
been derived for the Timoshenko and the Euler-Bernoulli
models. Two bijective transformations between the corre-
sponding Stokes-Dirac and Stokes-Lagrange models have
been exhibited. Since the Euler-Bernoulli beam is a flow-
constrained version of the Timoshenko beam, it has been

checked that the corresponding projection operators com-
mute with the transformations between Stokes-Dirac and
Stokes-Lagrange representations of both models.

We will now consider extending these results to 2D (Dzek-
ster seapage model, Reissner-Mindlin and Kirchoff-Love
plate models) and 3D (Maxwell equations) examples. An-
other avenue we want to explore concerns the compara-
tive analysis of Stokes-Dirac and Stokes-Lagrange formu-
lations, in terms of their numerical properties.
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