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Abstract:

Port-Hamiltonian systems were recently extended to include implicitly defined

energy and energy ports thanks to a (Stokes-)Lagrange subspace. Here, we study the equivalent
port-Hamiltonian representations of two systems with damping, written using either a classical
Hamiltonian or a Stokes-Lagrange subspace. Then, we study the Timoshenko beam and Euler-
Bernoulli models, the latter being the flow-constrained version of the former, and show how
they can be written using either a Stokes-Dirac or Stokes-Lagrange subspace related by a
transformation operator. Finally, it is proven that these transformations commute with the

flow-constraint projection operator.
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1. INTRODUCTION

Port-Hamiltonian systems (pHs) have been developed for
the modelling, (co-)simulation and control of complex
multiphysics systems (see van der Schaft et al. (2014)
for an introductive textbook ). This framework has been
extended to the case of distributed parameter systems
(DPS) with boundary energy flows in the seminal paper
van der Schaft and Maschke (2002). Since 2002, the
literature on distributed pHs has grown considerably, with
both theoretical and application papers (see Rashad et al.
(2020), Skrepek (2021) and Philipp et al. (2023)).

PHs dynamics with algebraic constraints have been consid-
ered as well, leading to finite-dimensional pH Differential-
Algebraic Equations systems (pH-DAEs, see Beattie et al.
(2018)). These algebraic constraints arise either from the
underlying Dirac structure between flow and effort vari-
ables, or from the constitutive equations, resulting in con-
straints between effort and energy state variables defined
in some Lagrangian submanifold (see van der Schaft and
Maschke (2020)).

Recently, examples of distributed parameter models given
in implicit form have been considered in the pHs set-
ting (see for instance Yaghi et al. (2022) for an implicit
formulation of the Allen-Cahn equation, Jacob and Mor-
ris (2022) considering the Dzektser equation (seepage of
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underground water) or Heidari and Zwart (2019) con-
sidering a nanorod with non-local visco-elastic constitu-
tive equations), along with structure-preserving numerical
methods, see Bendimerad-Hohl et al. (2023). Maschke and
van der Schaft (2023) extend boundary control pHs to a
class of systems where the variational derivative of the
Hamiltonian is replaced by a pair of reciprocal operators,
generalizing — in the infinite-dimensional settings — the
implicit definition of the energy by a so-called Stokes-
Lagrange subspace associated to the reciprocal operators.
Allowing the representation of some of the previously cited
distributed parameter models given in implicit form. In
particular, the example of an elastic rod with non-local
elasticity relation.

In this paper, we propose first an application of this
Stokes-Lagrange subspace approach to dissipative systems,
in the case of local dissipation only (Dzekster equation,
§ 3.1), and in the case with local and non-local dissipative
ports (see the nanorod example in § 3.2). In both cases,
classical explicit formulations and representations using
Stokes-Lagrange structures are proposed. Note that in
the considered Stokes-Lagrange representations, spatial
derivative operators are present inside the Hamiltonian
as proposed for instance in Schoéberl and Siuka (2014),
where infinite-dimensional pHs are defined on jet bundles.
In Preuster et al. (2024), Boussinesq, elastic rod and
Allen-Cahn equations are considered as examples of such
systems. The authors propose a lift in the jet space where
the Hamiltonian density only depends on the extended
state variable. Then, geometric formulations with Stokes-
Dirac structures are applicable.
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In the second part of the paper, we derive similarly Stokes-
Dirac and Stokes-Lagrange representations for the Tim-
oshenko and Euler-Bernoulli beams. The Euler-Bernoulli
model may be seen as flow-constrained version of the
Stokes-Dirac Timoshenko beam and is therefore an ex-
ample of constrained pHs with a definition of the energy
via a Stokes-Lagrange subspace. Bijective operators which
transform Stokes-Dirac formulations to Stokes-Lagrange
ones are proposed for the Timoshenko beam model and for
the Euler-Bernouilli reduced model. These operators are
similar to transformations between DAEs and geometric
representations analyzed in Mehrmann and van der Schaft
(2023), in the finite-dimensional LTT case.

2. PRELIMINARY RESULTS
2.1 Vartational derivatives

Theorem 1. Let K : D(K) C L*(Q,R") — L?*(2,R™)
be a closed and densely-defined linear operator, and let
Vo€ D(K), H(a):=3 [, |K(a)*dz, be a functional.

Assume that the following abstract Green’s identity holds
for all « € D(K), B € D(KT)

/ K(a)- B = / o K'(B) + (1), C(Ayy, (1)

where KT : D(K') C L?2(Q,R™) — L?(Q,R") is another
closed and densely—deﬁned hnear operator, called the for-
mal adjoint of K, v € L(D(K),U) is a (boundary) control
operator on the Hilbert space U, and C € L(D(KT),))
its colocated observation operator, with ) := U’. Then,
assuming that C°(Q,R™) C ker(7y), the weak variational
derivative of H with respect to a exists and is given as

SUH(a) = KT(K(a)).

Proof. Let « € D(K),e € R, then, for all § €
CP(Q,R™) =: W, then, defining the weak variational
derivative in the sense of distribution (thanks to (1))

(00 M), Bl IZ/QaJCT(IC(ﬁ))d%

gives the result.

Corollary 2. Given the Hamiltonians H1 and Ho, defined
on HY(Q,R), H*(Q, R), resp., by

Hi(a) = %/Q(axa)Q dz, Ha(a) = %/9(85204)2 dx,

their weak variational derivatives are given, resp., by
SUH (o) = —0%a, 6V Hy(a) = dka.

Proof. Take K = 9,, Kt = —9, in the first case, and
K=K= 852 in the second case.

2.2 Operator transposition

In the following, the superscript notations on a variable
2P 21 refers to the Stokes-Dirac or Stokes-Lagrange rep-

resentation of a system, respectively.

Let us consider K as before, two distributed second order
tensors k € L®(Q,M,(R)),n € L*(Q, M, (R)), with

Ve e Q, k(z) =kT(z) >k >0m() =n'(z) >n>0
almost everywhere, and a pHs defined as

dat'l _ [0 K [ex er = 6o, H”,
ol | T =K 0] |e2|’ el = 6., ME,
——

=JE
with the corresponding Hamiltonian defined as
1
HE = 5~/9af~ﬁaf+a2E-na2de.

Now consider a second pHs defined as

8,504{ o 0 Id 6{ 6{ = (;a{HIv
dag| — |1 0] Jes|” ez =0mH!,
=J!
with the corresponding Hamiltonian defined as

1
/HI=§/Qa{

For the sake of readability, weak variational derivative will
be denoted with the same symbol as usual variational
derivative 0 in the sequel of the paper. Finally, let us
define an operator G : L*(2,R") x D(K) — L?(Q,R") x
L?(Q,R™) and its t-companion

G := Diag[Id, K], and G':=Diag[ld, K],
We then get the following theorem:

‘kal +K(ad) nK(ad)de.

Theorem 3. The previously defined operator G allows
passing from one representation to the other, the trans-
formation being given as

Go' =af, =gl g¥=g7'G"

The two systems are said to be equivalent.

Proof. A direct computation gives the results.

Remark 4. Note that given such a transformation G, each
state af € ker(G) has zero energy, hence does not con-
tribute to the Hamiltonian; hence, they are removed by
G. This explains why, when writing the wave equation in
pH formulation, the deformation € is used instead of the
displacement w: indeed H = 3 [, p* + |grad(w)|* dz, the
Hamiltonian, only depends on the momentum p and defor-
mation grad(w) = €, hence the transformation removing
grad from the Hamiltonian yields (p, €) as the state. And
because the kernel of grad is the set of constant functions,
rigid body motion is lost during the transformation.

3. TWO EXAMPLES WITH DAMPING

In § 3.1, the seepage model is considered, and in § 3.2,
the example of the nanorod is studied. In this paper, the
1D domain {2 is defined as a bounded interval 2 = [a, b].

3.1 Dzektser

Following Dzektser (1972), let us consider the following
seepage model of underground water in 1D

(Id — 52852) 3th =« azzh — ﬂa,j;h,
with a > 0, 8 > 0. The system admits a pH representation
given as

(Id —£%0%) 0 0|[h 0 9, —0%][ h
0 Ido||Fy|=]|d. 0 0 ||Bv|, (2
0 0 Id|LFal |02 0 0 |LEa

=7
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with the resistive relations {gZ} = [g g] [ZZ::Z] . Follow-
R

ing Maschke and van der Schaft (2023) one can define the

Lagrange subspace operators S = (Id — 52832), P =1d,

the Dirac structure operator J and the resistive struc-

ture operator R. Finally, following (Maschke and van der

Schaft, 2023, Section 5.), the Hamiltonian is given as

H 1/ hSTPhdH}[E%axh}g
2 /o 2

1
- 7/ h? + &2 (0,h)? du.
2 Ja

Theorem 5. (Dzektser Power balance) The power balance
related to (2) reads:

%’H = [ahd,h — BhD3sh + BOh D% A0

- /(a(@wh)Q + B(922h)?) dz + [€20,h O;h]}.
Q

Making use of tr as the Dirichlet trace operator, one can
then define (f, eg) the power boundary port related to the
Stokes-Dirac structure as fy = tr([h, h, 0Ozh]), ey =
tr([adyh, —BO2:h, BOZ:h]), and (xa,€9) the energy
boundary port related to the Stokes-Lagrange subspace as
xo = tr(h), ep = tr(¢?d,h). The power balance then
reads:

d d
AU eo+ Lo)ea) — / (aF2 1 BF3) dr,
at dt o

<[fo-ea+ %(Xa)efa]g .

Remark 6. The previous inequality is the extension to the
case of lossy systems of the equality established in Maschke
and van der Schaft (2023) for the case of lossless systems.

Remark 7. The energy boundary port (xa,es) vanishes
when ¢ — 0, i.e., when the nonlocal term is removed,
leading to a classical dissipative pHs.

3.2 Nanorod

Let us start by writing down both versions of the nanorod
example and then comparing them.

Stokes-Dirac representation  Following Heidari and Zwart
(2019), the Hamiltonian of the system reads

1
H = 3 /a2w2 + pA (8yw)® + ppA (8t2xw)2
Q

+ (EA+ pa®) (8,w)? da,
and the state variable is given as
2= [w, pAdyw, upAd? w, dyw, N|T,

with w is the displacement, pAJ;w the momentum density,
upAd2, the flow variable of the non locality, d,w the
strain and N the stress resultant. Let us now define
£ := Diag(1d,1d, 1d,1d, 0) and

1 1
b pA’ //LpA’
which allows us to rewrite the Hamiltonian H as H =
%fﬂ 2TE€T7Qz, with the algebraic property £TQ = QTE.
Defining furthermore

Q := Diag |a? (BA+ pa?), 1d| ,

0 Id 0 0 O
-Id 0o 0 0 0,
0 0 0 —-IdId
0 0 Id 0 O
0 0, -1d 0 0

R := Diag(0,b%, T4EA + ub?,0,0),

where b is the damping coeflicient of the viscoelastic layer
and 7,4 the viscous damping of the nanorod. The dynamics
of the system is given by

£0z= (T —TR)e,

J =

e= Qz. (3)

Stokes-Lagrange representation  Let us now write this
system with a Stokes-Lagrange subspace, i.e., as a state-
space representation where differential operators are present
in the Hamiltonian

Oyw 0 0Id 0 O F
Oie 0 00, 0 O o
op| =|-1dd, 0 —1d d,| |v |, (4)
fd 0 0 Id O 0 €d
fs 0 08, 0 0] les

with p the momentum, w the displacement, ¢ the strain,
fa and eq4 the local and nonlocal dissipative ports, v the
velocity, F' the force of the media applied to the nanorod, o
the nonlocal stress, and eg, e, the local and nonlocal efforts
linked to the dissipative port. The constitutive relations
are F = aw, (Id — pd%)o = Ee,v = pLA, eq =bfq, (Id—
pd%)es = 74fo. Notice that (Id — p9%) is now inside the
constitutive relations, and that two constitutive relations
have become non-local.

Let us denote by z = (w, &, p) the state and eg = (F,0,v)
the effort variable corresponding to the storage port. We
can now define the S and P matrices as

1
P := Diag [Id, (Id — pok), Id} , S :=Diag {cu E, p] .
(5)

And we get the constitutive relation Stz = Pfeg. In
particular, we have that STP = P'S > 0, which shows
that the corresponding Hamiltonian is non-negative. More-
over, the resistive matrices: Ry, = Diag [Id, (Id — p0%)] ,
Rr = Diaglb, 74], yield an implicit resistive structure,
Rrer = Rpfr, with RI Rz > 0, where f, = (f4, f») and
e, = (eq,es)". Let us finally define the structure matrix

0 0Id 0 O

0 00, 0 0
J=|-1d0, 0 —1d 0,| ,

0 0Id 0 0

0 00, 0 0

then, the system becomes

Oz -7 es Rrer = Rrfr,
fr o €r ’ STZZPTES

Let us now write it using the image representation of the
Lagrange subspace

P8t§ -7 es Rrer = RRfT’,
fr Er ’ €g = Sf
with P¢ = z being the latent space variable. Following

(Maschke and van der Schaft, 2023, Section 5.), this
representation allows us to define the Hamiltonian
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1 1
! ::i/ cTPISedr + i[uEézc?xfz}Z
Q

1 1
25/ a&i® + E&% + uB(0,6)* + ;532 dz.
Q

Theorem 8. (Nanorod) The power balance reads

%HI = [uB0:£20,&0 + 0V + gV — piegOpey b
1
*/ bfi + — (€5 + p(dres)?) da. (6)
Q Td

One can then identify the power boundary ports (fa,es)
and energy boundary ports (xs,cs) as

fo = tr( {v, o, —ulawea} ), ep = tr([o, €0 o),
Td

Xo = tr(§2), ep = tr(uE0,&2).
The power balance then reads

i I_ i b_ 2 l 2 2
= o-eot 5 (0)e0 i [b53+ (2400

< [fo-ea+ %(X@)fa]g-

4. EQUIVALENT REPRESENTATIONS FOR
CLASSICAL BEAM MODELS

In § 4.1, Stokes-Dirac representations both for the Tim-
oshenko and the Euler-Bernoulli beam are recalled, then
in § 4.2, Stokes-Lagrange representations are derived, thus
recovering the examples treated in the jet bundle formal-
ism first presented in Schéberl and Siuka (2014) for Tim-
oshenko, and in (Schéberl and Schlacher, 2015, Example
5.1) for Euler-Bernoulli. Finally in § 4.3, the equivalence
between these representations is proved, and the passage
to the limit from Timoshenko to Euler-Bernoulli well un-
derstood in a common setting.

4.1 Stokes-Dirac representations

Timoshenko  The Timoshenko beam equation reads
(Ducceschi and Bilbao, 2019)

pAGZw = To02w + AkGO, (0pw — ¢),
pl0Zp = E10%¢ + AxG(0,w — ),

with p the mass density, A the cross section area, Tj
the tension, x the sheer coefficient, G' the shear modulus,
I moment of inertia, F the young’s modulus, w the
transverse displacement and ¢ the shear angle. Let us
firstly write it as an explicit pHs

OrErw 09, 0 0 O Ow
O¢Pw 0 00 0 0, v
Oe | =10 00 0, 0| |os], (7)
OtDe 0 00, 0 Id w
Ot€w, 09, 0 —-Id 0 N
—.JE

with p,, the linear momentum, pg the angular momentum,
€y = Ozw the deformation, €4 = 0, ¢ the spatial derivative
of the shear angle, and e, 4 = O,w — ¢ the difference

between the deformation and the shear angle. With the fol-
lowing constitutive relations: v = ﬁ%, ow = Toew, w =

’7 04 =Eley, N = AkGey . And Hamiltonian

1 w 2 2
HE — 5/(271 + Toe2 + % + E152+A/@Gs§)7¢) da.
Q

Moreover, one can define the matrices
1 1
SP =1d, PP = Diag <T0, —, EI, —, AHG) ,
pA pl
with PPTSE = SETPE > (. Finally one gets the following
power balance:

Theorem 9. (Timoshenko power balance - Stokes-Dirac
case) The power balance of (7) reads

d

dt
One can identify the power boundary port variables fy =
tr(fv v w]T), es = tr(low N 0¢]T), tr being the trace
operator; yielding -LHE = [f5 - es]t.

HE = [vo, +vN + wa¢]z . (8)

Euler—-Bernoulli  To reduce the Timoshenko model to
the Euler—Bernoulli model, one simply needs to add two
constraints by setting 9,p, and e, 4 to zero in (7)

atsw Ow
atpw v
8t5¢ = jE g | - (9)
0 w
0 N
One can then define the constrained Hamiltonian
1 P 2
E _ w 2 2
H, = 3 ), oa + Toey, + Eley dz, (10)

and get the following power balance

Theorem 10. (Euler-Bernoulli power balance - Stokes-
Dirac case) The power balance of (9) reads

d

dt
One can identify the power boundary port variables
fs=tr(vwv &Ev]T),eg:tr([aw —0504 0‘¢]T). This yields
SHE =[5 elh
Remark 11. One can solve the constraints analytically:
0,04 = —N, 0yv = w. Which yields the following
reduced system

8t€w 0 0 az Ow
l8t€¢] = 0 0 852 [U¢‘| .

3tpw Oy 73332 0 v
—_—
= JE

Note that by hypothesis, 0iey,¢ = 0¢(0z¢ —w) = 0, hence
Or® — w is constant over time, however, this constraint is
not written explicitly in the previous set of equations.

HE = [vo, —vdoy + a(p@xv]z . (11)

(12)

4.2 Stokes-Lagrange representations

Timoshenko  Let us now write the Timoshenko beam
equation in Stokes-Lagrange form, i.e. by putting the
differential operators in the Hamiltonian.

dw 0 Id 0 07 [duH
Opw| _|-I1d 0 0 0f |6, H 13
do| |10 0 0 Id 5¢H17()
Oipy 0 0-Id 0] |5, n



242

with Hamiltonian
H' :l/ (ipr" - p? + Ty(0,w)?
T2 Jo \pATw T ppte TR0

(14)
+ EI(0,0)% + AG(8w — ¢)2) da.

Note that boundary terms will then appear in the constitu-
tive relations. Moreover, this formulation allows for direct
access to the displacement w instead of its gradient g,,.
Let us use Corollary 2 to write the constitutive relations

SuH! = —0, (Todsw) — 0y (ARG (Dpw — §)), 8, H'= %”1,

1_ D¢
61)4)% :p7

We can now define the structure matrix J and the
Lagrange subspace operators S and P as

SoH! = —0,(EI10,¢) — AG(8,w — &),

0 Id 0 O Id 0 0 0
r_|-1Id0 0 0 r_|0Id 0 0
T =10 00wl P=loowmol
0 0 —-Id o 0 0 01Id
81,1 0 aw(AHG> 0
0 1 0 0
s’ pA
—AmG(’)z~ 0 83’3 0 ’
1
0 0 0 E
with 8f, = —8,(Tod,) — 0.(AkG(9,)) and &5 =
—0,(EI9,") + ARG Id.
Then,  writing 2! = (W, P, @, p¢)T7 and

el = (5w7-l,6pw’}{,5¢7-l,5p¢7-l)1 we get
8,2 = glel. Ploel = glel,
{73[]‘61 — sl l and {eI — Slel,

the latter being the image representation. Note that,
StP = PIS > 0, which comes from the non-negativity
of the Hamiltonian (14). Moreover, defining R := [P S]T,
since S is invertible, the associated polynomial matrix of
the operator R(s) satisfies rank(R(s)) =4, Vs € C, giving
the maximal reciprocity of the operator R (see Maschke
and van der Schaft (2023) for details).

Theorem 12. (Timoshenko power balance - Stokes-Lagrange
case) The power balance of (14) reads

%’HI: [O:w (Th Opw + ARG (Opw — ¢))+ 01 Elaxd)]z.

One can identify the energy boundary port variable
T
X0 = tr([w7 w, ¢] )7
o = tr([To Opw, ArG (8w —¢), EId,¢"),
this yields -SH! = [ L (xo) €5
Euler-Bernoulli  Let us reduce the previously defined
system by putting piApi = 0 and AxG(O,w — ¢)®> = 0

in the Hamiltonian (14). One gets: Oipy = 0, ¢ = J,w.
This allows us to define the constrained Hamiltonian as

1 1
Hl = 5/ <pAp3, + To(0pw)? + Ef(é’izw)z) d.
Q

The constrained dynamic reads
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Id 0 007[dw 0 1d 0 07 [duH
0 1d0O0||dpw| |-Id 0 0 0 |6,,H 15
9, 000 |~ |0 0 0 Id| | 5,4 (15)
0 0 00]|dps 0 0 —Id 0] |g, 1!

Theorem 13. (Euler-Bernoulli power balance - Stokes-
Lagrange case)

%’Hﬁ = [Oyw (To0pw—0, (EI0%w))+0,(0pw) ET 02w]P.

One can identify the energy boundary port variable
X5 = tr(jw, w, (“)xw]T),
g5 = tr([Tp Opw, —0,(EI0%w), EI agzw]T),
this yields S H =[-$(x§) - €515

Remark 14. Solving the two constraints Oyps and d,w = ¢
yields the reduced unconstrained system

dw| [0 Id] [6,HL
3tpw - —Id 0 5;0ng ’
—_————
=71
together with the constitutive relations:
{dwﬂg = —0,(Ty0,w) + 9% (E10%w),

1_ P
p HE= 0

(16)

4.8 From Stokes-Lagrange to Stokes-Dirac formulations

Timoshenko In this subsection, we will denote by 27, e¥
the state and effort variables in the Stokes-Dirac formu-
lation and by z!,e! the state and effort in the Stokes-
Lagrange formulation. J%,S¥,PF denote the structure
and constitutive matrices in the Stokes-Dirac case and
JE ST, P the structure and constitutive matrices in the
Stokes-Lagrange case. Let us now describe a procedure
that allows to pass from the Stokes-Lagrange to the Stokes-
Dirac representation, this procedure is similar to the one
described in (Mehrmann and van der Schaft, 2023, Section
6.) but now makes use of differential operators instead of
matrices. First let us define a transformation operator G
from (H'N L3) x L? x H* x L? to (L?)5, where L3 is the
space of zero mean functions, fQ w =0, as

0 0 0 O
0Id 0 O
G:=100 0, 0
00 0 Id
0; 0 —Id 0

Its inverse is actually well-defined, thanks to Poincaré-
Wirtinger’s inequality, since wi = 0. Physically speak-
ing, it means that one neglects rigid body motions of the
beam. The inverse F of G is given by

T 1 b
T / zgdy——/ 2o dy
a b—a a

F(z):=2zm 2 . (A7)
22 — 25
z3
A direct computation then yields Gz! = 2F, e =
GteP, 2l = FF  Flel =¢F.

Note that a geometric interpretation might be useful to
understand these transformations, since states are often
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described as vectors and co-states as covectors, hence they
are contravariant and covariant, respectively. Then, one
can compute the time derivative in the Stokes-Lagrange
case and compare it to the Stokes-Dirac case

G (21 =gTle! =gTigre”.
Hence GJ'G' = JF. And, regarding the Lagrange sub-
space SET2F = PETeE  Let us premultiply this equation
by G and replace the state and effort variables by their
Stokes-Dirac counterparts. We get to

GisPTgx" =gipPTFte,
and we have GTSETG = St and GIPET Ff = pIt,

From Timoshenko to FEuler-Bernoulli  Let us denote
by ¥ := Diag|Id, Id, Id, 0, 0], the (singular) operator
that allows to constrain system (7); when pre-multiplying
the left-hand side of equation (7) with II¥, one gets
the constrained system (9). In order to get the Stokes-
Lagrange counterpart IT7, let us apply G to pass from (13)
to (7), then II¥ to pass from (7) to (9), and finally F to
pass from (9) to (15). Therefore, let us compute F I1¥ G

Id 000

0 Id0o0

0, 000

0 000

Finally, one can represent these transformations as a
commutative diagram, shown in Fig. 1.

' :=Furg =

g,F
(7), HE —— (13), H!
HEl lHI

Fig. 1. Transformations between beam models and repre-
sentations

FEuler—Bernoulli  Let us now apply the same procedure
to the Euler—Bernoulli reduced case, i.e., let us pass from

s
10 0
{0 0, 852} ) the

transformation operator between the two reduced systems.
Then, assuming €4 = 0,w, i.e., on the subspace where this
constraint is satisfied, we have

Ew Ow I
G {w] =ley|, and Gl |oy| = [5wH } .
w w v

(12) to (16). Let us denote by G, :=

Sp, HY
Additionally, one has: QTJTI QI = JTE .

5. CONCLUSION & OUTLOOK

Stokes-Lagrange representations have been proposed for
two examples of pHs, respectively with local and non-
local dissipation. The corresponding Hamiltonian and
power boundary and energy boundary port-variables have
been derived. Stokes-Lagrange representations have also
been derived for the Timoshenko and the Euler-Bernoulli
models. Two bijective transformations between the corre-
sponding Stokes-Dirac and Stokes-Lagrange models have
been exhibited. Since the Euler-Bernoulli beam is a flow-
constrained version of the Timoshenko beam, it has been

checked that the corresponding projection operators com-
mute with the transformations between Stokes-Dirac and
Stokes-Lagrange representations of both models.

We will now consider extending these results to 2D (Dzek-
ster seapage model, Reissner-Mindlin and Kirchoff-Love
plate models) and 3D (Maxwell equations) examples. An-
other avenue we want to explore concerns the compara-
tive analysis of Stokes-Dirac and Stokes-Lagrange formu-
lations, in terms of their numerical properties.

REFERENCES

Beattie, C., Mehrmann, V., Xu, H., and Zwart, H. (2018). Linear
port-Hamiltonian descriptor systems. Mathematics of Control,
Signals, and Systems, 30, 1-27.

Bendimerad-Hohl, A., Haine, G., Lefevre, L., and Matignon, D.
(2023). Implicit port-Hamiltonian systems: structure-preserving
discretization for the nonlocal vibrations in a viscoelastic nanorod,
and for a seepage model. IFAC-PapersOnLine, 56(2), 6789-6795.

Ducceschi, M. and Bilbao, S. (2019). Conservative finite difference
time domain schemes for the prestressed Timoshenko, shear and
Euler—Bernoulli beam equations. Wave Motion, 89, 142-165.

Dzektser, E.S. (1972). Generalization of the equation of motion of
ground waters with free surface. Dokl. Akad. Nauk SSSR, 202(5),
1031-1033.

Heidari, H. and Zwart, H. (2019). Port-Hamiltonian modelling
of nonlocal longitudinal vibrations in a viscoelastic nanorod.
Mathematical and computer modelling of dynamical systems,
25(5), 447-462.

Jacob, B. and Morris, K. (2022). On solvability of dissipative partial
differential-algebraic equations. IEFEE Control Systems Lett., 6,
3188-3193.

Maschke, B. and van der Schaft, A. (2023). Linear boundary
port-Hamiltonian systems with implicitly defined energy. arXiv
preprint arXiv:2305.13772.

Mehrmann, V. and van der Schaft, A. (2023). Differential-algebraic
systems with dissipative Hamiltonian structure. Mathematics of
Control, Signals, and Systems, 1-44.

Philipp, F., Reis, T., and Schaller, M. (2023). Infinite-dimensional

port-Hamiltonian systems—a system node approach. arXiv
preprint arXiv:2302.05168.
Preuster, T., Schaller, M., and Maschke, B. (2024). Jet space

extensions of infinite-dimensional Hamiltonian systems. In Proc.
8th IFAC LHMNC workshop. ArXiv preprint arXiv:2401.15096.

Rashad, R., Califano, F., van der Schaft, A.J., and Stramigioli, S.
(2020). Twenty years of distributed port-Hamiltonian systems:
a literature review. IMA Journal of Mathematical Control and
Information, 37(4), 1400-1422.

Schoberl, M. and Schlacher, K. (2015). Lagrangian and port-
Hamiltonian formulation for distributed-parameter systems.
IFAC-PapersOnLine, 48(1), 610-615.

Schoberl, M. and Siuka, A. (2014). Jet bundle formulation of
infinite-dimensional port-Hamiltonian systems using differential
operators. Automatica, 50, 607-613.

Skrepek, N. (2021). Well-posedness of linear first order port-
Hamiltonian systems on multidimensional spatial domains. Evo-
lution Equations and Control Theory, 10, 965—1006.

van der Schaft, A., Jeltsema, D., et al. (2014). Port-Hamiltonian
systems theory: An introductory overview. Foundations and
Trends® in Systems and Control, 1(2-3), 173-378.

van der Schaft, A. and Maschke, B. (2020). Dirac and Lagrange alge-
braic constraints in nonlinear port-Hamiltonian systems. Vietnam
Journal of Mathematics, 48, 929-939.

van der Schaft, A.J. and Maschke, B.M. (2002). Hamiltonian for-
mulation of distributed-parameter systems with boundary energy
flow. Journal of Geometry and Physics, 42(1-2), 166-194.

Yaghi, M., Couenne, F., Galfré, A., Lefevre, L., and Maschke,
B. (2022). Port-Hamiltonian formulation of the solidification
process for a pure substance: A phase field approach. IFAC-
PapersOnLine, 55(18), 93-98.



