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SCRIMP allowing the user to easily describe a distributed pHs and its discretization method
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1. INTRODUCTION

SCRIMP (Simulation and ContRol of Interactions in
Multi-Physics) is a Python package that aims to facilitate
the structure-preserving discretization of distributed port-
Hamiltonian systems (pHs) (van der Schaft and Maschke,
2002) in any dimension. The chosen discretization is the
Partitioned Finite Element Method (PFEM) (Cardoso-
Ribeiro et al., 2021), based on the well-known and robust
Mixed Finite Element Method. The package is built on up-
to-date libraries, well-established in the scientific comput-
ing community, such as GMSH (Geuzaine and Remacle,
2009), GetFEM (Renard and Poulios, 2020), PETSc (Ab-
hyankar et al., 2018), and ParaView (Ayachit, 2015), with
a transparent interface. In particular, advanced users keep
access to all the capabilities of each library (e.g., matrices
may be exported for MATLAB use, user-defined or Get-
FEM time schemes may be used, solutions may be saved in
many formats for post-processing, etc.). A Graphical User
Interface (GUI) is available and may be used to generate a
Python script, either for a direct run inside the GUI, or for
Python console use. The user is guided all along the differ-
ent steps of discretization, resolution and post-processing,
following the port-Hamiltonian formalism. The presenta-
tion will focus on already published studies, namely the
wave equation (Haine et al., 2023), the heat equation (Ser-
hani et al., 2019b) and the heat-wave coupling (Haine
et al., 2022). These examples are available on GitHub 1 :
https://g-haine.github.io/scrimp/examples.html

The paper is organized as follows: in Section 2, a definition
for pHs is given. In Section 3, the PFEM is presented.
Section 4 is concerned with two examples: the wave equa-
tion and the heat equation, together with their boundary
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interconnection. Section 5 presents the Python package
itself and its syntax on a step-by-step heat example.

2. PORT-HAMILTONIAN SYSTEMS

For a review about pHs, we refer the reader to Rashad
et al. (2020) and the many references therein. The chosen
definition of pHs should allow for an application of the
PFEM. Seeing distributed pHs as constrained open sys-
tems seems to be an easy way to achieve this goal.

In order to simplify the presentation, this work will fo-
cus on constant Stokes-Dirac structure examples: non-
linearities could only occur in the closure relations. Nev-
ertheless, modulated Stokes-Dirac structures are not a
limitation, see for instance how to tackle fluid dynamics
in Cardoso-Ribeiro et al. (2021).

Definition 1. (State, Hamiltonian, and co-state). Let X be
a Hilbert space and H : X → R+, α → H(α). Then
α is called a state variable and H a Hamiltonian. The
variational derivative eα := δαH (depending on the inner
product of X ) is called the co-state variable.

Definition 2. A port-Hamiltonian system is an open sys-
tem of the form: (

∂tα
fd

)
= J

(
eα
ed

)
, (1)

under the constraints:

eα = δαH, Rd(fd, ed) = 0, (2)

and with control and observation:

B (eα ed)
⊤
= u, y = C (eα ed)

⊤
, (3)

where J ∈ L(D(J),Z) is a (non-necessarily bounded)
formally 2 skew-symmetric operator on Z := X × Xd,
with Xd another Hilbert space; Rd is a (non-necessarily
linear) relation modeling a constitutive law linking the
flow fd and the effort ed on Xd; B ∈ L(D(J),U) is a (non-
necessarily bounded) control operator, with control space
U ; and C ∈ L(D(J),Y) is a (non-necessarily bounded)

2 i.e., considering J on compactly supported C∞ functions.
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e-mail: {giuseppe.ferraro, michel.fournie, ghislain.haine}@isae.fr.

Abstract: The Python package SCRIMP (Simulation and ContRol of Interactions in Multi-
Physics) is presented through a collection of port-Hamiltonian systems (pHs) of increasing
complexity, stemming from mechanics and thermodynamics. A focus is made on the syntax of
SCRIMP allowing the user to easily describe a distributed pHs and its discretization method
using the Partitioned Finite Element Method (PFEM) in space, together with the Differential
Algebraic Equation (DAE) solver to use. A Graphical User Interface (GUI) is presented.

Keywords: Port-Hamiltonian systems; Structure-preserving discretization; Python package.

1. INTRODUCTION

SCRIMP (Simulation and ContRol of Interactions in
Multi-Physics) is a Python package that aims to facilitate
the structure-preserving discretization of distributed port-
Hamiltonian systems (pHs) (van der Schaft and Maschke,
2002) in any dimension. The chosen discretization is the
Partitioned Finite Element Method (PFEM) (Cardoso-
Ribeiro et al., 2021), based on the well-known and robust
Mixed Finite Element Method. The package is built on up-
to-date libraries, well-established in the scientific comput-
ing community, such as GMSH (Geuzaine and Remacle,
2009), GetFEM (Renard and Poulios, 2020), PETSc (Ab-
hyankar et al., 2018), and ParaView (Ayachit, 2015), with
a transparent interface. In particular, advanced users keep
access to all the capabilities of each library (e.g., matrices
may be exported for MATLAB use, user-defined or Get-
FEM time schemes may be used, solutions may be saved in
many formats for post-processing, etc.). A Graphical User
Interface (GUI) is available and may be used to generate a
Python script, either for a direct run inside the GUI, or for
Python console use. The user is guided all along the differ-
ent steps of discretization, resolution and post-processing,
following the port-Hamiltonian formalism. The presenta-
tion will focus on already published studies, namely the
wave equation (Haine et al., 2023), the heat equation (Ser-
hani et al., 2019b) and the heat-wave coupling (Haine
et al., 2022). These examples are available on GitHub 1 :
https://g-haine.github.io/scrimp/examples.html

The paper is organized as follows: in Section 2, a definition
for pHs is given. In Section 3, the PFEM is presented.
Section 4 is concerned with two examples: the wave equa-
tion and the heat equation, together with their boundary

⋆ This work was partially funded by the Agence Nationale de
la Recherche (France), IMPACTS, grant no. ANR-21-CE48-0018,
and by the FAMAS project, supported by the AID (Agence de
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∗ Fédération ENAC ISAE-SUPAERO ONERA Université de Toulouse, France
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1. INTRODUCTION

SCRIMP (Simulation and ContRol of Interactions in
Multi-Physics) is a Python package that aims to facilitate
the structure-preserving discretization of distributed port-
Hamiltonian systems (pHs) (van der Schaft and Maschke,
2002) in any dimension. The chosen discretization is the
Partitioned Finite Element Method (PFEM) (Cardoso-
Ribeiro et al., 2021), based on the well-known and robust
Mixed Finite Element Method. The package is built on up-
to-date libraries, well-established in the scientific comput-
ing community, such as GMSH (Geuzaine and Remacle,
2009), GetFEM (Renard and Poulios, 2020), PETSc (Ab-
hyankar et al., 2018), and ParaView (Ayachit, 2015), with
a transparent interface. In particular, advanced users keep
access to all the capabilities of each library (e.g., matrices
may be exported for MATLAB use, user-defined or Get-
FEM time schemes may be used, solutions may be saved in
many formats for post-processing, etc.). A Graphical User
Interface (GUI) is available and may be used to generate a
Python script, either for a direct run inside the GUI, or for
Python console use. The user is guided all along the differ-
ent steps of discretization, resolution and post-processing,
following the port-Hamiltonian formalism. The presenta-
tion will focus on already published studies, namely the
wave equation (Haine et al., 2023), the heat equation (Ser-
hani et al., 2019b) and the heat-wave coupling (Haine
et al., 2022). These examples are available on GitHub 1 :
https://g-haine.github.io/scrimp/examples.html

The paper is organized as follows: in Section 2, a definition
for pHs is given. In Section 3, the PFEM is presented.
Section 4 is concerned with two examples: the wave equa-
tion and the heat equation, together with their boundary
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observation operator, with observation space Y := U ′; u
is the control, and y is the observation. The couple (u, y)
is called the control port. The choice of B (hence of C) is
called a causality.

Remark 1. Definition 2 requires (many) additional as-
sumptions to derive well-posedness or regularity results,
see Brugnoli et al. (2023) for the undamped linear case.
Nevertheless, the present study focuses on a general frame-
work that permits discretization using the PFEM.

A first requirement is the existence of a Stokes-Dirac struc-
ture for a system as in Definition 2, which occurs when
an appropriate relation between J , B and C holds. More
precisely, we follow Brugnoli et al. (2023) and assume:

Assumption 1. The space Z admits a decomposition X1×
X2 (not necessarily identical to X × Xd) such that:

J =


0 −K
L 0


,

K ∈ L(D(K),X1),
L ∈ L(D(L),X2)

.

Assumption 2. The control and observation operators
split accordingly: U = U1 × U2, and,

B =


γ1 0
0 γ2


, C =


0 β1

β2 0


,

with γ1 ∈ L(D(L),U1), γ2 ∈ L(D(K),U2),
β1 ∈ L(D(K),Y1), β2 ∈ L(D(L),Y2), Y ′

i = Ui for i = 1, 2.

Assumption 3. For all φ ∈ D(L) and all ψ ∈ D(K):

(Lφ,ψ)X2
= (φ,Kψ)X1

+ ⟨γ1φ, β1ψ⟩U1,Y1
+ ⟨γ2ψ, β2φ⟩U2,Y2

. (4)

Providing this abstract Green’s identity, the following
power balance holds along the solutions:

d

dt
H = − (ed, fd)Xd

+ ⟨u1, y1⟩U1,Y1
+ ⟨u2, y2⟩U2,Y2

. (5)

The term − (ed, fd)Xd
in (5) will be negative if the relation

Rd models a dissipative law, leading to a lossy pHs, null
for a lossless pHs, and positive for an accretive pHs.

3. STRUCTURE-PRESERVING DISCRETIZATION

The structure-preserving discretization of pHs is an active
topic of research. The interested reader may refer to Ko-
tyczka (2019); Egger (2019); Brugnoli et al. (2022) and
the many references therein for the spatial approximation.
Regarding time discretization, we refer to, e.g., Egger et al.
(2021); Schulze (2023).

3.1 A mixed Galerkin method

The PFEM is a mixed Galerkin method:

(i) Write the variational formulations of (1)–(2)–(3);
(ii) Make use of (4);
(iii) Project the weak system on finite dimensional bases.

For the sake of simplicity, we restrict ourselves to one of
the two following cases, although this is not mandatory:

(I) either X = X1×X2 and Xd = ∅, hence, α = (α1 α2)
⊤
;

(II) or, X = X1 and Xd = X2.

In (I), we note f1 := ∂tα1 and f2 := ∂tα2; in (II), f1 := ∂tα
and f2 := fd. The efforts are e1 and e2 in both cases.

Let φ ∈ D(L) and ψ ∈ D(K), the weak form of (1) reads:
(f1, φ)X1

= (−Ke2, φ)X1
,

(f2, ψ)X2
= (Le1, ψ)X2

,

Using (4) on, either the first or the second line, makes
appear (y1, u2) or (u1, y2) resp.; e.g., the latter case reads:

(f2, ψ)X2
= (e1,Kψ)X1

+ ⟨u1, β1ψ⟩U1,Y1
+ ⟨γ2ψ, y2⟩U2,Y2

.

The weak form for the other control u2 is obtained thanks
to test functions ζ2 ∈ U2 ∩ Y2:

⟨u2, ζ2⟩U2,Y2
= ⟨γ2e2, ζ2⟩U2,Y2

,

and similarly for the other observation y1 with test func-
tions ζ1 ∈ U1 ∩ Y1:

⟨ζ1, y1⟩U1,Y1
= ⟨ζ1, β1e2⟩U1,Y1

.

Given four finite-dimensional families (e.g., finite elements
bases), (φi)1≤i≤N1 to approximate (in space) f1 and e1;
(ψk)1≤k≤N2

for f2 and e2; (ζ
m1
1 )1≤m1≤N1

∂
for u1 and y1;

and (ζm2
2 )1≤m2≤N2

∂
for u2 and y2, leads to the system:

Diag



M1

M2

M1
∂

M2
∂







f1
f2
−y1
u2


 =



0 −D⊤ 0 0
D 0 B1 −B⊤

2

0 −B⊤
1 0 0

0 B2 0 0







e1
e2
u1

−y2




(6)
where an underlined variable denotes the vector of coeffi-
cients in the corresponding basis, the mass matrices are:

(M1)ij :=
�
φj , φi


X1

, (M2)kℓ :=
�
ψℓ, ψk


X2

,

(Mκ
∂ )mn := ⟨ζnκ , ζmκ ⟩Uκ,Yκ

, for κ = 1, 2 ;

the rectangular stiffness matrixD is (D)kj :=
�
φj ,Kψk


X2

and the control matrices are:

(B1)kn :=

ζn1 , β1ψ

k

U1,Y1

, (B2)mℓ :=

γ2ψ

ℓ, ζm2

U2,Y2

.

Remark 2. With the choice to apply (4) on the second
line, a strong regularity is implicitly assumed for the
family (ψk)k to be conform, namely, (ψk)k ⊂ D(K), as
often in mixed formulations; the other choice would imply
alternatively: (φi)i ⊂ D(L).

3.2 Dirac structure and discrete Hamiltonian

Theorem 1. System (6) generates a Dirac structure.

Clearly, the proof relies on (van der Schaft and Jeltsema,
2014, Section 5.1), given that the l.h.s. of (6) is symmetric
positive-definite; while the r.h.s. is skew-symmetric.

To obtain the discrete power balance, it remains to de-
fine the discrete Hamiltonian and discretize the closure
relations (2) accordingly. The next theorem is a straight-
forward consequence of Theorem 1.

Theorem 2.

Case (I) Let Hd(α1, α2) := H(αd
1, α

d
2), where αd

κ is the
spatial approximation of the energy variables ακ, κ = 1, 2.

IfM1e1 = H1[α
d
1, α

d
2]α1 andM2e2 = H2[α

d
1, α

d
2]α2, with:

Hκ[α
d
1, α

d
2] := ∇Mκ

ακ
Hd, for κ = 1, 2 ;

where ∇M denotes the gradient taken in the metric
induced by the matrix M , then:

d

dt
Hd = u1

⊤ M1
∂ y1 + y2

⊤ M2
∂ u2. (7)
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(ii) Make use of (4);
(iii) Project the weak system on finite dimensional bases.

For the sake of simplicity, we restrict ourselves to one of
the two following cases, although this is not mandatory:

(I) either X = X1×X2 and Xd = ∅, hence, α = (α1 α2)
⊤
;

(II) or, X = X1 and Xd = X2.

In (I), we note f1 := ∂tα1 and f2 := ∂tα2; in (II), f1 := ∂tα
and f2 := fd. The efforts are e1 and e2 in both cases.

Let φ ∈ D(L) and ψ ∈ D(K), the weak form of (1) reads:
(f1, φ)X1

= (−Ke2, φ)X1
,

(f2, ψ)X2
= (Le1, ψ)X2

,

Using (4) on, either the first or the second line, makes
appear (y1, u2) or (u1, y2) resp.; e.g., the latter case reads:

(f2, ψ)X2
= (e1,Kψ)X1

+ ⟨u1, β1ψ⟩U1,Y1
+ ⟨γ2ψ, y2⟩U2,Y2

.

The weak form for the other control u2 is obtained thanks
to test functions ζ2 ∈ U2 ∩ Y2:

⟨u2, ζ2⟩U2,Y2
= ⟨γ2e2, ζ2⟩U2,Y2

,

and similarly for the other observation y1 with test func-
tions ζ1 ∈ U1 ∩ Y1:

⟨ζ1, y1⟩U1,Y1
= ⟨ζ1, β1e2⟩U1,Y1

.

Given four finite-dimensional families (e.g., finite elements
bases), (φi)1≤i≤N1 to approximate (in space) f1 and e1;
(ψk)1≤k≤N2

for f2 and e2; (ζ
m1
1 )1≤m1≤N1

∂
for u1 and y1;

and (ζm2
2 )1≤m2≤N2

∂
for u2 and y2, leads to the system:
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
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


e1
e2
u1

−y2




(6)
where an underlined variable denotes the vector of coeffi-
cients in the corresponding basis, the mass matrices are:

(M1)ij :=
�
φj , φi


X1

, (M2)kℓ :=
�
ψℓ, ψk


X2

,

(Mκ
∂ )mn := ⟨ζnκ , ζmκ ⟩Uκ,Yκ

, for κ = 1, 2 ;

the rectangular stiffness matrixD is (D)kj :=
�
φj ,Kψk


X2

and the control matrices are:

(B1)kn :=

ζn1 , β1ψ

k

U1,Y1

, (B2)mℓ :=

γ2ψ

ℓ, ζm2

U2,Y2

.

Remark 2. With the choice to apply (4) on the second
line, a strong regularity is implicitly assumed for the
family (ψk)k to be conform, namely, (ψk)k ⊂ D(K), as
often in mixed formulations; the other choice would imply
alternatively: (φi)i ⊂ D(L).

3.2 Dirac structure and discrete Hamiltonian

Theorem 1. System (6) generates a Dirac structure.

Clearly, the proof relies on (van der Schaft and Jeltsema,
2014, Section 5.1), given that the l.h.s. of (6) is symmetric
positive-definite; while the r.h.s. is skew-symmetric.

To obtain the discrete power balance, it remains to de-
fine the discrete Hamiltonian and discretize the closure
relations (2) accordingly. The next theorem is a straight-
forward consequence of Theorem 1.

Theorem 2.

Case (I) Let Hd(α1, α2) := H(αd
1, α

d
2), where αd

κ is the
spatial approximation of the energy variables ακ, κ = 1, 2.

IfM1e1 = H1[α
d
1, α

d
2]α1 andM2e2 = H2[α

d
1, α

d
2]α2, with:

Hκ[α
d
1, α

d
2] := ∇Mκ

ακ
Hd, for κ = 1, 2 ;

where ∇M denotes the gradient taken in the metric
induced by the matrix M , then:

d

dt
Hd = u1

⊤ M1
∂ y1 + y2

⊤ M2
∂ u2. (7)

Case (II) Let Hd(α) := H(αd), where αd is the spatial
approximation of the energy variable α.

If M1e1 = H[αd]α, with H[αd] := ∇M1
α Hd, then:

d

dt
Hd = −e2 M2 f2 + u1

⊤ M1
∂ y1 + y2

⊤ M2
∂ u2. (8)

Remark 3. In case (II), also the second closure relation
in (2), Rd(fd, ed) = 0, has to be discretized accordingly.

Remark 4. When the Hamiltonian is polynomial, the gra-
dient conditions of Theorem 2 are equivalent to the dis-
crete weak forms of the constitutive relations eα := δαH.

4. EXAMPLES

From now on, Ω ∈ Rd is a domain, with d = 1, 2 or 3
and with n the outward unit vector at the boundary. The
Dirichlet trace operator is denoted γ0, and the normal
trace operator is γ⊥ := n · γ0. For convenience, solutions
are assumed regular enough to reduce the duality bracket
at the boundary to a boundary integral. Furthermore, the
boundary Γ := ∂Ω may be decomposed in two regions Γ1,
and Γ2, such that Γ1 ∩ Γ2 = ∅ and Γ1 ∪ Γ2 = Γ.

4.1 The wave equation

Following Haine et al. (2023) and the references therein,
the very first example of distributed linear pHs is the linear
wave equation. Taking the Hamiltonian as the sum of the
kinetic and potential energies, in function of the linear
momentum αp := ρ∂tw and the strain αq := grad(w)
respectively, where w stands for the deflection from the
equilibrium position and ρ the mass density:

Hw(αp,αq) :=
1

2



Ω

|αp|2

ρ
+

1

2



Ω

α⊤
q Eαq, (9)

with E the Young’s elasticity symmetric positive-definite
second order tensor modulus. The co-state variables are:

ep := δαp
Hw =

αp

ρ
, eq := δαqHw = Eαq, (10)

i.e., the velocity and the stress respectively. Hence, the pHs
modeling the linear wave equation may be written as:

∂tαp

∂tαq


=


0 div

grad 0


ep
eq


,


ep
eq


=


ρ−1 0
0 E


αp

αq


.

(11)
Along the solution, the power balance computes:

d

dt
Hw =



∂Ω

γ0(ep) γ⊥(eq). (12)

Assume that we control the velocity, hence:

uw = γ0(ep), yw = γ⊥(eq). (13)

The discretized system with the PFEM may be obtained
by integration by part of the second line of the first system
of (11):
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
 =



0 −D⊤ 0
D 0 B
0 −B⊤ 0






ep
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uw


 ,

where (Mp)ij :=
�
φj , φi


L2 , (Mq)kℓ :=

�
ψℓ, ψk


(L2)d

, the

stiffness matrix is (D)kj := −
�
φj , div(ψk)


L2 , the control

matrix is (B)kn :=
�
ζn, γ⊥(ψ

k)

L2(∂Ω)

. Then, adding the

constraints:
Mp 0
0 Mq


ep
eq


=


Qp 0
0 Qq


αp

αq


,

where (Qp)ij :=
�
φj , ρ−1φi


L2 , (Qq)kℓ :=

�
ψℓ,Eψk


(L2)d

,

leads to the discrete power balance (7), i.e., in our case:

d

dt
Hd

w = uw
⊤ M∂ yw,

which perfectly mimics the continuous version (12).

Remark 5. In this particular case where the Hamiltonian
is quadratic, the constitutive relations are linear and may
be substituted, leading to the co-state formulation:

Diag


Pp

Pq

M∂




ėp
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uw


 ,

where (Pp)ij :=
�
φj , ρφi


L2 , (Pq)kℓ :=


ψℓ,E

−1
ψk


(L2)d

.

4.2 The heat equation

Let us denote by T the temperature, and consider the first
law of thermodynamics, which reads in a solid medium:

ρ ∂te = −div (JQ) ,

where ρ is the mass density, e is the internal energy density,
and JQ is the heat flux. Furthermore, we assume Dulong-
Petit’s model, i.e., e = cvT , where cv is the specific heat
capacity at constant volume (isochoric process).

Following Serhani et al. (2019a), several choices are possi-
ble for the Hamiltonian, leading to different pHs represen-
tations of the so-called heat equation.

The easiest model consists in considering the squared L2-
weighted-norm of the temperature as Hamiltonian:

Hh(T ) :=
1

2



Ω

ρcv |T |2 . (14)

Then, the co-state variable is given by:

δTHh = T, (15)

where the inner product in L2 has been weighted by ρcv.
Finally, using Fourier’s law: JQ = −Λgrad(T ), with Λ
the symmetric positive-definite second order tensor heat
conductivity, leads to:

ρcv∂tT
fQ


=


0 −div

−grad 0


T
JQ


, JQ = ΛfQ. (16)

Along the solutions, the power balance follows:

d

dt
Hh = −



Ω

Λ
1
2fQ


2

−


∂Ω

γ0(T ) γ⊥(JQ), (17)

which stands for the expected decay of a parabolic system.

We control the opposite of the normal heat flux on Γ1:

u1
h = −γ⊥(JQ), y1h = γ0(T ), (18)

and the temperature on the complement Γ2 := ∂Ω \ Γ1:

u2
h = γ0(T ), y2h = −γ⊥(JQ). (19)

Applying the PFEM by integrating by part the first line
of the first system of (16) gives:
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T
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 ,

(20)
with (PT )ij :=

�
φj , ρcvφ

i

L2 , (MQ)kℓ :=

�
ψℓ, ψk


(L2)d

,

(G)iℓ :=
�
ψℓ,grad(φi)


(L2)d

, (B1)in :=
�
ζn1 , γ0(φ

i)

L2(Γ1)

,

(B2)mj :=
�
ζn2 , γ0(φ

i)

L2(Γ2)

. Furthermore, the Fourier’s

law in (16) writes:

MQJQ := LQfQ, (LQ)kℓ :=
�
ψℓ,Λψk


(L2)d

. (21)

Then, the discrete Hamiltonian Hd
h satisfies:

d

dt
Hd

h = −fQ
⊤ LQ fQ + u1

h
⊤
M1

∂ y1h + y2h
⊤
M2

∂ u2
h,

which perfectly mimics the continuous power balance (17).

4.3 Boundary interactions: the heat–wave system

Following Haine et al. (2022), the coupling of the wave
equation in a domain Ωw and the heat equation in a dis-
tinct domain Ωh, at the interface Γ1 := ∂Ωw∩∂Ωh between
the two domains, reveals to be as simple as to consider
the appropriate interconnection between the two pHs (11)
and (16), namely, taking a gyrator interconnection re-
lating (13) and (18) at the interface Γ1. Together with
homogeneous Dirichlet boundary conditions, this reads:

u1
h = −y1w, and u1

w = y1h, on Γ1,
u2
w = 0, on Γw

2 := ∂Ωw \ Γ1,
u2
h = 0, on Γh

2 := ∂Ωh \ Γ1,
(22)

where the superscripts 1 and 2 denote the boundary re-
gions to consider Γ1 and Γ2 respectively. Provided the
boundary discretizations (ζmw )m = (ζmh )m = (ζm)m coin-
cide at the interface Γ1 (although this is not mandatory),
these conditions read at the discrete level:

M1
∂u

1
h = −M1

∂y
1
w, and M1

∂u
1
w = M1

∂y
1
h,

Mw
∂ u2

w = 0, and Mh
∂ u

2
h = 0,

(23)

with boundary mass matrices: (M1
∂ )mn = (ζn, ζm)L2(Γ1)

,

and (Mk
∂ )mn = (ζnk , ζ

m
k )L2(Γk

2 )
, for k = w, h.

5. SCRIMP

5.1 Generality

The Python package SCRIMP was developed to simplify
the implementation of the structure-preserving discretiza-
tion presented in Section 3.

Essential milestones of the library are illustrated in Fig. 1.
The workflow relies on well-known third-party libraries,
namely: GMSH, GetFEM, PETSc and ParaView.

In Section 5.2, we describe the calls to do in a Python
script to solve a 2D heat equation, described in Section 4.2.
In Section 5.3, we present the Graphical User Interface
(GUI) for creating interactively the same kind of code.

5.2 Example step-by-step

We now describe the language required to solve a 2D
heat equation under Lyapunov Hamiltonian formulation,

Fig. 1. SCRIMP milestones.

as proposed in Section 4.2; in particular, with opposite
heat flux boundary control. We consider a manufactured
solution on a rectangle domain Ω := (0, 2) × (0, 1). We
use P2 Lagrange finite element for the temperature T ,
P1 Lagrange finite element for fQ, JQ and u∂ . The
parameters are taken constant equal to one, i.e. ρ = cv = 1,

Λ =


1 0
0 1


. Let x = (x y)

⊤
and T (t,x) = 4t + ∥x∥2 +

3x − 5y. Moreover, define JQ(t,x) = −grad(T (t,x)) =

− (2x+ 3 2y − 5)
⊤
. Let us define the following function

as boundary control: ∀t ≥ 0, s ∈ ∂Ω

u∂(t, s) =




−5, y = 0,
−7, x = 2,
3, y = 1,
3, x = 0.

Then T is the solution of the following heat equation with
boundary heat flux control:


∂tT (t,x) = ∆T (t,x), ∀t ≥ 0,x ∈ Ω,
T (0,x) = ∥x∥2 + 3x− 5y, ∀x ∈ Ω,
−grad(T (t, s)).n(s) = u∂(t, s), ∀t ≥ 0, s ∈ ∂Ω.

The simulation is based on the weak formulation of the
pHs (16), i.e., on (20)–(21).

The Python code of (20)–(21) corresponds to the following
script. Some explanations are given after the code with
circled integers as references to the different steps.
from scrimp import * 01

heat = DPHS("real")

heat.set_domain( 02

Domain("Rectangle", {"L": 2.0,"l": 1.0, "h": 0.1}) )

states = [ State("T", "Temperature", "scalar -field") ] 03

costates = [ CoState("T", "Temperature", states [0], substituted=

True) ]

ports = [ Port("Heat flux", "f_Q", "J_Q", "vector -field") ] 04

control_ports = [

Control_Port("B.C.( bottom)", "U_B", "Normal heat flux", "Y_B"

, "Temperature", "scalar -field", 10),

Control_Port("B.C.( right)", "U_R", "Normal heat flux", "Y_R",

"Temperature", "scalar -field", 11),

Control_Port("B.C.(top)", "U_T", "Normal heat flux", "Y_T", "

Temperature", "scalar -field", 12),

Control_Port("B.C.(left)", "U_L", "Normal heat flux", "Y_L",

"Temperature", "scalar -field", 13), ]

FEMs = [ 05

FEM("T", 2, "CG"),

FEM("Heat flux", 1, "CG"),

FEM("B.C.( bottom)", 1, "CG"),

FEM("B.C.( right)", 1, "CG"),

FEM("B.C.(top)", 1, "CG"),

FEM("B.C.(left)", 1, "CG"), ]

parameters = [ 06

Parameter("rho", "(Mass density)x(Heat capacity)", "scalar -

field", "1.", "T"),

Parameter("cv", "heat capacity", "scalar -field", "1.", "T"),

Parameter("lambda", "heat conductivity", "tensor -field", "

[[1. ,0.] ,[0. ,1.]]", "Heat flux") ]

for (state ,costate) in zip(states ,costates): 07

heat.add_state(state)

heat.add_costate(costate)
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(20)
with (PT )ij :=

�
φj , ρcvφ

i

L2 , (MQ)kℓ :=

�
ψℓ, ψk


(L2)d

,

(G)iℓ :=
�
ψℓ,grad(φi)


(L2)d

, (B1)in :=
�
ζn1 , γ0(φ

i)

L2(Γ1)

,

(B2)mj :=
�
ζn2 , γ0(φ

i)

L2(Γ2)

. Furthermore, the Fourier’s

law in (16) writes:

MQJQ := LQfQ, (LQ)kℓ :=
�
ψℓ,Λψk


(L2)d

. (21)

Then, the discrete Hamiltonian Hd
h satisfies:

d

dt
Hd

h = −fQ
⊤ LQ fQ + u1

h
⊤
M1

∂ y1h + y2h
⊤
M2

∂ u2
h,

which perfectly mimics the continuous power balance (17).

4.3 Boundary interactions: the heat–wave system

Following Haine et al. (2022), the coupling of the wave
equation in a domain Ωw and the heat equation in a dis-
tinct domain Ωh, at the interface Γ1 := ∂Ωw∩∂Ωh between
the two domains, reveals to be as simple as to consider
the appropriate interconnection between the two pHs (11)
and (16), namely, taking a gyrator interconnection re-
lating (13) and (18) at the interface Γ1. Together with
homogeneous Dirichlet boundary conditions, this reads:

u1
h = −y1w, and u1

w = y1h, on Γ1,
u2
w = 0, on Γw

2 := ∂Ωw \ Γ1,
u2
h = 0, on Γh

2 := ∂Ωh \ Γ1,
(22)

where the superscripts 1 and 2 denote the boundary re-
gions to consider Γ1 and Γ2 respectively. Provided the
boundary discretizations (ζmw )m = (ζmh )m = (ζm)m coin-
cide at the interface Γ1 (although this is not mandatory),
these conditions read at the discrete level:

M1
∂u

1
h = −M1

∂y
1
w, and M1

∂u
1
w = M1

∂y
1
h,

Mw
∂ u2

w = 0, and Mh
∂ u

2
h = 0,

(23)

with boundary mass matrices: (M1
∂ )mn = (ζn, ζm)L2(Γ1)

,

and (Mk
∂ )mn = (ζnk , ζ

m
k )L2(Γk

2 )
, for k = w, h.

5. SCRIMP

5.1 Generality

The Python package SCRIMP was developed to simplify
the implementation of the structure-preserving discretiza-
tion presented in Section 3.

Essential milestones of the library are illustrated in Fig. 1.
The workflow relies on well-known third-party libraries,
namely: GMSH, GetFEM, PETSc and ParaView.

In Section 5.2, we describe the calls to do in a Python
script to solve a 2D heat equation, described in Section 4.2.
In Section 5.3, we present the Graphical User Interface
(GUI) for creating interactively the same kind of code.

5.2 Example step-by-step

We now describe the language required to solve a 2D
heat equation under Lyapunov Hamiltonian formulation,

Fig. 1. SCRIMP milestones.

as proposed in Section 4.2; in particular, with opposite
heat flux boundary control. We consider a manufactured
solution on a rectangle domain Ω := (0, 2) × (0, 1). We
use P2 Lagrange finite element for the temperature T ,
P1 Lagrange finite element for fQ, JQ and u∂ . The
parameters are taken constant equal to one, i.e. ρ = cv = 1,

Λ =


1 0
0 1


. Let x = (x y)

⊤
and T (t,x) = 4t + ∥x∥2 +

3x − 5y. Moreover, define JQ(t,x) = −grad(T (t,x)) =

− (2x+ 3 2y − 5)
⊤
. Let us define the following function

as boundary control: ∀t ≥ 0, s ∈ ∂Ω

u∂(t, s) =




−5, y = 0,
−7, x = 2,
3, y = 1,
3, x = 0.

Then T is the solution of the following heat equation with
boundary heat flux control:


∂tT (t,x) = ∆T (t,x), ∀t ≥ 0,x ∈ Ω,
T (0,x) = ∥x∥2 + 3x− 5y, ∀x ∈ Ω,
−grad(T (t, s)).n(s) = u∂(t, s), ∀t ≥ 0, s ∈ ∂Ω.

The simulation is based on the weak formulation of the
pHs (16), i.e., on (20)–(21).

The Python code of (20)–(21) corresponds to the following
script. Some explanations are given after the code with
circled integers as references to the different steps.
from scrimp import * 01

heat = DPHS("real")

heat.set_domain( 02

Domain("Rectangle", {"L": 2.0,"l": 1.0, "h": 0.1}) )

states = [ State("T", "Temperature", "scalar -field") ] 03

costates = [ CoState("T", "Temperature", states [0], substituted=

True) ]

ports = [ Port("Heat flux", "f_Q", "J_Q", "vector -field") ] 04

control_ports = [

Control_Port("B.C.( bottom)", "U_B", "Normal heat flux", "Y_B"

, "Temperature", "scalar -field", 10),

Control_Port("B.C.( right)", "U_R", "Normal heat flux", "Y_R",

"Temperature", "scalar -field", 11),

Control_Port("B.C.(top)", "U_T", "Normal heat flux", "Y_T", "

Temperature", "scalar -field", 12),

Control_Port("B.C.(left)", "U_L", "Normal heat flux", "Y_L",

"Temperature", "scalar -field", 13), ]

FEMs = [ 05

FEM("T", 2, "CG"),

FEM("Heat flux", 1, "CG"),

FEM("B.C.( bottom)", 1, "CG"),

FEM("B.C.( right)", 1, "CG"),

FEM("B.C.(top)", 1, "CG"),

FEM("B.C.(left)", 1, "CG"), ]

parameters = [ 06

Parameter("rho", "(Mass density)x(Heat capacity)", "scalar -

field", "1.", "T"),

Parameter("cv", "heat capacity", "scalar -field", "1.", "T"),

Parameter("lambda", "heat conductivity", "tensor -field", "

[[1. ,0.] ,[0. ,1.]]", "Heat flux") ]

for (state ,costate) in zip(states ,costates): 07

heat.add_state(state)

heat.add_costate(costate)

for port in ports:

heat.add_port(port)

for control_port in control_ports:

heat.add_control_port(control_port)

for fem in FEMs:

heat.add_FEM(fem)

for param in parameters:

heat.add_parameter(param)

heat.hamiltonian.set_name("Lyapunov formulation") 08

terms = [ Term("L^2-norm", "0.5* rho*cv*T*T", [1], 0) ]

for term in terms:

heat.hamiltonian.add_term(term)

bricks = [ 09

Brick("P_T", "rho*cv*T*Test_T", [1], dt=True , position="flow"),

Brick("M_Q", "f_Q.Test_f_Q", [1], position="flow"),

Brick("M_Y_B", "Y_B*Test_Y_B", [10], position="flow"),

Brick("M_Y_R", "Y_R*Test_Y_R", [11], position="flow"),

Brick("M_Y_T", "Y_T*Test_Y_T", [12], position="flow"),

Brick("M_Y_L", "Y_L*Test_Y_L", [13], position="flow"),

Brick("G", "J_Q.Grad(Test_T)", [1], position="effort"),

Brick("-G^T", "-Grad(T).Test_f_Q", [1], position="effort"),

Brick("B_B", "U_B*Test_T", [10], position="effort"),

Brick("B_R", "U_R*Test_T", [11], position="effort"),

Brick("B_T", "U_T*Test_T", [12], position="effort"),

Brick("B_L", "U_L*Test_T", [13], position="effort"),

Brick("-B_B^T", "-T*Test_Y_B", [10], position="effort"),

Brick("-B_R^T", "-T*Test_Y_R", [11], position="effort"),

Brick("-B_T^T", "-T*Test_Y_T", [12], position="effort"),

Brick("-B_L^T", "-T*Test_Y_L", [13], position="effort"),

Brick("-M_Q","-J_Q.Test_J_Q", [1], position="constitutive"),

Brick("L_Q","f_Q.lambda.Test_J_Q" ,[1], position="constitutive")]

for brick in bricks:

heat.add_brick(brick)

expressions = ["-5", "-7", "3", "3"] 10

for control_port , expression in zip(control_ports , expressions):

heat.set_control(control_port.get_name (), expression)

heat.set_initial_value("T", "x*x+y*y+3*x-5*y")

heat.set_time_scheme(t_f=1., dt=0.01 , init_step=False) 11

heat.solve ()

heat.plot_Hamiltonian () 12

err_L2 = heat.get_quantity("pow(T-4*t-x*x-y*y-3*x+5*y,2)")

from math import sqrt

print("Maximal L^2-error over time:", sqrt(max(err_L2)))

01 To start, we import SCRIMP and initialize a real
distributed pHs object as an instantiation of the class
DPHS. For our model, we choose the name heat for the
model. This model has to be completed before calling the
time iteration solver, and we will show how to do it step
by step. For convenience, at each step, we are going to
create a list of specific objects, and we will show how to

add those objects to the model in step 07.

02 The domain Ω = [0; 2]× [0; 1] is set directly over the
pHs model by passing a specific instantiation of the class
Domain. Here, in particular, the domain is meshed using a
characteristic mesh size parameter h = 0.1 using the built-
in geometry Rectangle. For a given mesh, the domain
is decomposed into regions, referenced by integers : 1 is
linked to the full domain, and 10, 11, 12, 13 are linked
to the bottom, the right, the top and the left boundaries
respectively. Information about available geometries and
the flags of the regions can be found in the documentation.
Notice that the GMSH library (Geuzaine and Remacle,
2009) is called to effectively create the mesh, and external
GMSH-meshes (with affectation of the boundaries flags)
can be imported manually.

03 The next step consists in the definition of the state and
co-state variables. Again for ease, two lists of State() and
CoState() objects are created. The variables of the model
are defined at this stage by the choice of their names, T
and of their dimensions (scalar-field, vector-field,
tensor-field). A description of the nature of the variable
is given (useful to generate the legends of output plots).

The co-state is explicitly linked to the state variable using
the object states[0]. The use of substituted=True spec-
ifies that the co-state formulation is chosen (Remark 5).

04 To complete the definition of the variables, we specify
the ports in a same manner. Here, the variables are vector
fields with the names f_Q and J_Q. The control ports
require considering boundary terms and are defined by
using Control_Port class. We specify the names U_B, U_R,
U_T, U_L linked to the boundary regions 10, 11, 12, 13.
The observations linked to each control terms are defined
at this stage with the names Y_B, Y_R, Y_T, Y_L.

05 The selection of the Finite Element Method (FEM)
for each variable is defined by the instances of the class
FEM. We have access to the finite element defined in
the GetFEM library (Renard and Poulios, 2020), such
that the classical continuous and discontinuous methods
with polynomials of degree k (Pk), Raviart-Thomas of
degree k (RTk), Brezzi-Douglas-Marini element of degree
k (BDMk), just to name a few. All choices are possible
for each variable, so for each one its name is recalled
and the finite element method is chosen. We refer to the
documentation for the list of possible choices.

06 The parameters of the model are defined with the
instances of Parameter class. Here, we fix the names
rho, cv and lambda, their dimensions and a word to
provide some information for clarity. The values of the
fixed parameters are specified at this stage.

07 At this step, all objects previously defined are added
to the model with a call of the form heat.add_*(), where
* is specific to the nature of the element to add.

08 For post-processing, it is interesting, for instance, to
evaluate the Hamiltonian. This can be done by adding one
or more Term() object to the model. Note that these calls
can be postponed after the resolution.

09 The next step corresponds to the weak formulation
defining the block matrices of the dpHs. We use the
GetFEM formalism based on bricks that is embedded in
our Brick class and defined with Generic Weak Form
Language (GWFL), intended to be close to the structure of
a standard weak formulation of boundary value problems.
Test functions can be used w.r.t. any of the variables.
They are identified by the prefix Test_ followed by the
corresponding variable name. All expressions appearing in
that formalism must be defined previously as variables
or parameters (Renard and Poulios, 2020). Each brick
corresponds to an integral term, where the integration
domain is specified with the flags of the different parts
(regions) of the boundary. Extra information is given by
the affectation of position that can be equals to flow or
effort to specify (left- or right-hand side) where the block
matrix must be added into the model. When position is
affected to constitutive the resulting brick corresponds
to the constitutive relations, for that latter case, all terms
are added on the same side, it is the reason why a negative
sign is used in -M_Q. The first brick differs from the others
with the additional information dt=True that underlines
the fact that the temperature T appears in the model with
a time derivative.
10 The control and initial values still need to be defined.
It is realized by linking given values to the control ports
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already defined. The model heat is enriched by the call
set.control(). The initial value of the state variable T is
given using set_initial_value().

11 Everything is ready for the time evolution solver. In
the background, the PETSc/TS library (Abhyankar et al.,
2018) is called. The final time is set with t_f and the time
step with dt. Using init_step is for consistent first step,
not needed here. The simulation runs with the solve()
method of the pHs model.

12 Post-processing can be done, for example, to plot the
time evolution of the Hamiltonian, see Fig.2. Furthermore,
integral quantities may be computed for each time step,
e.g., get_quantity("pow(T-4*t-x*x-y*y-3*x+5*y,2)")
is used to compute the L2-error

∫
Ω
|T−4t−∥x∥2−3x+5y|2

between the computed temperature and the exact solution.
The max over time is equal to 7.7×10−13 in this example.

Fig. 2. Plot generated for the Hamiltonian.

5.3 Graphical User Interface

A Graphical User Interface (GUI) was developed to reduce
the repetitive task required to program new pHs formu-
lations and to avoid learning in detail the syntax of the
library. Each step described in the previous section can
be informed, see the dedicated pages available in Fig. 3
(left). It is also possible to fill dedicated fields, see for
example Fig. 3 (right), to reproduce the action realized

in step 09. Interactive access to the associated documen-
tation is possible. From scratch, it is possible to construct
the full model interactively. The generated script can be
modified into any text-editor or executed on the fly.

Fig. 3. GUI pages (left), one example of interface (right).

6. CONCLUSION

We have presented the Python package SCRIMP useful to
easily start simulations on distributed port-Hamiltonian
systems, through examples stemming from mechanics and
thermodynamics. In the future, SCRIMP aims at being a
tool for the pHs community, both for rapid experiments

on new models and more advanced simulations, including
control facilities and system analysis. The examples are
available on the GitHub of SCRIMP, among others.
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