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Abstract. The modelling of the Schréodinger Equation as a port-Hamil-
tonian system is addressed. We suggest two Hamiltonians for the model,
one based on the probability of presence and the other on the energy
of the quantum system in a time-independent potential. In order to
simulate the evolution of the quantum system, we adapt the model to
a bounded domain. The model is discretized thanks to the structure-
preserving Partitioned Finite Element Method (PFEM). Simulations of
Rabi oscillations to control the state of a system inside a quantum box
are performed. Our numerical experiments include the transition between
two levels of energy and the generation of Schrodinger cat states.
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1 Introduction

Over the past two decades, the port-Hamiltonian (pH) theory has continued
to develop as a preferential paradigm to describe distributed parameter sys-
tems [13]. This formalism is judicious to model and control complex dynamical
systems: subsystems communicate wvia ports and the power balance is incor-
porated within the pH structure. It has been successfully applied to many
fields such as structural mechanics, electromagnetism and fluid mechanics (see
e.g. [3,8,13] and references therein).

Controlling and stabilizing a quantum system in a desired state, such as
two-state quantum systems called qubits, is the key of quantum information
science [12]. A first attempt in applying the pH theory to quantum systems is
proposed in the present work, together with promising numerical experiments.

The modelling of the Schrodinger equation including a control is presented
in Sect. 2. In Sect. 3, a discrete (in space) port-Hamiltonian system is obtained
by applying PFEM [3,5]. Finally, Sect. 4 ends this work with Rabi oscillations
simulation results, 7.e. controlling the state of a quantum box.

More details, developments and discussions on this work can be found in [14].
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2 Port-Hamiltonian Modelling

To take advantage of the distributed port-Hamiltonian paradigm, we adopt the
wave function representation ¥(r,t) of a quantum system [6]:
oY (r,t
Ho(r, 1) = in 22 ED. (1)
ot
This is the Partial Differential Equation (PDE) form of the Schrédinger Equa-
tion. The Hamiltonian operator H is given wvia:
hQ
HY(r,t) := —2—A£P(r,t) + V(r,t)¥(r,t).
m
The control of the wave function ¥(r,t) appears in the potential V (r,¢) of the
Hamiltonian operator. To build a port-Hamiltonian system, we have to define
ports, and especially those composed of controls and observations. Moreover, a
Hamiltonian functional, a form depending on the states, has to be chosen [13].

2.1 Ports: Control and Observation

By splitting the potential V(r,¢) into two terms, one positive and stationary
Vi(r) and the other time-dependent V.(r,t), we suggest an extension of the
Schrodinger Equation. We call this new equation the Controlled Schrédinger

Equation:

HW(r,t) + ihu(r,t) = m%, (2)

where u(r,t) denotes the control. The time-independent part of the Hamiltonian
operator is then:

HW(r,t) := —%AW(r,t) + Vi (r)¥(r, ).

Thanks to this point of view, ¥ follows the Schrodinger Eq. (1) if and only if
u(r,t) = —5 Ve(r,t)¥(r,t). Thus, the control u is given by a linear state feedback
(see Fig. 2). This imposes the wave function ¥(r,t) to be the observation.

2.2 The Hamiltonian of the pH System

The choice of the Hamiltonian functional is led by the Ehrenfest Theorem, which
provides the evolution of the expectation value of quantum operators (hereafter
the identity and Hj), similarly to the evolution equation of observables in clas-
sical Hamiltonian mechanics [6]. We define two possible Hamiltonians:

Hp = / @ (r, t)|*dr,
reRrs

h2
Hy ;:/ = |lgrad®(r, t))||2s + Va(r)|#(x, )| *dr.
reR3 2m
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The former Hp is based on the probability of presence: according to Born rule [6],
Hp = 1. The latter H s is based on the energy: it is preserved in absence of a
time-dependent potential of control. From an analytic point of view, these two
Hamiltonians are norms squared of the wave function w.r.t Hermitian inner
products. Indeed, Hp = (¥|¥) and Hpr = (¥, V) nr with:

— (ufv) := [ gsu(r,.)*v(r,.)dr. We identify the L* inner product.

~ (V)N = [ocgs %gradu(r, ))*.gradu(r,.)) + Vs(r)u(r,.)*v(r,.)dr, which
is equivalent to the H! inner product if V,(r) is lower bounded by a positive
constant and upper bounded. In keeping with a change in the energy origin,

any constant can be added to Vi(r) without changing the quantum system.

The balance equations of these two Hamiltonians can be derived by adapt-
ing the Ehrenfest Theorem to the Controlled Schrodinger Eq. (2). For (.,.) €
{(:]), (., ya}, depending on the choice of the Hamiltonian, we can write canon-
ically the evolution of the Hamiltonian H = (¥, ¥) along the trajectories:

d d ov H,

2.3 Port-Hamiltonian Formulation

The Hamiltonian functional is defined on a complex-valued state, which is the
wave function. We define the energy variable of the port-Hamiltonian system
a := W. Thus, the distributed port-Hamiltonian paradigm has to be extended to
complex-valued states. The Hamiltonian functionals of distributed port-Hamilto-
nian systems are written in the form of an integral on a domain {2 of a real-valued
function h:

Hla] = /  hfaydr.

The evolution of the Hamiltonian along the trajectories requires the differentia-
tion of the functional w.r.t the energy variable. Using the CR-calculus, we can
consider h as a holormorphic function w.r.t the conjugate coordinates («a, a*) [7].
Thus the differential rule leads to:

Hla 4+ v] — Hla] = /reg 2% <Wu) dr + o(v). (4)

Using the inner product (.,.) on {2, we can identify the functional derivative (or
variational derivative of the functional), denoted d,H, such that:

Oh(a, a*)
———vdr = (6H, v).
/reﬁ dov | >

Using the chain rule, the evolution of the Hamiltonian is the symmetrization of
the usual balance (see Fig. 1):
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dH foJe"
T oo, 20, 5)

Focusing on the pH modelling of the Controlled Schrédinger Eq. (2) and using
the inner products defined in Sect. 2.2, we can define the co-energy variable
e := 0’ H = ¥. This leads to the complex-valued distributed pH systems:

O = Je + Gu . _ tHy
{ y:GHB with j—— 7

The structure operator J is skew-symmetric since H, is symmetric for both
inner products. This property implies that the Hamiltonian balance is achieved
via the dual controls and observations. Indeed, using (5) (compare with (3)):

and G =1. (6)

% = 2R((0aH, Ta™) + (5o, Gu)) = 2R((GY 6. H, u)) = 2R((y, u)).

These properties have been identified in [4] to recover the (complex) Stokes-Dirac
structure of distributed port-Hamiltonian systems.

Hamiltonian system Distributed pH system
Canonical equations Stokes-Dirac structure
Hamiltonian functional 1 Hamiltonian functional 1l
(typically a quadratic form) H[Y] = 5”‘”*4 (typically a quadratic form) H[T] = §”‘I]HA
dA 0A dH ov
Observable 4. — = {A.H —_— Conservation of H via ports — = (—, ¢ H
@ - A ports < = (g 09 )
Quantum mechanics Distributed pH system with complex state
Schrédinger equation / Ehrenfest theorem (Complex) Stokes-Dirac structure
52 . ~
Hamiltonian operator H= 2p_ +V Hamiltonian functional #[W] = ||W||% = (¥|A[¥)
- m ~
~ o dH ov
Observable (operator) A . '“jt)“’ = %([A«H])w + (%)w Conservation of H via ports i 23‘3((5, ouH))

Fig. 1. The new framework for distributed port-Hamiltonian with complex-valued state
as a trade off between quantum mechanics (canonical quantization of the classical
Hamiltonian mechanics) and the existing framework for distributed port-Hamiltonian
systems with real-valued state.

2.4 Adaptation of the Model to Simulation

The wave function that represents the quantum system extends to infinity. How-
ever, the dynamics of the quantum system is simulated in a bounded domain
2 C R3 only. A virtual system has to be defined, such that its solution is the
restriction of the wave function to (2. Let us denote 0f2 the boundary, and n its
outward normal. We consider the restricted inner products (u|v) and (u,v)
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~ (u,v)q = [enulr, ) v(r,.)dr,

~ (U, 0)ne = [iep %gradu(r, J)*.gradu(r,.) + Vs(r)u(r,.)*v(r,.)dr.

The corresponding Hamiltonians are Hi := (¥, W), and HE = (0, ¥)ne.
The formulation of the port-Hamiltonian systems is the same. H; becomes
formally symmetric for these inner products. Thus, a boundary contribution
now takes place in the Hamiltonian balance. Defining the speed operator by
v¥(r,t) = —i% grad¥(r,t), we can derive the equation of probability conser-
vation by integrating by parts (3):

d

%Hg =2R((V,u)n) — R (/8 U*(r,t)(v &P(r,t).n)dv) . (7)

n

The first term is the expected flow from the model 2R((y, u) ). It is zero when
¥ follows the Schrédinger Equation with potential V' (r,¢). The second term
is the probability flows across the boundary. Indeed, denoting the real-valued
probability current J := %(lpgradw* — Y*grad?¥) then J = R(W*v ).

The energy balance for Hff is more difficult to interpret. This is the reason
why the pH system based on H% is chosen for the sequel of this work.

Quantum system with potential V(1)

u o " Virtual systemonQ > Yy

Ry (PH) _-
ports ;t —————— ‘\; ~ probability
‘I] ’ V\D 1 current

Control system creating

—%VC\I/ the potential V,(r, t) o

Fig. 2. The Schrédinger Equation as a pH model controlled by a linear state feedback
from a control system. The pH model of the virtual system is the restriction of the pH
model describing the Controlled Schrodinger Equation to a bounded domain.

3 Structure-preserving Discretization

In this part we apply the PFEM to build a discrete pH representation of the
model [3,5]. Let ¢ be a sufficiently smooth complex-valued test function. Writing
the weak formulation of (6) with the inner product (.,.) and integrating by
parts, one gets:
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(6.0 = (6. V)xa + (b.w)o — 3 [ 6" (~igradw m)dy. (3
on M ,
\a'%

The normal speed boundary condition is identified.

As will be seen in Sect. 4.1, Dirichlet boundary condition is essential to model
a quantum box. Following [3], such a control can be imposed by using Lagrange
multipliers. Splitting the boundary into two distinct and complementary parts
02 = I'v U I'p, one can distinguish between Dirichlet controls «” imposed

via the Lagrange multipliers \P = —%(v U).n|p, on I'p, and Neumann control

uN = —1(v¥).n|r, on I'y.

_ Let us define the finite real approximation spaces W = span((¢,)n) and
B = span((by,)n) to discretize the variables defined on {2 and on 0f2 respectively.

Let us denote ¥(r,t) ~ % (r,t) = Zdlmw U (t)Pn(r) = ¢(r)T(t) and similarly
for other quantities. .
Defining the skew-symmetric complex matrix (J)mn = —%(@m, dn)N 0 of

size dimW x dimW, the symmetric real matrices (M )pn = (Pm, dn) o of size
dimW x dimW, (M®?)p = (b, bn)r, and (MN),, . = (b, b,)ry of size
dimB x dimB, and the real matrices (GP),,.. = (¢, bn)r, and (GN)pn =
{(Gm, b))y of size dimW x dimB, the discrete counterpart of (8) reads:

M%g = Jyp + Gu+ GNuN + GPAP.

The discretized Dirichlet algebraic constraint is:

GPuP = (BP)H .
The discretized Neumann boundary observation (of the wave function) is:

MNyN = (GM)y.
The discretized Dirichlet boundary observation (of the normal speed), through
the Lagrange multipliers, is:

MD D _ (BPYH)D,
And finally, the distributed observation is:

My =G"y.

Note that M = G = M* and MP = BP in this work, although this is not
mandatory (using e.g. different spaces of approximation for controls and obser-

vations).
Altogether, denoting E := diag(M,0, M, M, MP) leads to:
dtw J GP aGV o P
4\D —(GPYHE 0 0 0 BP| [N
E| —y [=] -@" 0o 00 o u 9)
—y7 —(GME 0 0 0 0 uv
—yP 0 —-BHH0 0 0 u?
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This Differential Algebraic Equation (DAE) respects the Dirac structure, known
as the algebraic structure describing finite-dimensional port-Hamiltonian sys-
tems [4,10,13].

The Schrodinger Equation is embedded into the system by considering
the time-dependant linear feedback from the control system that generates
V.(r,t). We introduce the symmetric real matrix (V4)mn = (¢m, Vetdn)o of
size dimW x dimW. Then the discretization of the feedback associed to the
Schrodinger Equation leads to:

M%u = —-V(b)y. (10)

Let us denote H%(t) = HE[WY = (pd vd)n = QHMQ the Hamiltonian of
the discretized system. Thanks to the Dirac structure enlightened in (9), the
corresponding balance follows:

%H% = 2R (y" Mu+ (y°)" MPuP + (") MV ) .
This equality is the discrete counterpart of (7). Similarly to the continuous
equation, the first term is equal to zero in the case of the Schrédinger Eq. (10),
because the feedback matrix —%V,(t) is always skew-symmetric.

To conclude, thanks to the application of the PFEM to the complex-
valued distributed pH system, both Dirac structure and probability conservation
(Hamiltonian balance) have been preserved at the discrete level.

4 Numerical Experiments

4.1 Omne-Dimensional Quantum Box

The quantum system is entirely in the domain of the box 2. We impose a homo-
geneous Dirichlet condition on the boundary 0(2. For x € {2 = [0, L], in absence

21,2
of potential, the stationary states ¥, (x,t) are the states of energies F,, = % =
hw,, = %% (n € N*). These states ¥,,(x,t) = \/%sin(knac) exp(—iwpt), anal-

ogous to oscillating modes, form an ortho-normal basis of conservative states [6].

For our simulations, the spatial structure-preserving discretization of (6) is
performed as in (9), using Lagrange finite elements of order 1. Then, the resulting
DAE is solved in time by the Matlab DAE solver ode25t. Let us point out that
defining time schemes for finite-dimensional (real-valued) port-Hamiltonian DAE
is a current topic of research, see e.g. [9,10] and references therein.

In Table 1, we reproduce the propagation of the first modes for a sufficiently
fine discretization (sampling of oscillations). The Hamiltonian balance is well
respected.
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Table 1. Results of the simulation of conservative systems over a period T%. N, is
the number of points of discretization. N,s. is the number of temporal oscillations of
the analytical solution. N; is the number of instants at which the numerical solution is
computed. The L?-error corresponds to the maximum in space of the L?-error between
the numerical solution of the wave function and the analytical solution over the time

span. The relative error on H% compares the value at T to the initial value.

Initial state N, | Ty Nose | Ni | L? error | Relative error on H%
State 1 : ¥ 51 | 2m/wr | 1 43 19.7x 107?49 x 107*
State 2 : Uy 51 | 27/wy 4 160 1.6 x 1072 [4.9 x 1074
State 3 : W3 51 | 2m/wi |9 357 | 5.7x 107249 x 107*
States 1 + 2 : (¥ +¥2)/v/2 |51 | 2m/wy |1 203 4.0 x 107?|6.8 x 1077

4.2 Rabi Oscillations: Control of the Energy Levels and Generation
of Schrodinger Cat States

Applying an electric field of amplitude &, and angular frequency wg on a dipole
of charge ¢ results in a potential V,.(z,t) = —qz& sin(wgt) [1]. If the initial state
of the system is the superposition of the states 1 and 2 and if wgp ~ ws —wq, then
the system oscillates between state 1 and state 2 at the Rabi period Tgrap; that
can be computed analytically for the quantum box. The probability of measuring
the state n is P, = [(¥,,¥)n|?.

In the following numerical experiment, we apply the control of pulsation wg =
wy — wy on a time interval [tsiart, tstop] Of period Travi/2 (Fig.3). We correctly
reproduce the Rabi oscillations and we identify the expected high frequency
oscillations of period w/wg (Fig. 3 on the right). Thanks to the control, we switch
from state 1 to state 2. Balanced Schrodinger cat states are reached by applying
the control on a period Trapi/4 (blue dot on Fig. 3). Note that the Hamiltonian
balance accuracy is clearly driven by the precision of the time scheme as soon
as the control is switched on (Fig. 3 on the left).

S N y P,

iy 087 \ P
E 10-2 A~ g \ Hp!
= N Va 06|
-Tr; 10-3 ""l"» f -..‘(tstan+TRabiI4'0'5)
RS ) ‘ '.) 047 A

| \

—_ -4 N\
JORY 0.2}

& t t t . Nt .

&= start ‘stop 0 5 ~_gStop

0 10 20 30 40 0 10 20 30 40

..,;,'1 t

w’1 t

Fig. 3. Simulation of Rabi oscillations and transition from the state 1 to the state 2.
N, =51, Ny = 1346. The values of ¢ and &y are taken arbitrarily.
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5 Conclusion

In this work, we modelled the PDE form of the Schrodinger Equation as a dis-
tributed pH system. We proposed a (space-)discretization preserving the prob-
ability of presence balance equation at the discrete level. Our numerical experi-
ments show that it is possible to apply simple controls on quantum systems to
manipulate their states.

Compared to our real-valued modelling approach [14], the framework we sug-
gested here for modelling distributed port-Hamiltonian systems with complex-
valued states describes the system in a more compact way and better emphasizes
the formalism used in quantum mechanics.

The interaction of the quantum system with a system of control has been
interpreted as the feedback of a potential of control. Thus the system of control
is represented by a black box. However, the port specifications of the model
remain robust to further pH modelling, e.g. the Schrodinger-Newton Equation
could be tackled by coupling the model with the Poisson Equation [2].

Modelling interacting quantum systems in the port-Hamiltonian framework
is still challenging. It cannot only be the interconnection of individual quantum
systems. Indeed, without considering the system dynamics, the space of states of
interacting systems is the tensor product of the individual space of states, which
deeply restrains the system decomposition [6,11].

Acknowledgements. The authors would like to thank Pr. S. Massenot for his useful
advice on the choice of quantum mechanics numerical experiments.
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