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Abstract. The structure-preserving discretization of the Cahn-Hillard
equation, a phase field model describing phase separation with diffuse
interface, is proposed using the Partitioned Finite Element Method. The
discrete counter-part of the power balance is proved and a sufficient
condition for the phase preservation is provided.
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1 Introduction

Eutectic freeze crystallization is a promising process for desalinizing water for
it requires fewer energy than other methods [1,11]. Due to the thermodynamic
nature of this process, the port-Hamiltonian (pH) framework is an interesting
approach for modelling this control system [9,10]. Indeed, pH systems are espe-
cially well-suited for modelling energy exchange through boundaries [13,14].

In this article, we will focus on the structure-preserving discretization of the
phase separation problem using the Cahn-Hilliard equation [5,7]. The Parti-
tioned Finite Element Method (PFEM) [6] is applied to the pH formulation of
this problem, with the aim to achieve simulations of a separation process [7].

The PFEM has already been successfully applied to the Allen-Cahn equa-
tion [2,3], a model of solidification process. The Cahn-Hilliard equation is more
challenging since a second order differential operator is to be found in its pH
formulation [16]. Furthermore, in addition to the power balance satisfied by the
Hamiltonian, the preservation of the phase at the discrete level would clearly
provide more physically meaningful simulations.

The paper is organized as follows: in Sect. 2, the modelling of the phase field
system is presented. The PFEM is applied in Sect. 3, and it is shown that the
method is able to mimic the free energy balance and the phase preservation at
the discrete level. Some perspectives are discussed in Sect. 5.
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2 Cahn-Hilliard Model as a Port-Hamiltonian System

2.1 Phase Field Modelling

The modelling of phase separation or transition can be tackle by considering a
phase field representation with diffuse interface. Let us consider φ(x, t) : Ω×R →
[0, 1] the phase function, that represents e.g. the state of the phase field at a given
point or the concentration of a solute in a solution. The dynamics of the system
is then given by minimizing the Landau-Ginzburg free energy:

G(φ) :=
�

Ω

g(φ) +
1
2
κgrad(φ) · grad(φ),

where g is the bulk free energy (often a double-well potential) and κ the coeffi-
cient corresponding to the interface energy, that prevents the system from having
an infinitely thin interface between the two phases.

2.2 Cahn-Hilliard as a Port-Hamiltonian System

This section was made after the work of Benjamin Vincent on the Allen-Cahn
and Cahn-Hilliard equations [5,16].

The Cahn-Hilliard model proposes the following dynamics for the phase:
�

∂tφ = −div(jφ),
jφ = −Γ grad( δG

δφ ),
(1)

where Γ > 0 represents the interface mobility. The phase field φ is transported
by the flux jφ : thus, it is a conserved quantity.

In order to recast (1) in the pH formalism, the state is augmented by con-
sidering ψ := grad(φ). The potential is rewritten as:

G̃(φ, ψ) =
�

Ω

g(φ) +
1
2
κ�ψ�2.

Let us introduce the flow variable:

Fφ := −grad

�
δG̃
δφ

− div(
δG̃
δψ

)

�
, (2)

so that the system reads [16]:

⎛
⎝

∂tφ
∂tψ
Fφ

⎞
⎠ =

⎛
⎝

0 0 −div
0 0 −grad(div(·))

−grad grad(div(·)) 0

⎞
⎠

⎛
⎜⎝

δG̃
δφ
δG̃
δψ

jφ

⎞
⎟⎠ ,

together with the constitutive relations:

δG̃
δφ

= g�(φ),
δG̃
δψ

= κψ, jφ = ΓFφ .
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Let us compute dG̃(φ,ψ )
dt (t) in order to obtain the free energy balance equation,

and identify physically relevant boundary terms.

Proposition 1 ([16]). The Landau-Ginzburg free energy satisfies:

dG̃(φ, ψ)
dt

= −
�

Ω

Fφ · jφ +
�

∂Ω

�
δG̃
δφ

jφ .n + div(jφ)
δG̃
δψ

.n − div

�
δG̃
δψ

�
jφ .n



.

(3)

The boundary ports (f∂ , e∂) are then defined as follows:

f∂ :=

⎛
⎜⎜⎝

δG̃
δφ |∂Ω

δG̃
δψ |Ω

· n
−jφ|∂Ω · n

⎞
⎟⎟⎠ , e∂ :=

⎛
⎜⎝

jφ|∂Ω · n
div(jφ)|∂Ω

div
�

δG̃
δψ |∂Ω

�

⎞
⎟⎠ .

Thanks to jφ = ΓFφ , the pH system is lossy : dG̃(φ,ψ )
dt (t) ≤

�
∂Ω

f∂ · e∂ .

3 Structure-preserving Discretization of Cahn-Hilliard
Model

In order to spatially discretize the system, PFEM is used, which has already
allowed for discretizing a various amount of pHs (see e.g. [2,6,15] ). The method
consists of 3 steps: (1) write a weak formulation of the problem, (2) select a
partition of the variables, use Stokes theorem to perfom an integration by parts
which makes appear the useful control in the boundary term (3) Choose a set of
finite element families for the state and control variables. Thanks to this method,
a finite-dimensional power balance is then satisfied at the discrete level. Note
that a structure-preserving method has already been proposed in [8] for the
Allen-Cahn equations.

Variational Problem. Let λ ∈ C∞(Ω, R) and μ, ξ ∈ C∞(Ω, R3) be three
test functions corresponding to the flow variables: δG̃

δφ , δG̃
δψ

and Fφ . Then the
variational problem is:

⎧
⎪⎨
⎪⎩

�
Ω

λ∂tφ = −
�

Ω
λ div(jφ) ,�

Ω
μ · ∂tψ = −

�
Ω

μ · grad(div(jφ)) ,�
Ω

ξ · Fφ = −
�

Ω
ξ · grad( δG̃

δφ ) +
�

Ω
ξ · grad(div( δG̃

δψ
)) .

(4)

And for the constitutive relations:
⎧
⎪⎨
⎪⎩

�
Ω

λ δG̃
δφ =

�
Ω

λ g�(φ) ,�
Ω

μ · δG̃
δψ

=
�

Ω
μ · (κψ) ,�

Ω
ξ · jφ =

�
Ω

ξ · (ΓFφ) .

(5)
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Choice of Causality. In order to make the boundary control (i.e. choose a
causality), one needs to integrate by parts the previous equations. Here, choos-
ing the integration by parts have to be made carefully, indeed the formal adjoint
of div(·) is −grad(·), and only one integration by parts on the first or third line
is required. But grad(div(·)) is formally symmetric, and we will need to integrate
by parts twice to make a skew symmetric matrix appear. Therefore we can choose
between integrating the second or third line two times or both lines one time. In
our case the idea is the following: integrating by parts on the first line makes the
jφ (the flux of φ at the boundary) control appear, which is physically meaningful.
Finally integrating by parts the second term of the third line as well as the second
line allows us to use divergence conforming first order Finite Elements (FE), e.g.
Raviart-Thomas elements, instead of second order ones.

Let us integrate by parts on the first, second and third line:

−
�

Ω

λdiv(jφ) =
�

Ω

grad(λ) · jφ −
�

∂Ω

λjφ · n ,

−
�

Ω

μ · grad(div(jφ)) =
�

Ω

div(μ)div(jφ) −
�

∂Ω

div(jφ)μ · n ,

�

Ω

ξ · grad(div(
δG̃
δψ

)) = −
�

Ω

div(ξ)div(
δG̃
δψ

) +
�

∂Ω

div(
δG̃
δψ

) ξ · n .

From this result, we deduce that 3 different scalar boundary controls are
required: ejφ

:= jφ · n|∂Ω , ed := div(jφ)|∂Ω and eψ := div( δG̃
δψ

)|∂Ω .

Finite Elements Families. Now let us choose, 6 finite elements families: 3 for
the flow and effort variables, and 3 for the control. Let (λi)i∈[1,n] ∈ L2(Ω, R),
(μi)i∈[1,m] ∈ L2(Ω, R3) and (ξi)i∈[1,k] ∈ H2(Ω, R3) be the families corresponding
to the flow variables φ, ψ and Fφ of cardinal n, m, k ∈ N respectively . And let
(γi)i∈[1,nφ], (ηi)i∈[1,nd], (νi)i∈[1,nψ ] ∈ L2(∂Ω, R) be the families corresponding to

the control variables ejφ
:= jφ ·n|∂Ω , ed := div(jφ)|∂Ω and eψ := div( δG̃

δψ
)|∂Ω .,of

cardinal nφ, nd and nψ respectively. Then by decomposing the flow, effort and
control variables over these families, it yields:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

for the flow variables:
φd(x, t) =

�n
1 φi(t)λi(x)

ψd(x, t) =
�m

1 ψi(t)μi(x)
F d

φ (x, t) =
�k

1 F i
φ(t)ξi(x)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

for the effort variables:
δG̃
δφ

d
(x, t) =

�n
1 ∂φGi(t)λi(x)

δG̃
δψ

d
(x, t) =

�m
1 ∂φGi(t)μi(x)

jd
φ(x, t) =

�k
1 ji

φ(t)ξi(x)
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

and for the boundary control variables:
ejφ

=
�njφ

1 ei
jφ

(t)γi(x)
ed =

�nd

1 ei
d(t)ηi(x)

eψ =
�nψ

1 ei
ψ(t)νi(x)

(6)
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Let us note:

⎧
⎪⎨
⎪⎩

φ(t) := (φi)i∈[1,n]

ψ(t) := (ψi)i∈[1,m]

Fφ(t) := (F i
φ)i∈[1,k]

,

⎧
⎪⎨
⎪⎩

∂φG(t) := (∂φGi)i∈[1,n]

∂ψG(t) := (∂ψ Gi)i∈[1,m]

jφ(t) := (ji
φ)i∈[1,k]

,

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ejφ
:= (ei

jφ
)i∈[1,nφ]

ed := (ei
d)i∈[1,nd]

eψ := (ei
ψ)i∈[1,nψ ]

u∂ :=
�
ejφ

� ed
� eψ

�
��

(7)

The variational problem then becomes:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀j ∈ [1, n],
�n

i φi(t)
	

Ω λjλi =
�k

i ji
φ(t)

	
Ω grad(λj) · ξi −�njφ

i ei
jφ

(t)
	

∂Ω λjγi ,

∀j ∈ [1, m],
�m

i ψi(t)
	

Ω μj · μi =
�k

i ji
φ(t)

	
Ω div(μj) div(ξi) −�nd

i ei
d

	
∂Ω λjηi ,

∀j ∈ [1, k],

k


i

F i
φ(y)

�

Ω
ξi · ξj = −

n


i

∂φGi

�

Ω
grad(λi) · ξj

−
m


i

∂ψ Gi(t)

�

Ω
div(μi) div(ξj)

+

nψ


i

ei
ψ

�

∂Ω
div(ξj )νi .

And for the constitutive relations:

∀j ∈ [1, n],
�n

i ∂φGi(t)
	

Ω λiλj =
	

Ω λj g�(
�m

i φiλi) ,

∀j ∈ [1, m],
�m

i ∂ψ Gi(t)
	

Ω μi · μj =
�m

i ψi(t)
	

μj · (κμi) ,

∀j ∈ [1, k],
�k

i ji
φ(t)

	
Ω ξi · ξj =

�k
i F i

φ(t)
	

Ω Γξi · ξj .

(8)

Note that g� is non linear, this means that the integral in the first constitutive
relation has to be computed at each time step, which increases the computational
time. However, if g� is polynomial, which happens to be the case for the double-
well potential [4], one can take advantage of off-line computations if required, as
proposed in [6], allowing for a possible trade-off between computation time and
memory usage.

Matrices Definition. Finally let us define the matrices of the finite-
dimensional system. Let Mλ := (

�
Ω

λiλj)i,j∈[1,n], Mμ := (
�

Ω
μi · μj)i,j∈[1,m]

and Mξ := (
�

Ω
ξiξj)i,j∈[1,k] be the mass matrices. Let us define two rect-

angular matrices D∇ :=
��

Ω
grad(λi) · ξj

�
i,j

of size n × k and Ddivdiv :=��
Ω

div(μi)div(ξj)
�
i,j

of size m × k as the structure matrices. Let Cκ :=
(
�

Ω
·μi.(κμj))i,j∈[1,m] and CΓ := (

�
Ω

ξi.(Γξj))i,j∈[1,k] be the two constitutive
relations matrices, and let h(φ) := (hi(φ))i∈[[1,n]] be the n× 1 vector correspond-
ing to the non-linear constitutive relation:

hi(φ) =
�

Ω

λi(x) g�(
n�

j

φj(t)λj(x)) .

Finally let Bjφ
:= (

�
∂Ω

γjξi·n)(i,j)∈[1,k],[1,njφ
], Bd :=(

�
∂Ω

ηjξi·n)(i,j)∈[1,k],[1,nd]

and Bψ := (
�

∂Ω
νjdiv(ξi))(i,j)∈[1,k],[1,nφ] be the partial control matrices. Let us

note B :=
�
−Bjφ

Bd Bψ

�� the control matrix.
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Fully Spatially Discretized System. With finite-dimensional vectors, the
fully discretized system then reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

Mλ 0 0
0 Mμ 0
0 0 Mξ

⎤
⎥⎦

⎛
⎜⎝

∂tφ

∂tψ

Fφ

⎞
⎟⎠ =

⎡
⎢⎣

0 0 D∇
0 0 Ddivdiv

−DT
∇ −DT

divdiv 0

⎤
⎥⎦

⎛
⎜⎝

∂φG
∂ψG
jφ

⎞
⎟⎠ + Bu∂ ,

With the collocated observations:

M∂y∂ = B�

⎛
⎜⎝

∂φG
∂ψG
jφ

⎞
⎟⎠ ,

and the constitutive relations:
Mλ∂φG = h(φ) ,

Mμ∂ψG = Mκψ ,

Mξjφ = MΓ Fφ .

(9)

Denote J the (n + m + k) × (n + m + k) skew-symmetric structure matrix and
M the (n+m+ k)× (n+m+ k) symmetric mass matrix on the first line of (9).

Discrete Free Energy Balance Equation: Let us define the discrete free
energy functional:

G(φ, ψ) :=
�

Ω

g(φd) +
1
2
ψd · κψd =

�

Ω

g(
�

φiλi) +
1
2
ψ · Cκψ .

The following theorem can then be proved:

Theorem 1 The discrete free energy balance is given by:

d

dt
G(φ, ψ) = −FφMγFφ + yT

∂ M∂u∂ ≤ yT
∂ M∂u∂ .

Proof: Let us compute the discrete free energy balance:

�
∂φGT

∂ψGT
jφ

T
�

M

⎛
⎝

∂tφ

∂tψ
Fφ

⎞
⎠ =

�
∂φGT

∂ψGT
jφ

T
�

⎛
⎝J

⎛
⎝

∂φG
∂ψG
jφ

⎞
⎠ + B

⎡
⎣

ejφ

ed

eψ

⎤
⎦

⎞
⎠ ,

= 0 +
�
∂φGT

∂ψGT
jφ

T
�

B

⎛
⎝

ejφ

ed

eψ

⎞
⎠ ;

(10)
and therefore:

yT
∂ M∂u∂ = ∂φGT

Mλ∂tφ + ∂ψGT
Mμ∂tψ + jφ

T
MξFφ . (11)
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Also we can compute more precisely:

d

dt

�

Ω

g(
�

φiλi) =
�

j

�

Ω

g�(
�

φiλi)λjφ
�
j(t) = h(φ) · d

dt
φ = ∂φGT

Mλ∂tφ ,

which gives:
d

dt
G(φ, ψ) = ∂φGT

Mλ∂tφ + ∂ψGT
Mμ∂tψ ,

which yields the exact free energy balance:

d

dt
G(φ, ψ) = −jφ

T
MξFφ + yT

∂ M∂u∂ ,

= −FφMγFφ + yT
∂ M∂u∂ ,

≤ yT
∂ M∂u∂ .

Note that this discrete free energy balance mimics the previous one (3) obtained
in the continuous setting.

Discrete Phase Balance Equation: Let us first recall the phase balance
equation in the continuous setting:

d

dt

�

Ω

φ = −
�

∂Ω

jφ · n = −
�

∂Ω

ejφ
.

Let us note c : x �→ 1 the constant function equal to 1 over Ω, and let us
note V h = V ect(λ1, ..., λn). Let us note pλ the orthogonal projection of H1(Ω)
on V h, and for any f ∈ H1(Ω), pλ(f) the vector of size n corresponding to the
coefficients of this projection over λ1, ..., λn.

Theorem 2. Let us assume c ∈ V h, then:

d

dt

�

Ω

φd = −1T
λ Bjφ

ejφ
. (12)

Proof: Firstly, let us compute the following :

0 = grad(c) = grad(pλ(c)) = grad(
�

i

αiλi) =
�

i

αigrad(λi)

Then,

∀i ∈ [[1, k]], (DT
∇ pλ(c))i =

n�

j

�

Ω

ξi · grad(λj)αj

=
�

Ω

ξi · (
�

j

αjgrad(λj))

= 0

(13)
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Therefore, 1λ := pλ(c) ∈ ker(DT
∇). Then, let us compute d

dt

�
Ω

φd :

d

dt

�

Ω

φd =
d

dt

�

Ω

1
�

i

λi φi = 1T
λ Mλ

d

dt
φ = 1T

λ (D∇jφ −Bjφ
ejφ

) =−1T
λ Bjφ

ejφ
.

Remark: Note that the hypothesis of Theorem 2 is really a very weak hypoth-
esis. Indeed, the constant function 1 does belong to most finite element approx-
imation spaces. Thus, the phase balance equation is preserved at the discrete
level.

4 Numerical Experiment

In order to show the efficiency of the approach, we consider a square of length
π and a given smooth distribution of φ at initial time. Parameters are chosen
as follows: κ = 0.0004, Γ = 10, and g(φ) = 0.25φ2(1 − φ)2. Note that κ is
taken to correspond to the square of the parameter ε (= 0.02) appearing in the
classical statement of the Cahn-Hilliard equations [7]. Futhermore, Γ is taken
large enough to observe a displacement of the interface in a relatively small time.
For the sake of simplicity, controls are taken equal to zero in this first example.

Regarding the discretization in space, the mesh size is Δx = Δy = 0.1,
and we use Lagrange finite element of order 1 for all variables (both scalar and
vector fields). The final system has about 13,000 ◦C of freedom. The SCRIMP1

simulation environment has been used.
For the time discretization of the obtained port-Hamiltonian Differential

Algebraic Equation (pH-DAE), following e.g. [12] and references therein, a Back-
ward Differentiation Formula (BDF) of order 4 has been chosen, and the non-
linearity induced by h(φ) = g�(φ) has been treated explicitly as a right-hand
side, making use of the previous time step.

Fig. 1. Evolution of the Hamiltonian over time (left), visualisation of the phase preser-
vation with relative error at machine precision (right).

1 https://github.com/g-haine/scrimp.
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On the left of Fig. 1, one may appreciate the evolution of the Hamiltonian,
which indeed shows the expected decaying behavior of Theorem 1. On the right of
the same figure, the phase preservation is verified, in accordance with Theorem 2.
More precisely, the relative error is at machine precision.

Fig. 2. Evolution of the phase at different times: t = 0, t = 0.005, t = 0.05 and t = 0.3.

On Fig. 2, four snapshots of the evolution of the phase distribution are pre-
sented, and one may observe the phase separation process as described by the
Cahn-Hilliard equations. These results have been obtained at a relatively low
numerical cost, showing that the PFEM is indeed able to capture the relevant
physical properties of the continuous model, even at low resolution.

5 Conclusion

At the discrete level, the PFEM is able to mimic both the free energy balance,
and the conservation of the phase of the Cahn-Hilliard equations. Moreover, mak-
ing use of the SCRIMP software, simulation results have been obtained, show-
ing the relevance of the port-Hamiltonian framework together with structure-
preserving discretization.
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