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Abstract— In this work, we detail a procedure to construct
a reduced order model on the basis of frequency-domain
data, that preserves the non-strictly passive property and the
port-Hamiltonian structure. The proposed scheme is based on
Benner et al. contribution [1], which has been adapted (i) to
handle non-strictly passive model, and (ii) to handle numerical
issues observed when applying the Loewner framework on
complex configurations. We validate the proposed scheme on
a very complex two-dimensional wave equation, for which the
discretized version preserves the port-Hamiltoninan form.

I. INTRODUCTION

A. Motivation and foreword

The present work is motivated by an efficient numerical
representation of the wave equation on a 2D domain Ω, with
actuators and sensors that are collocated at the boundary
∂Ω; the PDE model is first described as a distributed port-
Hamiltonian system (pHs) (see the pioneering work [2],
and [3] for a recent overview), second discretized in a
structure-preserving manner thanks to the Partitioned Finite
Element Method (PFEM) [4]. Although in 1D with physical
parameters which are uniform in space, the input-output
transfer function is easy to compute, the task becomes more
difficult with varying parameters. In generic geometric 2D
domain with heterogeneous and anisotropic parameters, it is
almost impossible. However, a high-fidelity full order model
(FOM), taking all these important properties into account can
be computed at the discrete level [5].

This model results in a linear pH one, embedding a
very large number of internal state variables, a quite large
number of inputs and outputs. Such a high dimension is
a limiting factor for simulation, optimisation, analysis and
control. Computing simplified, easy to use dynamical models
is one purpose of the model approximation and reduction
discipline. The goal is to approximate the original system
with a smaller and simpler system with the same structure
and similar response characteristics as the original, the low-
complexity model, also called a reduced order model (ROM).

The Loewner framework (LF) employed in this work is
a data-driven model identification and reduction technique
that was originally introduced in [6]. Using only frequency-
domain measured data, the LF constructs surrogate models
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directly and with low computational effort. Its extension to
pH model is proposed in [1] and [7]. We refer the reader to
[8] for an overview of Loewner identification and reduction
methods. Recently [9] gave an overview of physics-based
reduction methods, and [10] presents a successful attempts
to apply data-driven techniques to identification of pHs on a
1D example.

B. Notations and preliminaries

The set of real and complex numbers of dimension n
are denoted, respectively by Rn and Cn. The complex vari-
able ı =

√
−1. The notation Xn

Λ
: {x ∈ Xn \Λ}, where Λ

denotes a finite number set (typically singularities) in Xn

(Xn = {Rn,Cn}). The set of stable rational functions with
bounded ∞-norm along ıR, is denoted RH ∞. Similarly,
RL ∞ denotes the same set but for both stable and unstable
functions. Identity and null matrices of dimension p read
Ip and 0p. The Laplace variable is denoted s ∈ C. Here we
consider the following multi-input multi-output (MIMO) lin-
ear time invariant (LTI) continuous-time dynamical systems
realisations (with x(0) = 0):

Eẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t), (1a)

ẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t)+Dx(t), (1b){
Mẋ(t) = (J−R)Qx(t)+(G−P)u(t)

y(t) = (G+P)⊤Qx(t)+(N +S)u(t)
, (1c)

where x(t) ∈ Rn and u(t),y(t) ∈ Rm are vector-valued func-
tions denoting the internal variables, input and output of the
system. In the standard descriptor (1a) and non-descriptor
(1b) forms, we consider constant matrices E,A ∈ Rn×n,
B,C⊤ ∈ Rn×m and D ∈ Rm×m. When considering the port-
Hamiltonian form (1c), M,J,R,Q ∈ Rn×n, G,P ∈ Rn×m and
N,S ∈ Rm×m. For brevity, (1a) and (1b) are denoted ΣΣΣ :=
(E,A,B,C,0m) and ΣΣΣ := (In,A,B,C,D) respectively. The pH
form (1c) is shortly denoted ΣΣΣpH :=(M,Q,J,R,G,P,N,S). By
introducing the co-energy variable e(t) = Qx(t), (1c) boils
down to Mẋ(t) = (J−R)e(t)+(G−P)u(t) and y(t) = (G+
P)⊤e(t)+ (N + S)u(t). The latter is the so-called co-energy
pH form and is of specific meaning in the computation of the
Hamiltonian. In each case, we define the associated transfer
functions as H : CΛ 7→ Cm×m, where H(s) = C(sE−A)−1B
for (1a), H(s) = C(sI − A)−1B + D for (1b) and H(s) =
(G + P)⊤Q(sM− (J − R)Q)−1(G− P) + (N + S) for (1c)1.
On the basis of H, let us denote the spectral density as

1Here Λ denotes the singularities being the eigenvalues of (A,E) pencil
in (1a), of A in (1b) and of ((J−R)Q,M) in (1c).
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ΦΦΦH(s) := H(s)+H⊤(−s) and let us remind the following
definitions, necessary to characterise a pH system.

Definition 1 (Positive realness): For all ω ∈ R, the ratio-
nal transfer H(s) is called strictly positive-real if ΦΦΦH(ıω)≻ 0
and positive-real if ΦΦΦH(ıω)⪰ 0.

Definition 2 (Stability): The rational transfer function
H(s) is called asymptotically stable if its singularities Λ are
in the open left-half plane, and called stable it its singularities
Λ are in the closed left-half plane with any pole occurring
on ıR being not repeated.

Definition 3 (Passivity): The rational transfer function
H(s) is called strictly passive if it is strictly positive real and
asymptotically stable, and stable if positive real and stable.

C. Contribution statement and paper organisation

This note is grounded on the LF extended by [1] to identify
pH-ROM as defined in (1c). The contributions are twofold:
(i) first, to propose both a methodological and numerical
adjustment from [1]’s algorithm to identify pH models where
the original system is passive but not strictly2 (ii) and second,
to apply the proposed process to a highly dimensional (n≫
104) and MIMO system, embedding a rich dynamic: the 2D
wave equation, which complexity is far higher than standard
benchmarks. The paper is organised as follows: in §II, the
proposed data-driven pH-ROM construction method for non-
strictly passive systems is presented, using an adaptation
of the data-driven LF of [1]. The approach is illustrated
and validated through a numerical example resulting from
a complex 2D wave equation in §III. Conclusions and
perspectives are drawn in §IV.

II. PORT-HAMILTONIAN IDENTIFICATION IN THE
LOEWNER FRAMEWORK

We are interested in identifying a MIMO ROM preserving
the pH structure of ΣΣΣpH, using a data-driven framework. To
do so, we follow the approach of [1] which extends the LF
originally presented in [6]. The latter is first reminded in
§II-A, while the former is presented in §II-B. The proposed
algorithm allowing to cope with non-strictly passive systems,
is detailed in §II-C.

A. Loewner framework preliminaries

The LF offers tools for the reduction, approximation and
identification of dynamical systems based on frequency-
domain data. Let us denote as the right and left data the
following sets (where j = 1, . . . ,k and i = 1, . . . ,q):

{λ j,r j,w j} and {µi, l⊤i ,v
⊤
i }, (2)

where λ j ∈C and µi ∈C are the right and left interpolation
points. Then, r j ∈Cm×1 and l⊤i ∈C1×m are the right and left
tangential directions. Both points and directions lead to the
right H(λ j)r j = w j ∈ Cm×1 and left l⊤i H(µi) = v⊤i ∈ C1×m

tangential responses. H(sk) is the evaluation of the high
dimensional pH-FOM at point sk ∈ C. Based on (2), the LF
seeks for Σ̂ΣΣ : (Ê, Â, B̂,Ĉ,0m), whose transfer function Ĥ(s)

2One should also point that this is also treated in [11] through a model-
based approach via what authors call the regular and singular cases.

satisfies tangential interpolatory conditions Ĥ(λ j)r j = w j
and l⊤i Ĥ(µi) = v⊤i . By using the matrix formulation, the right
data read

Λ = diag [λ1, . . . ,λk] ∈ Ck×k,
R =

[
r1 r2 . . . rk

]
∈ Cm×k

W =
[
w1 w2 . . . wk

]
∈ Cm×k

, (3)

and the left data read
M = diag [µ1, . . . ,µq] ∈ Cq×q

L⊤ =
[
l1 l2 . . . lq

]
∈ Cm×q

V⊤ =
[
v1 v2 . . . vq

]
∈ Cm×q

. (4)

Then, by defining the i, j-th entry of the Loewner and shifted
Loewner matrices as

(L)i j =
v⊤i r j− l⊤i w j

µi−λ j
and (M)i j =

µiv⊤i r j− l⊤i w jλ j

µi−λ j
, (5)

the resulting system realization Σ̂ΣΣ := (Ê, Â, B̂,Ĉ,0m) =
(−L,−M,V,W,0m) which transfer function Ĥ(s) = W(M−
sL)−1V (tangentially) interpolates the data. It follows that
Loewner matrices satisfy the Sylvester equations ML−LΛΛΛ=
VR−LW and MM−MΛΛΛ = MVR−LWΛΛΛ. If data have
been generated by a linear rational model, ∀ξ ∈ C \ Λ,
the rational order r = rank(ξL −M) = rank([L,M]) =
rank([LH ,MH ]H) recovers the the minimal realisation of
the generating system, as well as its McMillan degree ν =
rank(L). These features make this approach central in the
realisation theory (see [7], [8] for a recent overviews).

B. Loewner framework with strict passivity
1) General ideas and assumptions: Applying the LF to

data generated by a passive system H do not necessarily
lead to a passive transfer Ĥ. This is solved in [1] by through
specific right and left data selection. This result is recalled
here together with the main (limiting) assumptions.

Assumption 1 (Strictly passive): In [1], authors assume
that the system generating the data to be strictly passive,
implying proper transfer matrix H where singularities are
not on the imaginary axis or at infinity.

Assumption 2 (Stability): In [1], authors assume that
model Ĥ (realisation Σ̂ΣΣ) obtained after a first identification in
the LF leads to a stable pencil (M,L) = (Â, Ê), i.e. Λ ∈C−.

2) Procedure as given in [1]: First, let Ĥ be identified by
the LF, on the basis of a real and strictly passive transfer
function H, where the D-term is removed to avoid rank
deflecting Ê = L matrix. It results in Ĥ where McMillan
degree ν is equal to the (minimal) realisation order r, since
no polynomial term appear (because of the strict passivity
and D-term removal). Note that r may be automatically
selected by the rank revealing factorisation of the LF or be
chosen smaller. This identified model realisation Σ̂ΣΣ is now
used to estimate the associated spectral zeros and directions
pairs, denoted (ξ j,x j) such that ΦΦΦĤ(ξ j)x j = 0. This pair is
computed by solving the following low order generalized
eigenvalue problem (see [12], [1]): 0 Â B̂

Â⊤ 0 Ĉ⊤

B̂⊤ Ĉ D+D⊤

p j
q j
x j

= ξ j

 0 Ê 0
−Ê⊤ 0 0

0 0 0

p j
q j
x j

 . (6)
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According to Assumptions 1 and 2, this eigen-problem has
r zeros in the open right half-plane, r zeros in the open
left half-plane and has no zeros on the imaginary axis. By
selecting the right and left strictly passive data data as (i, j =
1, . . . ,r = k = q, λ j← ξ j and r j← xi),

{λ j,r j,w j} and {−λ i,rH
i ,−wH

i }, (7)

one gets, M = −ΛΛΛ
H , L = R and V = −WH . Therefore,

by construction, one obtains an Hermitian L ∈ Cr×r and a
skew symmetric M∈Cr×r matrix (5). By setting, H(∞) = D
(which may be estimated by sampling in very high fre-
quency), one recovers an m×m real transfer function Ĥ3. As
L≻ 0, one may apply the Cholesky decomposition L= T⊤T .
Then the normalized pH model is obtained as ΣΣΣn-pH :=
(In,T ÂT−1,T B̂,ĈT−1,D), with form (1b). By defining [13]

S :=
[
−T ÂT−1 −T B̂

ĈT−1 D

]
, (8)

one obtains the equivalent pH-form (1c) by solving[
−J −G
G⊤ N

]
:=

S−S⊤

2
and

[
R P

P⊤ S

]
:=

S+S⊤

2
. (9)

However, this approach suffers from two limitations. The
first one stands in the assumption that the original model
generating the data should be strictly passive, and thus is
cannot be applied to non-strictly passive systems. The second
one is more numerical: in practice Loewner pencil (M,L) of
stable functions H may not be necessarily stable. Next, we
propose two steps to overcome these limitations.

C. Loewner framework with non-strict passivity and stability

1) Proposed modified algorithm: Based on Algorithm 1
and 2 of [1], we suggest the following Algorithm 1, to
identify pH model for non-strictly passive systems.

The main modifications from [1] are listed hereafter. (i)
”Step 1”, we suggest shifting the data with a positive scalar
to translate the Nyquist response on the right hand side to
ensure positive realness. This result in a data that are now
strictly passive. (ii) ”Step 4”, as the Loewner does not ensures
stability, we suggest a projection of the rational ROM Ĥ with
realisation Σ̂ΣΣ onto the RH ∞ space, following [14]. This
leads to a stable P∞(Ĥ) model. (iii) ”Step 12”, based on the
normalised realisation Σ̂ΣΣn-Ph, recover the original non-strictly
passive model, by simply applying S← S−Ds after solving
(9), leading to the pH-ROM fitting the original data.

2) Comments:
a) (i) and (iii)’s bullets: should the original model, and

therefore associated data, be non strictly passive, but only
passive. This typically occurs when no direct feed-through
term exist. As a consequence, the resulting spectral zeros
exhibit zeros on the imaginary axis. The first and last bullets
address this point. One simply shifts the original problem to
apply the strict-passive approach of [1].

3Real matrices are obtained if data are sampled with complex conjugate
frequencies and by applying a unitary projection [7], [8].

Algorithm 1 Data-driven normalized pH model construction
of non-strictly passive system

Require: {λ 0
j ,r

0
j ,w

0
j}, {µ0

i , l
0⊤
i ,v0⊤

i }, shift Ds such that
D⊤s +Ds ≻ 0, objective order r.

Ensure: Σ̂ΣΣpH := (M,Q,J,R,G,P,N,S) as in (1c) and Σ̂ΣΣpH
ensuring interpolatory conditions.

1: Shift the data (2) with Ds as w j ← w0
j +Ds and vi ←

v0
i +Ds ▷ New step

2: Construct the r-th order Loewner interpolant Σ̂ΣΣ :=
(−L,−M,V,W,0m) as in Section II-A

3: Compute the equivalent formulation Σ̂ΣΣ := (Ir, Â, B̂,Ĉ,Ds)
with transfer Ĥ

4: Compute projection P∞(Σ̂ΣΣ) (or P∞(Ĥ)) ▷ New step
5: Compute spectral zeros of P∞(Σ̂ΣΣ) as in (6)
6: Set λ j← ξ j, r j← xi, w j = Ĥ(λ j)r j and (7)
7: Construct L and M as in (5)
8: Construct M ← M−LDsR, V ← V−LDs and W ←

W−DsR.
9: Compute Chloesky decomposition L= T⊤T

10: Construct Σ̂ΣΣn-pH := (In,T ÂT−1,T B̂,ĈT−1,Ds)
11: Construct Σ̂ΣΣpH := (M,Q,J,R,G,P,N,S) using (9)
12: Set S← S−Ds ▷ New step

b) (ii)’s bullet: the rational model obtained through the
LF denoted Ĥ may present unstable singularities. Therefore
we suggest a post stabilisation using the procedure presented
in [14]. This latter consists in projecting the rational model
Ĥ ∈RL ∞ onto its closest stable subset RH ∞, here using
the H∞-norm, leading to a stable model. Mathematically,
and as exposed in details in [14], given a rational model
Ĥ ∈RL ∞ equipped with realisation Σ̂ΣΣ, one seeks P∞(Ĥ) ∈
RH ∞ such that,

P∞(Ĥ) = arg inf
G∈RH ∞

||Ĥ−G||L∞
. (10)

Proof and procedure to obtain P∞(Ĥ) are detailed in [14].
The key steps consists in performing the stable and unstable
part separation, then solving two reduced order Lyapunov
equations. Applying this post-treatment to the Loewner-
based approximate hopefully preserves the accuracy and
interpolatory properties. Note that this step may also be
addressed with [13].

c) Interpolatory properties: At step 3, Ĥ interpolates
the shifted data of step 1. At step 4, Ĥ may not interpolate
exactly these data due to the projection, but should likely
do so if original system is stable. Then, at step 5 one should
recover exactly r strictly positive spectral zeros. Accordingly,
the Cholesky decomposition at step 9 is possible as L ≻ 0,
thus at step 10 and 11, the system interpolates the spectral
zeros data of step 6, associated to the model Ĥ constructed
from the shifted data. At step 10, the associated transfer
function thus ensures Ĥn-pH(λ

0
j )r

0
j = w0

j +Ds. Step 12 shifts
back the model so that ĤpH tangentially interpolates the
original data and is passive.
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III. NUMERICAL USE-CASE: THE 2D WAVE EQUATION

A. Model description

1) Port-Hamiltonian formulation: Let us consider the
vertical deflection from equilibrium w of a 2D membrane
Ω ⊂ R2. Denoting ρ the mass density and T the Young’s
modulus of the membrane, a positive-definite symmetric
tensor, leads to the damped wave equation given as [15]
(t ≥ 0, x ∈Ω)

ρ(x)
∂ 2

∂ t2 w(t,x)+ε(x)
∂

∂ t
w(t,x)−div(T (x) ·grad(w(t,x)))= 0

where ε is a positive damping parameter, together with Neu-
mann boundary control (T (x) ·grad(w(t,x))) · n = u∂ (t,x),
where n is the outward normal to Ω. The Hamiltonian is the
total mechanical energy, given as the sum of potential and
kinetic energies

H (t) :=
1
2

∫
Ω

(grad(w(t,x)))⊤ ·T (x) ·grad(w(t,x))dx

+
1
2

∫
Ω

ρ(x)
(

∂

∂ t
w(t,x)

)2

dx. (11)

Taking the strain αααq := grad(w) and the linear momentum
αp := ∂

∂ t w as energy variables, the Hamiltonian rewrites

H (t) = H (αααq(t, ·),αp(t, ·))

=
1
2

∫
Ω

(αααq(t,x))
⊤ ·T (x) ·αααq(t,x)dx+

1
2

∫
Ω

α2
p(t,x)
ρ(x)

dx.

(12)

The co-energy variables are by definition the variational
derivatives of the Hamiltonian eq := δαααqH = T · αααq the
stress, and ep := δαpH = 1

ρ
αp, the velocity. These equalities

are the constitutive relations which close the dynamical
system. Thanks to these variables, the wave equation writes
as a port-Hamiltonian system(

∂

∂ t αααq
∂

∂ t αp

)
=

[
0 grad

div −ε

](
eq
ep

)
,

In addition we denote inputs and outputs as u∂ = eq ·n |∂Ω

and y∂ = ep |∂Ω. The power balance satisfied by the Hamil-
tonian is

d
dt

H = ⟨u∂ ,y∂ ⟩∂Ω−
∫

Ω

ε|ep|2 ≤ ⟨u∂ ,y∂ ⟩∂Ω , (13)

proving passivity. To get rid of the algebraic constraints
induced by the constitutive relations, one rewrites the port-
Hamiltonian system as[

T−1 0
0 ρ

](
∂

∂ t eq
∂

∂ t ep

)
=

[
0 grad

div −ε

](
eq
ep

)
,

{
u∂ = eq ·n,
y∂ = ep |∂Ω,

also known as the co-energy formulation.

2) Structure-preserving discretization: Let ϕϕϕq, ϕp and ψ

be vector-valued, scalar-valued and boundary scalar-valued
test functions respectively. The weak formulation reads

∫
Ω

ϕϕϕq ·T−1 · ∂

∂ t
eq =

∫
Ω

ϕϕϕq ·grad(ep) ,∫
Ω

ϕpρ
∂

∂ t
ep =

∫
Ω

ϕpdiv(eq)−
∫

Ω

ϕpεep,∫
∂Ω

ψy∂ =
∫

∂Ω

ψep.

The integration by parts of the second leads to (u∂ = eq ·n)

∫
Ω

ϕϕϕq ·T−1 · ∂

∂ t
eq =

∫
Ω

ϕϕϕq ·grad(ep) ,∫
Ω

ϕpρ
∂

∂ t
ep = −

∫
Ω

grad(ϕp) · eq +
∫

∂Ω

ϕpu∂

−
∫

Ω
ϕpεep,∫

∂Ω

ψy∂ =
∫

∂Ω

ψep.

Let (ϕϕϕ i
q)1≤i≤Nq , (ϕ j

p)1≤ j≤Np and (ψk)1≤k≤N∂
be finite ele-

ment families for q-type, p-type and boundary-type variables.
Variables are approximated in their respective finite element
family

ed
q(t,x) :=

Nq

∑
i=1

ei
q(t)ϕϕϕ

i
q(x), ed

p(t,x) :=
Np

∑
j=1

e j
p(t)ϕ

j
p(x),

ud
∂
(t,x) :=

N∂

∑
k=1

uk
∂
(t)ψk(x), yd

∂
(t,x) :=

N∂

∑
k=1

yk
∂
(t)ψk(x).

Denoting ⋆ the (time-varying) vector of coordinates of the
discretisation ⋆d of ⋆ in its respective finite element family,
the discrete system readsMq 0 0

0 Mp 0
0 0 M∂


︸ ︷︷ ︸

M

 d
dt eq(t)
d
dt ep(t)
−y∂ (t)

=

 0 G 0
−G⊤ −Mε B

0 −B⊤ 0


︸ ︷︷ ︸

J−R

eq(t)
ep(t)
u∂ (t)



where (Mq)i j :=
∫

Ω
ϕϕϕ i

q · T−1 · ϕϕϕ
j
q, (Mp)i j :=

∫
Ω

ϕ i
pρϕ

j
p,

(Mε)i j :=
∫

Ω
ϕ i

pεϕ
j
p, (M∂ )i j :=

∫
∂Ω

ψ iψ j, and (B) jk :=∫
∂Ω

ϕ
j
p |∂Ω ψk, (G)i j :=

∫
Ω

ϕϕϕ i
q ·grad

(
ϕ

j
p

)
. By definition, the

discrete Hamiltonian is equal to the continuous Hamiltonian
evaluated in the approximated variables. As we are working
with the co-energy formulation, a first step is to restate the
Hamiltonian in terms of co-energy variables, namely:

H =
1
2

∫
Ω

eq ·T−1 · eq +
1
2

∫
Ω

ρ(ep)
2.

Then, the discrete Hamiltonian is defined as

H d :=
1
2

∫
Ω

ed
q ·T−1 · ed

q +
1
2

∫
Ω

ρ(ed
p)

2.

After straightforward computations, it comes

H d(t) =
1
2

eq(t)⊤Mqeq(t)+
1
2

ep(t)⊤Mpep(t),

and the discrete power balance follows
d
dt

H d(t) = u∂ (t)
⊤M∂ y∂ (t)− ep(t)⊤Mε ep(t)

≤ u∂ (t)
⊤M∂ y∂ (t) ,
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mimicking (13) exactly at the discrete level. The pH-FOM
is thus given by the a realization ΣΣΣpH in the form (1c). The
convergence of the numerical method is assessed in [16],
where the optimal selection of families of Finite Elements
is proved. The objective is to use these matrices and the
associated transfer function H to generate data, through the
dedicated SCRIMP simulator4, presented in [17]. These data
shall serve the construction of a pH-ROM, as explained in
§II.

B. pH-ROM identification

The considered model H is a 2D wave equation, on an
L-shaped domain Ω. The resulting discretized pH model is
equipped with a realisation ΣΣΣpH in pH-form as in (1c). It
has the following characteristics: n = 63,409 and m = 604.
For illustration, we will now consider to sub-cases. First, (i)
the SISO case: m = 1, where we consider the first input /
output pair only and second, (ii) the MIMO case: m = 3,
where we consider the following input / output index pairs
{1,2,496} only. Notice that as the system is collocated,
transfers one and two are highly close while the third one
is far away and will thus be very different. The model is
stable, poorly damped, but not strictly passive, thus spectral
zeros on ıR should unlikely occur, resulting in a non verified
Assumption 1. In what follows, we denote as:
• Data, the original system presented in §III-A-B sampled

along ıωl , where ωl are l = 1, . . . ,300 logarithmically
spaced values between 10−1 and 103.5 rad/s.

• Loewner, the dynamical model obtained with the stan-
dard LF, in the form (1a).

• pH-Loewner, the dynamical model obtained with the
Algorithm 1 (input data being closed conjugated from
data and Ds = 1), in the form (1c).

In each case, we also use the denomination shifted to point
the data or model shifted and with post-stability enforcement,
to ensure strict dissipativity.

1) SISO case: process illustration: first, Figure 1 presents
the frequency response of the original data, compared to the
(non-dissipative and non-stable) Loewner model and the pH-
Loewner one, illustrating the nice restitution of the frequency
response in both cases. Here, the pH-Loewner is passive and
embeds the expected pH-structure.

Figure 2 (3) show the (zoomed) spectral zeros. The
Loewner model has many zeros along or close to the imagi-
nary axis (×××). Indeed, between the real band [−1,1]×10−10,
we count 4 zeros and between [−1,1]× 10−9, 12. This is
an issue for selecting the positive interpolation points. This
problem is solved by the proposed algorithm modification,
thanks to both post-stability enforcement and data-shift.
Indeed, the pH-Loewner (shifted) shows zeros far from this
limit (+++). Then, after applying the shift-back, one recovers
the sought pH-Loewner model (•), where spectral zeros are
back on the imaginary axis. Note that without the proposed
algorithm adjustments, no solution can be found as the L
matrix is not positive definite and Cholesky decomposition

4See https://g-haine.github.io/scrimp/
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Fig. 1. Frequency response of the original data, the Loewner and the pH-
Loewner models.
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Fig. 2. Spectral zeros response of the Loewner, the Loewner (applied on
the shifted data) and the pH-Loewner models.

is impossible. A reduced order model can be obtained if
at step 2 of Algorithm 1 one selects a r < 154. In the
presented figures, the order selection was performed by the
rank revealing decomposition of the Loewner matrices.

2) MIMO case: as mentioned, one important challenge in
this application in addition to the complexity of the dynamics
of the wave equation, is its large number of inputs and
outputs (m = 604). So far, applying the above process to
this large MIMO system led to non fully satisfactory results.
However, up to m = 10, reasonably good approximation
have been observed. In Figure 4, we illustrate the frequency
magnitude response for m = 3, where the first two inputs /
outputs are spatially close, whereas the third one is spatially
far from the others.

Figure 4 illustrates the fact that diagonal elements (more
energetic since the model is collocated) are well reproduced.
Regarding the anti-diagonal ones, a good restitution is ob-
served on channels (1,2) and (2,1) but not on (1,3), (2,3),
(3,1) and (3,2). Indeed, these transfer are less energetic than
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Fig. 3. Spectral zeros response of the Loewner, the Loewner (applied on
the shifted data) and the pH-Loewner models.
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Fig. 4. Frequency response of the original data, the Loewner and the pH-
Loewner models.

the other and thus not well approximated. This is a point
for future investigations, e.g. with a specific treatment of the
tangential directions in (2).

IV. CONCLUSIONS & PERSPECTIVES

We have shown promising numerical results of a data-
driven reduction technique applied to a 2D wave PDE,
modelled as a pHs: it is obtained using the LF, and
more specifically a modification of [1] using the frequency-
responses generated by the matrices provided by the
structure-preserving PFEM. The main modifications to [1]
are (i) the data-shift to handle non-strictly passive models and
(ii) the post-stability enforcement, to cope with numerical
issues often encountered when applying the LF. These two
steps where essential to achieve the presented results. Indeed,
what is successful is the number of states that can be
drastically reduced (from n = 63,409 to n = 179). However,
the collocated input-output pairs have been tried on a SISO
case, or on a MIMO case of small dimension (m= 3, . . . ,10).

So far, the MIMO version remains not fully satisfactory and
will be of specific attention in future researches. Further
investigations will also consider handling a larger number of
inputs-outputs and different real world applications5, such as
Maxwell equations in 2D or even in 3D, see [18].
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