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Abstract: Eutectic freeze crystallisation is a promising way of purifying water for it may require
less energy than other methods. In order to simulate such a process, phase field models such
as Allen-Cahn and Cahn-Hilliard can be used. In this paper, a port-Hamiltonian formulation
of the Allen-Cahn equations is used and coupled to heat conduction, which allows for a
thermodynamically consistent system to be written with the help of the entropy functional. In a
second part, the Partitioned Finite Element Method, a structure-preserving spatial discretization
method, is applied to the Allen-Cahn equation; it gives rise to an exact free energy balance at
the discrete level. Finally some numerical results are presented.
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1. INTRODUCTION

Water desalination is a critical process and can be achieved
in different ways. One of them is eutectic freeze crys-
tallisation, see van der Ham et al. (1998), Randall et al.
(2011); this method seems more energy efficient due to
the difference between the latent heat of fusion and the
latent heat of vaporisation of water, see Beier et al. (2007),
Yuan et al. (2020). In this work, we want to develop and
implement a numerical model for simulation and control
design of such a system (see Kobayashi (1993) and Church
et al. (2019) ).

Because of the thermodynamic nature of the freezing
process, the port-Hamiltonian framework seems useful for
modelling, since it preserves the structure of the system
and the classification between intensive and extensive
variables, see e.g. van der Schaft (2006). In this paper,
following Kobayashi (2010) and Penrose and Fife (1990),
we shall use the diffuse interface modelling framework as
an alternative to the thin interface model.

In this work, the goal is to compute the solutions of the
system of Allen-Cahn equations coupled with the heat
equation, using the pHs formalism (see Vincent et al.
� This work was supported by the IMPACTS project, en-
titled IMplicit Port-HAmiltonian ConTrol Systems, funded by
the French National Research Agency (ANR) [Grant Agree-
ment No. ANR-21-CE48-0018]. Further information is available at
https://impacts.ens2m.fr/.

(2020) for Allen-Cahn), and by spatially discretizing it
using the partitioned finite element method introduced in
Cardoso-Ribeiro et al. (2021). More details about thermo-
dynamics relations and the implicit pHs representation of
the coupled system can be found in the companion paper
Yaghi et al. (2022).

The paper is organized as follows: first in § 2 we will go
through the phase field method and pHs formalism for
the Allen-Cahn equation, then in § 3, a short reminder on
heat equation will be given. After introducing these two
systems their interconnection is presented in § 4 making
use of the entropy as Hamiltonian functional, followed by
the structure-preserving discretization in § 5. Finally some
numerical simulations results are discussed in § 6.

2. PHASE FIELD MODELLING

Following Gibbs’ diffuse interface approach, we shall use
a phase field model (e.g. Allen-Cahn) in order to approxi-
mate the sharp interface by a diffuse one.

Let us define φ : R3 × R → [0, 1] the phase function. It
can be used to represent various quantities and the two
boundaries of its range are purely arbitrary. For instance
φ(x, t) can be the phase state of a solution at a given
point or the concentration of a certain chemical specie in
a solvent.

Assuming φ represents the phase of a solution ( e.g.
φ−1({0}) is solid and φ−1({1}) is liquid ) it is immediate to
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observe that the regularity of φ induces in-between phase
states ( e.g. there exist x and t such that φ(x, t) = 0.5)
which are sometimes not physically exact, for instance the
interface between solid water and liquid water is sharp and
therefore the value 0.5 is questionable, see Boettinger et al.
(2002).

Then the goal of the Allen-Cahn and Cahn-Hilliard model
is to provide the dynamics of this function over time (e.g.
solidification, phase separation ). Both of them rely on the
minimization of the Ginzburg-Landau functional, see e.g.
Hohenberg and Krekhov (2015), Cahn and Hilliard (1958):

G(φ) :=
∫

Ω

f(φ(z, t)) + κ(z) ‖grad(φ)(z, t)‖2dz . (1)

This functional represents the free energy of the system,
where:

• f : R → R represents the bulk free energy linked
to a certain phase state. Note that f is almost
always a double-welled potential with its two local
minima located at 0 and 1, and that f may vary with
temperature as well 1 . therefore, by minimizing the
free energy of the system, the two phases will tend to
separate in two distinct values ( either 0 or 1 )

• κ(z) is a positive parameter which represents the price
to pay for having an interface between two phases.

2.1 Recasting Allen-Cahn model into a pHs

In the Allen-Cahn model, we do not seek to keep
∫
Ω
φ

constant. Therefore, the simplest law ensuring the decrease
over time of G(φ) is to set a gradient relaxation dynamics:

∂φ

∂t
= −Γ

δG
δφ

, (2)

where δG
δφ := f ′(φ) − div(κ grad(φ)) is the functional

derivative of G with respect to φ and Γ(z) > 0 the interface
mobility.
To recast the equations into the pHs formalism, following
the work of Vincent et al. (2020), we use an augmented
state representation by considering ψ:

(
φ
ψ

)
:=

(
φ

grad(φ)

)
. (3)

Therefore the free energy can be rewritten as:

G(φ) = G(φ,ψ) =

∫

Ω

f(φ) + κ‖ψ‖2 .

We then introduce two new flow and effort variables:


Fφ :=

δG
δφ

− div(
δG
δψ

) ,

Eφ := Γ Fφ .

(4)

1 e.g. fusion of a solid when temperature rises.

Let us note f :=

(
∂tφ
ψ
Fφ

)
and e :=




δG
δφ
δG
δψ
Eφ




the flow and

effort variables, and J =

(
0 0 −1
0 0 −grad
1 − div 0

)
the structure

operator.

In Vincent et al. (2020) it is shown that (2) and (1) can
be written as a pHs:





∂tφ

∂tψ

Fφ


 = J




δG
δφ
δG
δψ
Eφ




,

with constitutive relations:
δG
δφ

= f ′(φ) ,
δG
δψ

= κ ψ , Eφ = ΓFφ ,

and boundary ports:
(
f∂

e∂

)
=




δG
δψ

· n

Eφ|∂Ω


 ,

(5)

where the boundary ports define the interaction between
the environment and the model.

3. REMINDER ON THE HEAT EQUATION

The goal now is to describe the heat equation in a pHs
formalism. Following the work of Serhani et al. (2019a),
let us recall the entropy of a thermodynamic system :

S(u) =

∫

Ω

s(u)dv

Let us choose u the internal energy density as the energy
variable. Then the co-energy variable is β := δuS = ∂s

∂u =
1
T , the reciprocal temperature.

The full heat equation then reads :


(
∂tu

−grad(
1

T
)

)
=

(
0 − div

−grad 0

)(
β

jQ

)
,

β−1 = T =
u

ρCp
,

jQ = −λgrad(T ) ,

(6)

where we have used Fourier’s law for the heat flux with
thermal conductivity λ, and Dulong-Petit relation for the
internal energy.

Moreover, this system is completed with a pair of bound-
ary port variables: the normal component of the heat flux
at the boundary jQ · n, and the Dirichlet trace of β the
reciprocal temperature.

4. INTERCONNECTION

In order to interconnect the two systems using the pHs
formalism, we will choose another Hamiltonian which will
facilitate the process: S, the entropy of the system; this
functional is the same as in Yaghi et al. (2022), and has

already been used in Wang et al. (1993), but without
resorting to the pHs formalism.

The free energy of the system is defined as (Boettinger
et al., 2002):

f(φ, T ) := Wg(φ) + L
T0 − T

T0
p(φ) ,

With W ≥ 0, L some thermodynamic parameters that
control the speed of the process, T0 the temperature of
fusion, g a double welled potential, and p an increasing
function going smoothly from 0 to 1. For instance one can
use : p(φ) = φ3(6φ2 − 15φ+ 10) and g(φ) = φ2(1− φ2).

Remark : This definition of the free energy is well explained
in (Boettinger et al., 2002) and a justification of this
approximation is provided in the Appendix.

By the thermodynamical definition of free energy, F = U−
TS, therefore, we have that: S = U

T − F
T .

Let us now define:

S :=

∫

Ω

s(φ, u) =

∫

Ω

(
u

T
−

f(φ, T ) + 1
2κgrad(φ) · grad(φ)

T

)

Extending the state space to the new energy variables,(
u
φ

ψ :=grad(φ)

)
, S can then be rewritten as S:

S(u, φ,ψ) =

∫

Ω

(
u

T
−

f(φ, T ) + 1
2κψ ·ψ

T

)
,

and the co-energy variables are:




δuS =
1

T

δφS =− 1

T
∂φf

δψS = − 1

T
κψ




.

From the previous formulation, we had that : ∂tφ = −Γ δG
δφ ,

from that we can deduce that the dynamic is given by :


∂tu = − div(jQ) ,

∂tφ = +ΓT (∂φs) ,

∂tψ = grad(ΓT (∂φs)) .

Let us define F := − δS
δφ + div( δSδψ ) and E := −T ΓF . The

full system is then found to be:






∂tu

∂tφ

∂tψ

−grad(β)
F



=




0 0 0 − div 0

0 0 0 0 1

0 0 0 0 grad
−grad 0 0 0 0

0 −1 div 0 0







β

δS
δφ
δS
δψ
jQ
E




β = ((u/ρ− Lφ)/Cv(φ))
−1 (First principle) ,

δS
δφ

= −W

T
g′(φ)− L

T0 − T

T0T
p′(φ) ,

δS
δψ

= −κψ

T
,

jQ = −λ(φ)grad(T ) ,
E = −ΓT F .

Finally, the following entropy balance can be computed :

dS
dt

=

∫

Ω

β2λgrad(T ) · grad(T ) +
∫

Ω

− 1

T
EF

−
∫

∂Ω

1

T
jQ · n−

∫

∂Ω

E
κ

T
ψ · n

(7)

And by using the constitutive relations, we get:

dS
dt

=

∫

Ω

β2λ−1‖jQ‖2 +
∫

Ω

β2Γ−1E2

−
∫

∂Ω

β jQ · n+

∫

∂Ω

E (− κ

T
ψ) · n

(8)

This shows that the entropy of the system is indeed in-
creasing and that the boundary control is the sum of the
boundary control of the Heat equation and the Allen-Cahn
equation.
Moreover, the global structure matrix is a compound ver-
sion of the previous ones, and an additional non-linear
constitutive relation is present ( E = −ΓTF ).
Properly defining the boundary ports and expressing the
Stokes-Dirac structure associated with this system is pos-
sible, and is fully detailed in Yaghi et al. (2022).

5. STRUCTURE-PRESERVING DISCRETIZATION

In this section we shall apply a spatial discretization
which preserves the structure: the exterior derivative,
skew-symmetry of the Hamiltonian operator, the port
variables and the balance equation. The Partitioned Finite
Element Method (PFEM) is such a compatible numerical
method for spatially discretizing various pHs, see e.g.
Cardoso-Ribeiro et al. (2021). It proceeds in 3 main steps:

(1) write a weak formulation of the problem,
(2) select a Partition of the variables, use Stokes theorem

to perfom an integration by parts which makes appear
the useful control in the boundary term,

(3) choose conforming families of Finite Elements to
compute the associated matrix representation.

Following this Method, we end up with a finite-dimensional
pHs, for which the power balance is automatically satisfied
at the discrete level.

Because of the way the two systems were coupled at the
continuous level, the discretization of both systems does
not introduce extra difficulty and is presented separately
in § 5.1 and § 5.2; moreover, in order to illustrate the flexi-
bility of the approach, it is formulated here with the Gibbs
free energy instead of entropy functional as Hamiltonian;
further details and other choices of Hamiltonian can be
found in Bendimerad-Hohl et al. (2022).

5.1 Allen-Cahn Discretization

Variational problem To apply PFEM, we first need to
formulate the variational problem: Let λ, ξ ∈ C∞(Ω,R)
and µ ∈ C∞(Ω,R3) three test functions (either scalar- or
vector-valued) over Ω. Let us multiply each line of the full
system with the corresponding test function and integrate
over Ω:



	 Antoine Bendimerad-Hohl  et al. / IFAC PapersOnLine 55-18 (2022) 99–104	 101
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from that we can deduce that the dynamic is given by :


∂tu = − div(jQ) ,

∂tφ = +ΓT (∂φs) ,

∂tψ = grad(ΓT (∂φs)) .

Let us define F := − δS
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

∂tu

∂tφ

∂tψ

−grad(β)
F



=




0 0 0 − div 0

0 0 0 0 1

0 0 0 0 grad
−grad 0 0 0 0

0 −1 div 0 0







β

δS
δφ
δS
δψ
jQ
E




β = ((u/ρ− Lφ)/Cv(φ))
−1 (First principle) ,

δS
δφ

= −W

T
g′(φ)− L

T0 − T

T0T
p′(φ) ,

δS
δψ

= −κψ

T
,

jQ = −λ(φ)grad(T ) ,
E = −ΓT F .

Finally, the following entropy balance can be computed :

dS
dt

=

∫

Ω

β2λgrad(T ) · grad(T ) +
∫

Ω

− 1

T
EF

−
∫

∂Ω

1

T
jQ · n−

∫

∂Ω

E
κ

T
ψ · n

(7)

And by using the constitutive relations, we get:

dS
dt

=

∫

Ω

β2λ−1‖jQ‖2 +
∫

Ω

β2Γ−1E2

−
∫

∂Ω

β jQ · n+

∫

∂Ω

E (− κ

T
ψ) · n

(8)

This shows that the entropy of the system is indeed in-
creasing and that the boundary control is the sum of the
boundary control of the Heat equation and the Allen-Cahn
equation.
Moreover, the global structure matrix is a compound ver-
sion of the previous ones, and an additional non-linear
constitutive relation is present ( E = −ΓTF ).
Properly defining the boundary ports and expressing the
Stokes-Dirac structure associated with this system is pos-
sible, and is fully detailed in Yaghi et al. (2022).

5. STRUCTURE-PRESERVING DISCRETIZATION

In this section we shall apply a spatial discretization
which preserves the structure: the exterior derivative,
skew-symmetry of the Hamiltonian operator, the port
variables and the balance equation. The Partitioned Finite
Element Method (PFEM) is such a compatible numerical
method for spatially discretizing various pHs, see e.g.
Cardoso-Ribeiro et al. (2021). It proceeds in 3 main steps:

(1) write a weak formulation of the problem,
(2) select a Partition of the variables, use Stokes theorem

to perfom an integration by parts which makes appear
the useful control in the boundary term,

(3) choose conforming families of Finite Elements to
compute the associated matrix representation.

Following this Method, we end up with a finite-dimensional
pHs, for which the power balance is automatically satisfied
at the discrete level.

Because of the way the two systems were coupled at the
continuous level, the discretization of both systems does
not introduce extra difficulty and is presented separately
in § 5.1 and § 5.2; moreover, in order to illustrate the flexi-
bility of the approach, it is formulated here with the Gibbs
free energy instead of entropy functional as Hamiltonian;
further details and other choices of Hamiltonian can be
found in Bendimerad-Hohl et al. (2022).

5.1 Allen-Cahn Discretization

Variational problem To apply PFEM, we first need to
formulate the variational problem: Let λ, ξ ∈ C∞(Ω,R)
and µ ∈ C∞(Ω,R3) three test functions (either scalar- or
vector-valued) over Ω. Let us multiply each line of the full
system with the corresponding test function and integrate
over Ω:
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



∫

Ω

λ∂tφ = −
∫

Ω

λEφ∫

Ω

µ · ∂tψ = −
∫

Ω

µ · grad(Eφ)
∫

Ω

ξFφ =

∫

Ω

ξ(
δG
δφ

− div(
δG
δψ

))

and for the constitutive relations:∫

Ω

λ
δG
δφ

=

∫

Ω

λf ′(φ)
∫

Ω

µ ·
δG
δψ

=

∫

Ω

µ · (κψ)
∫

Ω

ξEφ =

∫

Ω

ξΓFφ

(9)

Choice of causality The next step is to choose a
causality. By using an integration by part on the right
hand side of the second or third line, the control term will
appear. For instance, let us integrate by part the third line:

∫

Ω

ξFφ =

∫

Ω

ξ(
δG
δφ

− div(
δG
δψ

))

=

∫

Ω

ξ
δG
δφ

−
∫

Ω

ξ div(
δG
δψ

)

=

∫

Ω

ξ
δG
δφ

+

∫

Ω

grad(ξ) ·
δG
δψ

−
∫

∂Ω

ξ
δG
δψ

· n

In this case, our control is the value of u∂ := δG
δψ

.n at the
boundary. 2

Finite elements families Now, let us choose three fami-
lies of finite elements (λi)i∈[1,n] ∈ L2(Ω,R)n, (µi)i∈[1,m] ∈
L2(Ω,R3)m and (ξi)i∈[1,k] ∈ H1(Ω,R)k of size n,m and
k respectively for the state. And a family (γi)[1,p] ∈
L2(∂Ω,R)p for the control.
Then, let us decompose the flow f and effort e variables
on these functions:




for the flow variables

φ(z, t) =
n∑
1

φi(t)λi(z)

ψ(z, t) =
m∑
1

ψi(t)µi(z)

Fφ(z, t)=

k∑
1

F i
φ(t)ξi(z)





for the effort variables
δG
δφ

=
n∑
1

∂φGi(t)λi(z)

δG
δψ

(z, t) =

m∑
1

∂ψGi(t)µi(z)

Eφ(z, t) =

k∑
1

Ei
φ(t)ξi(z)

and the control:

u∂(s, t) =

p∑
1

ui(t)γi(s)

The variational formulation then becomes:

2 δG
δψ

= κ grad(φ) which means the control is the gradient of
phase at the boundary, it could be seen as adding solid phase at
the boundary to start the solidification of a supercooled solution.




∀j ∈ [1, n],
n∑
i

φi(t)

∫

Ω

λjλi = −
k∑

i=1

Ei
φ(t)

∫

Ω

λjξi

∀j∈ [1,m],

m∑
i=1

ψi(t)

∫

Ω

µj ·µi=−
k∑

i=1

Ei
φ(t)

∫

Ω

µj ·grad(ξi)

∀j ∈ [1, k],

k∑
i

F i
φ(y)

∫

Ω

ξiξj =

n∑
i=1

∂φGi

∫

Ω

λiξj

+

m∑
i=1

∂ψGi(t)

∫

Ω

µi · grad(ξj)−
k∑

i=1

ui(t)

∫

∂Ω

ξjγi

And for the constitutive relations:

∀j ∈ [1, n]
n∑

i=1

∂φGi(t)

∫

Ω

λiλj =

∫

Ω

λjf
′(φ)

∀j ∈ [1,m],
m∑
i=1

∂ψGi(t)

∫

Ω

µi ·µj =

m∑
i=1

ψi(t)

∫

Ω

µj ·(κµi)

∀j ∈ [1, k]

k∑
i=1

Ei
φ(t)

∫

Ω

ξiξj =

k∑
i=1

F i
φ(t)

∫

Ω

Γξiξj

(10)
Matrices definition Let us note: Mλ := (

∫
Ω
λiλj)i,j∈[1,n],

Mµ := (
∫
Ω
µi · µj)i,j∈[1,m] and Mξ := (

∫
Ω
ξiξj)i,j∈[1,k] the

mass matrices.

Also let us note:

Dφ := (

∫

Ω

λiξj)i∈[1,n],j∈[1,k]

the first structure matrix,

D∇ := (

∫

Ω

µi · gradξj)i∈[1,m],j∈[1,k]

the second structure matrix.

Cκ := (

∫

Ω

κµi · µj)i,j∈[1,m]

the first constitutive relation matrix,

CΓ := (

∫

Ω

Γξiξj)i,j∈[1,k]

The second constitutive relation matrix.

Let f(φ(t)) = (
∫
Ω
f ′(

∑
j φj(t)λj(x))λi)i∈[1,n] be the dis-

crete vector corresponding to the non-linear constitutive
relation.
And finally, let:

BE = (

∫

Ω

Γξiγj)i∈[1,k],j∈[1,p]

be the partial control matrix, and

B =
(
0T
n×k 0T

m×k BT
E

)T
be the control matrix.

Fully spatially discretized system Let us note


φ(t) := (φi)i∈[1,n]

ψ(t) := (ψi)i∈[1,m]

Fφ(t) := (F i
φ)i∈[1,k]

∂φG(t) := (∂φGi)i∈[1,n]

∂ψG(t) := (∂ψGi)i∈[1,m]

Eφ(t) := (Ei
φ)i∈[1,k]

u∂ := (ui)i∈[1,p]

(11)

the finite-dimensional vectors corresponding to the spa-
tially discretized flow and effort variables.

We can now rewrite the dynamical system as:




Mλ 0 0

0 Mµ 0

0 0 Mξ





∂tφ

∂tψ

Fφ


=




0 0 −Dφ

0 0 −D∇
DT

φ DT
∇ 0





∂φG
∂ψG
Eφ


+Bu∂

with collocated observation:

y∂ := BT



∂φG
∂ψG
Eφ


 = BT

EM
−1
ξ CΓFφ

and constitutive relations:

Mλ∂φG(t) = f(φ(t)) , Mµ∂ψG(t) = Cκψ(t) ,

MξEφ(t) = CΓFφ(t) ,
(12)

which is a finite-dimensional port-Hamiltonian system.

Note that because ∂φf(φ) is a priori non-linear, f has to
be recomputed at each time step, which might increase
the computational cost; but tackling the polynomial non-
linearity more explicitely could enable off-line computa-
tions. However, one important point must be made here:
because the non-linearity is only present in the constitutive
relations, the algorithm complexity is less affected than if
it were in the structure matrix.
Free energy balance equation Let us define the discrete
free energy associated to the phase state :

F (φ) =

∫

Ω

f(
∑
i

φiλi) ,

for which we can prove the following

Theorem 1. The discrete free energy balance equation is:

d

dt

(
G(φ, ψ)

)
=

d

dt

[
F (φ) +

1

2
ψ
T
Cκψ

]
=−Fφ

T
CΓFφ + yT∂u∂

(13)

The most technical point is the precise computation of the
time derivative of F (φ(t)), the full proof can be found in
Bendimerad-Hohl et al. (2022).
Theorem 1 shows that the free energy balance equation
remains consistent throughout discretization whatever the
mesh size, contrarily to other numerical method which are
not structure-preserving.

5.2 Heat equation discretization

The discretization of (6) is performed in a similar way;
following Serhani et al. (2019b), one can easily discretize
the system as :



(
Mu 0

0 M∇T

)(
∂tu

grad(T )

)
=

(
0 −DT

∇
D∇ 0

)(
T

jQ

)
+BTuT

And for the constitutive relations :
MuT = M 1

ρCv
u , M∇T jQ = −Mλgrad(T )

yT = BT
T

(
T

jQ

)

The balance equation of this system reads :

d

dt

(
1

2
uTM 1

ρCv
u

)
= −grad(T )

T
Mλgrad(T ) + (yT )

TuT

Note that this system uses the Lyapunov functional which
has no physical meaning, but other thermodynamical
functional can be used as well ( see Serhani et al. (2019b)).

6. NUMERICAL SIMULATIONS

Simulations were conducted using Python as program-
ming language, and different modules were used for the
Finite Element Method and time integration, namely:
FEniCS (Finite elements library), PETSc (Time integration
library), and SCRIMP (a wrapper to speed up the coding
process), as well as usual modules such as NumPy and
Matplotlib.

Hereafter is the simulation of the coupled Allen-Cahn and
thermal system

Figure 1. Simulation at step=1 and step=33. On the left
is the phase field and on the right the temperature

In this simulation, the coupling is seen as the local heating
of the domain where the phase went from 1 to 0 ; meaning
that energy was released during the crystallization.

7. CONCLUSION AND FURTHER WORKS

The pHs framework along with PFEM allows to model
such a coupled thermodynamical system and to simulate
it, while keeping the port-Hamiltonian structure.
Moreover, the ports highlight the different methods of
controlling the system and the pHs structure gives the
entropy balance associated with such boundary controls.

For more details about Cahn-Hilliard, Allen-Cahn as well
as the binary solution case and more complete proofs of
the present work, see Bendimerad-Hohl et al. (2022).

Note that another energy-preserving discretization of the
Cahn-Hilliard equation which doesn’t rely on the pHs
framework exists and can be found in Egger et al. (2021)
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the finite-dimensional vectors corresponding to the spa-
tially discretized flow and effort variables.

We can now rewrite the dynamical system as:




Mλ 0 0

0 Mµ 0

0 0 Mξ





∂tφ

∂tψ

Fφ


=




0 0 −Dφ

0 0 −D∇
DT

φ DT
∇ 0





∂φG
∂ψG
Eφ


+Bu∂

with collocated observation:

y∂ := BT



∂φG
∂ψG
Eφ


 = BT

EM
−1
ξ CΓFφ

and constitutive relations:

Mλ∂φG(t) = f(φ(t)) , Mµ∂ψG(t) = Cκψ(t) ,

MξEφ(t) = CΓFφ(t) ,
(12)

which is a finite-dimensional port-Hamiltonian system.

Note that because ∂φf(φ) is a priori non-linear, f has to
be recomputed at each time step, which might increase
the computational cost; but tackling the polynomial non-
linearity more explicitely could enable off-line computa-
tions. However, one important point must be made here:
because the non-linearity is only present in the constitutive
relations, the algorithm complexity is less affected than if
it were in the structure matrix.
Free energy balance equation Let us define the discrete
free energy associated to the phase state :

F (φ) =

∫

Ω

f(
∑
i

φiλi) ,

for which we can prove the following

Theorem 1. The discrete free energy balance equation is:

d

dt

(
G(φ, ψ)

)
=

d

dt

[
F (φ) +

1

2
ψ
T
Cκψ

]
=−Fφ

T
CΓFφ + yT∂u∂

(13)

The most technical point is the precise computation of the
time derivative of F (φ(t)), the full proof can be found in
Bendimerad-Hohl et al. (2022).
Theorem 1 shows that the free energy balance equation
remains consistent throughout discretization whatever the
mesh size, contrarily to other numerical method which are
not structure-preserving.

5.2 Heat equation discretization

The discretization of (6) is performed in a similar way;
following Serhani et al. (2019b), one can easily discretize
the system as :



(
Mu 0

0 M∇T

)(
∂tu

grad(T )

)
=

(
0 −DT

∇
D∇ 0

)(
T

jQ

)
+BTuT

And for the constitutive relations :
MuT = M 1

ρCv
u , M∇T jQ = −Mλgrad(T )

yT = BT
T

(
T

jQ

)

The balance equation of this system reads :

d

dt

(
1

2
uTM 1

ρCv
u

)
= −grad(T )

T
Mλgrad(T ) + (yT )

TuT

Note that this system uses the Lyapunov functional which
has no physical meaning, but other thermodynamical
functional can be used as well ( see Serhani et al. (2019b)).

6. NUMERICAL SIMULATIONS

Simulations were conducted using Python as program-
ming language, and different modules were used for the
Finite Element Method and time integration, namely:
FEniCS (Finite elements library), PETSc (Time integration
library), and SCRIMP (a wrapper to speed up the coding
process), as well as usual modules such as NumPy and
Matplotlib.

Hereafter is the simulation of the coupled Allen-Cahn and
thermal system

Figure 1. Simulation at step=1 and step=33. On the left
is the phase field and on the right the temperature

In this simulation, the coupling is seen as the local heating
of the domain where the phase went from 1 to 0 ; meaning
that energy was released during the crystallization.

7. CONCLUSION AND FURTHER WORKS

The pHs framework along with PFEM allows to model
such a coupled thermodynamical system and to simulate
it, while keeping the port-Hamiltonian structure.
Moreover, the ports highlight the different methods of
controlling the system and the pHs structure gives the
entropy balance associated with such boundary controls.

For more details about Cahn-Hilliard, Allen-Cahn as well
as the binary solution case and more complete proofs of
the present work, see Bendimerad-Hohl et al. (2022).

Note that another energy-preserving discretization of the
Cahn-Hilliard equation which doesn’t rely on the pHs
framework exists and can be found in Egger et al. (2021)
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APPENDIX

Thermodynamical properties: In order to justify the choice
of Cp(φ) constant across each phase and f = Wg(φ) +

p(φ)LT0−T
T0

let us consider these two graphs :

Figure 2. (Left): plot of the free energy of ice and liquid
water at P = 0.1MPa. (Right): plot of Cp of ice and
liquid water at P = 0.1MPa

These come from Wagner and Pruß (2002) and the as-
sociated Python module called iapws which allows for
an accurate approximation of water’s thermodynamical
properties.

From theses graphs, choosing Cp ≈ (1−p(φ))CS
p +p(φ)CL

p
is validated, considering the fact that they are almost
constant near 0°C.

Also, it is clear that fL is almost constant and that fS

can be approximated by a linear function.

Moreover, given that we wrote f(φ, T ) = Wg(φ) + (1 −
p(φ))fS(T ) + p(φ)fL(T ) and that only the derivatives of
f matters in the kinematics, constants can be removed and
we can rewrite f as f = Wg(φ) + p(φ)LT0−T

T0
.

Dynamical properties: The value of the thermal conduc-
tivity of liquid water is already precisely known. But the
question of the thermal conductivity of ice is a bit more
complex for it involves the speed of the freezing process,
as shown in Bonales et al. (2017).
Therefore, in order to find the thermal conductivity of ice,
some coarse assumptions have to be made.
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