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Abstract: Starting from the description of the isentropic compressible viscous fluid as port-
Hamiltonian system in [Mora & al., 2020], the special cases of irrotational or incompressible
cases in 2D or 3D are investigated. For the incompressible fluid, the non-linear Navier-Stokes
equations are first presented with velocity as energy variable, then analyzed as a modulated
port-Hamiltonian system with the help of the vorticity as energy variable. Finally, the structure-
preserving numerical scheme provided by the Partitioned Finite Element Method (PFEM) of
[Serhani & al., 2019] is applied to the incompressible dissipative fluid in 2D.
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1. INTRODUCTION

The goal of this work is to present advantageous numerical
method to simulate the non-linear Navier-Stokes equations
for an incompressible Newtonian fluid, with collocated
boundary control and observation.

Accurate mathematical description of fluids can be found
in e.g. Chorin and Marsden (1992), Morrison (1998), Boyer
and Fabrie (2013).
One of the first references on the port-Hamiltonian foma-
lism in infinite dimension is van der Schaft and Maschke
(2002). Recently a comprehensive focus on fluid mechan-
ics models using differential geometry has been proposed
in Califano et al. (2021), based on two more theoretical
papers, namely Rashad et al. (2021a,b).
Navier-Stokes in 1D has been tackled by Altmann and
Schulze (2017), whereas in higher space dimension, vor-
ticity naturally appears: this has been accounted for in
Mora et al. (2020). Useful references on vorticity include
the seminal book Truesdell (1954), several parts of Olver
(1993), and also Polner and van der Vegt (2014) for the
Euler equations, and Castro and Lannes (2015) for the
Shallow Water equations.
One example of constraints on a dynamical system is the
divergence-free condition for an incompressible fluid, hence
the underlying mathematical setting is that of Differen-
tial Algrebraic equations, see e.g. Kunkel and Mehrmann
(2006), and more specifically port-Hamiltonian Differential
Algrebraic equations: we refer to van der Schaft (2013),

� This work is supported by the project ANR-16-CE92-0028, en-
titled Interconnected Infinite-Dimensional systems for Heteroge-
neous Media, INFIDHEM, financed by the French National Re-
search Agency (ANR). Further information is available at https://
websites.isae-supaero.fr/infidhem/the-project/

van der Schaft and Maschke (2018),Beattie et al. (2018)
and Brugnoli et al. (2020).
A structure-preserving method used to simulate port-
Hamiltonian system is the Partitioned Finite Element
Method (PFEM), introduced in Cardoso-Ribeiro et al.
(2021) for lossless pHs, extended to passive pHs in Serhani
et al. (2019b); many applications have already been dealt
with: Cardoso-Ribeiro et al. (2019) for the Shallow Water,
Serhani et al. (2019a) for the heat equation, Brugnoli
et al. (2019) for plate equations, Payen et al. (2020) for
Maxwell’s equations. The implementation details of this
method can be found in Brugnoli et al. (2021), together
with NoteBooks as supplementary material.

In this work, the Incompressible Navier-Stokes Equations
(INSE) are investigated as port-Hamiltonian system. The
main contributions of this paper are:

(1) the vorticity (ω) formulation, making use of the
stream function (ψ) as co-energy variable, and the
expression of the collocated boundary controls and
observations in terms of ψ .

(2) the application of the structure-preserving method
PFEM to the vorticity formulation, where the inte-
gration by part has to be performed on the scalar
structure operator Jω, which is differentially modu-
lated by the energy variable ω.

The paper is organized as follows: in § 2 the compressible
isentropic fluid is recalled, while the specific case of in-
compressible fluids is presented in § 3 both in velocity and
vorticity formulations. Then in § 4, the PFEM method is
applied to the vorticity formulation in 2D. Finally conclu-
sions are drawn and perspective suggested in § 5.
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Mora et al. (2020). Useful references on vorticity include
the seminal book Truesdell (1954), several parts of Olver
(1993), and also Polner and van der Vegt (2014) for the
Euler equations, and Castro and Lannes (2015) for the
Shallow Water equations.
One example of constraints on a dynamical system is the
divergence-free condition for an incompressible fluid, hence
the underlying mathematical setting is that of Differen-
tial Algrebraic equations, see e.g. Kunkel and Mehrmann
(2006), and more specifically port-Hamiltonian Differential
Algrebraic equations: we refer to van der Schaft (2013),

� This work is supported by the project ANR-16-CE92-0028, en-
titled Interconnected Infinite-Dimensional systems for Heteroge-
neous Media, INFIDHEM, financed by the French National Re-
search Agency (ANR). Further information is available at https://
websites.isae-supaero.fr/infidhem/the-project/

van der Schaft and Maschke (2018),Beattie et al. (2018)
and Brugnoli et al. (2020).
A structure-preserving method used to simulate port-
Hamiltonian system is the Partitioned Finite Element
Method (PFEM), introduced in Cardoso-Ribeiro et al.
(2021) for lossless pHs, extended to passive pHs in Serhani
et al. (2019b); many applications have already been dealt
with: Cardoso-Ribeiro et al. (2019) for the Shallow Water,
Serhani et al. (2019a) for the heat equation, Brugnoli
et al. (2019) for plate equations, Payen et al. (2020) for
Maxwell’s equations. The implementation details of this
method can be found in Brugnoli et al. (2021), together
with NoteBooks as supplementary material.

In this work, the Incompressible Navier-Stokes Equations
(INSE) are investigated as port-Hamiltonian system. The
main contributions of this paper are:

(1) the vorticity (ω) formulation, making use of the
stream function (ψ) as co-energy variable, and the
expression of the collocated boundary controls and
observations in terms of ψ .

(2) the application of the structure-preserving method
PFEM to the vorticity formulation, where the inte-
gration by part has to be performed on the scalar
structure operator Jω, which is differentially modu-
lated by the energy variable ω.

The paper is organized as follows: in § 2 the compressible
isentropic fluid is recalled, while the specific case of in-
compressible fluids is presented in § 3 both in velocity and
vorticity formulations. Then in § 4, the PFEM method is
applied to the vorticity formulation in 2D. Finally conclu-
sions are drawn and perspective suggested in § 5.
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2. COMPRESSIBLE FLUIDS

The objective is to recall how the general Navier-Stokes
equations with collocated boundary control and observa-
tions can be recast into the framework of port-Hamiltonian
systems with dissipation for an isentropic Newtonian fluid,
following (Mora et al., 2020, § 3).

Following e.g. (Boyer and Fabrie, 2013, chap. 1), the
conservation of mass reads:

∂tρ+ div(ρu) = 0 , (1)
and the evolution of the linear momentum reads, in non-
conservative form:

ρDtu := ρ (∂t + u · grad)u (2)

= −grad(P ) + µ∆u+ (λ+ µ)grad(div(u)) .(3)
The positive coefficients are µ the dynamic viscosity, and
λ+ 2

3µ the bulk viscosity, the latter being equal to 0 under
Stokes assumption (in which case, λ = − 2

3µ).

Together with appropriate boundary variables, the pre-
vious equations of the compressible Newtonian fluid are
recast as pHs in the rotational case in § 2.1, and in the
irrotational case in § 2.2.

2.1 General case: compressible and rotational

Let ρ �→ e(ρ) the internal energy density, and define
the Hamiltonian functional as H :=

∫
Ω

1
2ρ|u|

2 + ρ e(ρ).
Choosing as energy variables density ρ, and velocity u,
and using the canonical scalar product, one can compute
the co-energy variables eρ := δρH = 1

2 |u|
2 + P

ρ = h(ρ,u)

the enthalpy, and eu := δuH = ρu the linear momentum
density.

Then, making use of vector calculus identities, (A.1) to
take the flow into account, and (B.3) to factorize the
vectorial Laplacian out, we introduce two extra algebraic
ports, curly and divergent,

• the skew-symmetric matrix G(ω) = ω∧ responsible
for the gyroscopic term,

• fc := ω = curlu = curl(ρ−1eu),
• fd := divu = div(ρ−1eu),

which are physically meaningful, and add the closure
relation ed = µd fd and ec = µc fc (with µc = µ and
µd = λ + 2µ = 4

3µ). Then, we are in a position to recast
(1)-(2) as follows: 


∂tρ
∂tu
fc

fd


 = Je



eρ
eu
ec
ed


 , (4)

where the interconnection differential operator Je is:

Je =




0 − div 0 0
−grad −ρ−1.G(ω) −ρ−1. curl ρ−1.grad

0 curl(ρ−1.) 0 0
0 div(ρ−1.) 0 0


 , (5)

the constitutive relations can be collected into vectors er
and fr and the closure relation reads er = Sfr, with
S := diag(µcI3, µd).

For the power balance, a technical computation gives:

Theorem 1. The evolution of the Hamiltonian along the
trajectories of the dynamical system (4) with the closure
relations is given by:

d

dt
H(t) = −

∫

Ω

µd fd
2 −

∫

Ω

µc |fc|2

+

∫

∂Ω

[−eρ eu · n+ µd div(u)
eu
ρ

· n+ µc ω · (eu
ρ

∧ n)](6)

which is physically meaningful: both the normal and
the tangential components of the velocity vector at the
boundary play a role.
A couple of possible boundary controls is un := u · n
and uτ := u ∧ n, with collocated boundary observations
yn := −ρ (−eρ + µd div(u)) and yτ := µc ρω.

Proof. The result is available in an equivalent form
in (Mora et al., 2020, § 3), however the proof below
makes appear the two physically meaningful components
explicitely, namely div(u) and ω = curl(u).

(e,Jee) =

∫

Ω

eρ ∂tρ+ eu · ∂tu+ er · fr

=

∫

∂Ω

[−eρ eu·n+µd div(u) eu·n+µc curl(u)·(eu∧n)]

In the above computation, the Stokes formula with the
curl (A.4) has been used, as is usual in electromagnetics
when dealing with Maxwell’s equations, see e.g. Payen
et al. (2020). �

Since numerics will be addressed in the sequel, it becomes
obvious that all the terms involving ρ−1 will be difficult to
tackle, that is the reason why an alternative formulation
can be chosen, based on another inner product, used to
compute the variational derivatives, namely L2

ρ. Indeed,
defining eu := δρuH = u, in L2

ρ, and multiplying the second
line by ρ, the following system is readily obtained:


∂tρ
ρ ∂tu
fc

fd


 =




0 − div (ρ .) 0 0
−ρgrad G(ω) − curl grad

0 curl 0 0
0 div 0 0






eρ
eu
ec
ed


 .

(7)
This latter formulation will definitely simplify the applica-
tion of PFEM. Even if this will require the same number
of matrices to update in the interconnection operator:

(1) ρ−1G(ω),−ρ−1 curl and ρ−1 grad,

(2) ρ . (on the left-hand side), −ρgrad and G(ω) ,

but it should help to compute the constitutive relations:
for eρ since we directly have access to eu = u instead of
∂tu and ρu and obviously for eu = u.

2.2 Compressible and Irrotational case

In this case ω = 0, thus G(ω) = 0, and the non-linear
advection term happily simplifies into a purely gradient
term, that is (u ·grad)u = grad(12 |u|

2) , see Appendix A.
Hence, the irrotational case appears as a special case of
(7), as follows:(

∂tρ
ρ∂tu
fd

)
=

[
0 − div ρ 0

−ρgrad 0 grad
0 div 0

](
eρ
eu
ed

)
. (8)

Note that if we add the incompressibility condition, then
both conditions imply that ∆u = 0, and the inviscid fluid
is recovered as model, which is not our purpose here.

3. INCOMPRESSIBLE FLUIDS

However, defining the incompressible case properly from
the general case proves less straightforward, because the
pressure term in the enthalpy is lost. Indeed, in this
setting, ρ = ρ0 and, up to a constant, the Hamiltonian now
reduces to the kinetic part only. Indeed, H := 1

2

∫
Ω
ρ0|u|2.

In § 3.1, the velocity formulation derived from (7) is
presented, and in § 3.2, another choice of energy variables
is made, namely vorticity: the new system is then fully
analyzed.

3.1 Velocity formulation

With the choice of velocity as energy variable, the incom-
pressible equations read:(

ρ0∂tu
fc

0

)
=

[
G(ω) − curl grad
curl 0 0
div 0 0

](
eu
ec
ed

)
, (9)

In this system, the divergence-free constraint 0 = fd is
ensured by the presence of a Lagrange multiplier in the
dynamics, under the form grad(ed), where −ed = p +
1
2ρ0|u|

2 is the total pressure, that does not possess any
thermodynamic meaning. Hence, the pressure is deter-
mined up to a constant in these equations. It is intrin-
sically a port-Hamiltonian Differential Algebraic infinite-
dimensional system.

For the power balance, a technical computation gives:
Theorem 2. The evolution of the Hamiltonian along the
trajectories of the dynamical system (9) with the closure
relation is given by:

d

dt
H(t) = −

∫

Ω

µc|fc|2 +
∫

∂Ω

edu · n+ µcω · (u ∧ n). (10)

3.2 Fully nonlinear NSE using of the (vorticity, stream
function) description

From now on, we only consider the 2D case. Following
(Chorin and Marsden, 1992, §. 1.2), we recall that the
curl2D differential operator is defined by curl2D(v) :=
∂xv2 − ∂yv1, and that the following integration by parts
formula holds:∫

Ω

curl2D (v)w dx =

∫

Ω

v · grad⊥(w) dx

+

∫

∂Ω

(Rv) · n w ds, (11)

where 1 grad⊥(w) :=

(
∂yw
−∂xw

)
, and R denotes the rota-

tion of angle −π
2 in the plane.

1 Care must be taken that in some references, like Olver (1993) or
Morrison (1998), the opposite definition for grad⊥ is chosen. We
stick to this one in order to be consistent with the adjoint of the
curl2D operator.

Applying curl2D to the linear momentum conservation
equation leads to the following evolution equation for the
vorticity ω := curl2D(u):

ρ0 ∂tω = curl2D (G(ω) u)− µc curl2D grad⊥(ω),

where curl2Dgrad ≡ 0 has been used: this trick eliminates
the total pressure from the system.

Assume that the velocity u is fully determined by a stream
function ψ, that is a potential such that u = grad⊥ψ :=(

∂yψ
−∂xψ

)
. Substituting u with this definition gives:

ρ0 ∂tω = curl2D

(
G(ω) grad⊥(ψ)

)
−µc curl2D grad⊥(ω).

Proposition 3. For all sufficiently smooth functions ψ:

curl2D

(
G(ω) grad⊥(ψ)

)
= ∂x(ω∂yψ)− ∂y(ω∂xψ),

= div
(
ω grad⊥(ψ)

)
,

=: Jωψ.

Furthermore, Jω is formally skew-symmetric, and satisfies
Jacobi identities (see e.g. (Olver, 1993, Example 7.10)).

Proof: Let us compute

G(ω)grad⊥(ψ) =

(
0
0
ω

)
∧

(
∂yψ
−∂xψ

0

)
=

(
ω∂xψ
ω∂yψ

)
.

Applying curl2D gives the claimed result.

The formal skew-symmetry is then obvious by integration
by parts since, for all ψ ∈ C∞

0 (Ω):∫

Ω

div
(
ω grad⊥(ψ)

)
ψ dx = −

∫

Ω

ω grad⊥(ψ) · grad(ψ)︸ ︷︷ ︸
=0

dx

�

For the power balance, the computation using (11) gives:
Theorem 4. The evolution of the Hamiltonian H :=
1
2

∫
Ω
ρ0|u|2 =

∫
Ω
ρ0 ω ψ along the trajectories of the in-

viscid (µc = 0) dynamical system is given by:

d

dt
H(t) =

∫

∂Ω

ω ψn · grad⊥(ψ) , (12)

where we can identify, with (10), that un = n · grad⊥(ψ),
and yn = ed = ω ψ = −ψ∆ψ.

Now, when µc > 0, one can finally write the dissipative
dynamical system in the classical pHs form:(

ρ0∂tω
fc

)
=

[
Jω −curl2Dgrad⊥

curl2Dgrad⊥ 0

](
eω
ec

)
, (13)

with ω = curl2Du, eω = ψ and ec = µcω, together with
the constitutive relation ec = µcfc.

For the power balance, the computation using (11) gives:
Theorem 5. The evolution of the Hamiltonian along the
trajectories of dynamical system (13) with the closure
relation is given by:

d

dt
H(t) = −

∫

Ω

µc ω
2 +

∫

∂Ω

ω ψn · grad⊥(ψ)

+µc

∫

∂Ω

(ψn · gradω − ωn · gradψ) , (14)

where we can now identify uτ = n · gradψ, and yτ =
−µc ω = µc ∆ψ.
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Note that if we add the incompressibility condition, then
both conditions imply that ∆u = 0, and the inviscid fluid
is recovered as model, which is not our purpose here.

3. INCOMPRESSIBLE FLUIDS

However, defining the incompressible case properly from
the general case proves less straightforward, because the
pressure term in the enthalpy is lost. Indeed, in this
setting, ρ = ρ0 and, up to a constant, the Hamiltonian now
reduces to the kinetic part only. Indeed, H := 1

2

∫
Ω
ρ0|u|2.

In § 3.1, the velocity formulation derived from (7) is
presented, and in § 3.2, another choice of energy variables
is made, namely vorticity: the new system is then fully
analyzed.

3.1 Velocity formulation

With the choice of velocity as energy variable, the incom-
pressible equations read:(

ρ0∂tu
fc

0

)
=

[
G(ω) − curl grad
curl 0 0
div 0 0

](
eu
ec
ed

)
, (9)

In this system, the divergence-free constraint 0 = fd is
ensured by the presence of a Lagrange multiplier in the
dynamics, under the form grad(ed), where −ed = p +
1
2ρ0|u|

2 is the total pressure, that does not possess any
thermodynamic meaning. Hence, the pressure is deter-
mined up to a constant in these equations. It is intrin-
sically a port-Hamiltonian Differential Algebraic infinite-
dimensional system.

For the power balance, a technical computation gives:
Theorem 2. The evolution of the Hamiltonian along the
trajectories of the dynamical system (9) with the closure
relation is given by:

d

dt
H(t) = −

∫

Ω

µc|fc|2 +
∫

∂Ω

edu · n+ µcω · (u ∧ n). (10)

3.2 Fully nonlinear NSE using of the (vorticity, stream
function) description

From now on, we only consider the 2D case. Following
(Chorin and Marsden, 1992, §. 1.2), we recall that the
curl2D differential operator is defined by curl2D(v) :=
∂xv2 − ∂yv1, and that the following integration by parts
formula holds:∫

Ω

curl2D (v)w dx =

∫

Ω

v · grad⊥(w) dx

+

∫

∂Ω

(Rv) · n w ds, (11)

where 1 grad⊥(w) :=

(
∂yw
−∂xw

)
, and R denotes the rota-

tion of angle −π
2 in the plane.

1 Care must be taken that in some references, like Olver (1993) or
Morrison (1998), the opposite definition for grad⊥ is chosen. We
stick to this one in order to be consistent with the adjoint of the
curl2D operator.

Applying curl2D to the linear momentum conservation
equation leads to the following evolution equation for the
vorticity ω := curl2D(u):

ρ0 ∂tω = curl2D (G(ω) u)− µc curl2D grad⊥(ω),

where curl2Dgrad ≡ 0 has been used: this trick eliminates
the total pressure from the system.

Assume that the velocity u is fully determined by a stream
function ψ, that is a potential such that u = grad⊥ψ :=(

∂yψ
−∂xψ

)
. Substituting u with this definition gives:

ρ0 ∂tω = curl2D

(
G(ω) grad⊥(ψ)

)
−µc curl2D grad⊥(ω).

Proposition 3. For all sufficiently smooth functions ψ:

curl2D

(
G(ω) grad⊥(ψ)

)
= ∂x(ω∂yψ)− ∂y(ω∂xψ),

= div
(
ω grad⊥(ψ)

)
,

=: Jωψ.

Furthermore, Jω is formally skew-symmetric, and satisfies
Jacobi identities (see e.g. (Olver, 1993, Example 7.10)).

Proof: Let us compute

G(ω)grad⊥(ψ) =

(
0
0
ω

)
∧

(
∂yψ
−∂xψ

0

)
=

(
ω∂xψ
ω∂yψ

)
.

Applying curl2D gives the claimed result.

The formal skew-symmetry is then obvious by integration
by parts since, for all ψ ∈ C∞

0 (Ω):∫

Ω

div
(
ω grad⊥(ψ)

)
ψ dx = −

∫

Ω

ω grad⊥(ψ) · grad(ψ)︸ ︷︷ ︸
=0

dx

�

For the power balance, the computation using (11) gives:
Theorem 4. The evolution of the Hamiltonian H :=
1
2

∫
Ω
ρ0|u|2 =

∫
Ω
ρ0 ω ψ along the trajectories of the in-

viscid (µc = 0) dynamical system is given by:

d

dt
H(t) =

∫

∂Ω

ω ψn · grad⊥(ψ) , (12)

where we can identify, with (10), that un = n · grad⊥(ψ),
and yn = ed = ω ψ = −ψ∆ψ.

Now, when µc > 0, one can finally write the dissipative
dynamical system in the classical pHs form:(

ρ0∂tω
fc

)
=

[
Jω −curl2Dgrad⊥

curl2Dgrad⊥ 0

](
eω
ec

)
, (13)

with ω = curl2Du, eω = ψ and ec = µcω, together with
the constitutive relation ec = µcfc.

For the power balance, the computation using (11) gives:
Theorem 5. The evolution of the Hamiltonian along the
trajectories of dynamical system (13) with the closure
relation is given by:

d

dt
H(t) = −

∫

Ω

µc ω
2 +

∫

∂Ω

ω ψn · grad⊥(ψ)

+µc

∫

∂Ω

(ψn · gradω − ωn · gradψ) , (14)

where we can now identify uτ = n · gradψ, and yτ =
−µc ω = µc ∆ψ.
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Remark 6. Note that both controls un and uτ are now
available in this formulation. However, another term ap-
pears in (14), namely yc := µc n · gradω, the physical
meaning of which is not clear so far, but indeed corre-
sponds to the collocated output of the trace of eω accord-
ing to (14). Noticing this is crucial to successfully apply
PFEM, see (17) for more details.
Remark 7. A straightforward computation shows that
curl2D grad⊥ = −∆, minus the 2D scalar Laplacian.
Remark 8. In (13), one can get rid of the realization
of dissipation thanks to dissipative ports, and find the
dissipative dynamics in the classical form J −GSG∗:

ρ0∂tω = (Jω)ψ − µ∆2ψ , with ψ = δωH . (15)
Remark 9. Now the 2D incompressible Navier-Stokes equa-
tions depend only on 2 scalar fields, in comparison with the
former velocity formulation which relied on one vector field
and two scalar fields. At the discrete level, this reduces the
number of degrees of freedom considerably.

4. STRUCTURE-PRESERVING NUMERICS FOR
THE INCOMPRESSIBLE FLUID IN 2D

4.1 Velocity formulation

In this first case where we directly obtain system (9)
from (Mora et al., 2020, §. 3), one can of course apply
PFEM, following e.g. Serhani et al. (2019b). Nevertheless,
as already mentionned, this strategy will generate a system
with a large number of degrees of freedom.

Furthermore, the total pressure ed, i.e. the Lagrange
multiplier of the divergence-free condition 0 = fd, is still
present in the equation. Since it is only determined up
to an additive constant, it is well-known that it has to
be taken into account at the discrete level, e.g. by fixing
its value at one point of the mesh, or by adding an extra
Lagrange multiplier to impose a zero-mean pressure in Ω.

The Vorticity-Stream function formulation puts these dif-
ficulties aside, for a lower computational price to pay, at
least in the 2D setting.

4.2 Vorticity–Stream function formulation

The aim of this work is to take advantage of the 2D setting,
in order to reduce as much as possible the number of
degrees of freedom needed to discretize the incompressible
Navier-Stokes equation in a structure-preserving way . As
already said at the end of Section 3.2, some adaptation is
required for the boundary controls to remain identical to
those of the initial system, but this does not seem to be a
major drawback, numerically speaking.

Substituting the constitutive relation ec = µcfc in (13) as
µ−1
c ec = fc, the final system reads:(

ρ0 ∂tω
µ−1
c ec

)
=

[
Jω −curl2D grad⊥

curl2D grad⊥ 0

](
eω
ec

)
.

(16)

We now apply the Partitioned Finite Element Method. Let
us start by the weak formulation of (16). For all sufficiently
smooth test functions (v, φ), one has:





∫

Ω

ρ0 ∂tω v dx =

∫

Ω

Jωeω v dx

−
∫

Ω

curl2D grad⊥ (ec) v dx,
∫

Ω

µ−1
c ec φ dx =

∫

Ω

curl2D grad⊥ (eω) φ dx.

Applying Green’s formula on the integral involving Jω,
the integration by parts (11) on integrals involving
curl2D grad⊥ and noting that R grad⊥ = −grad, gives:




∫

Ω

ρ0 ∂tω v dx = −
∫

Ω

ω grad⊥ (eω) · grad (v) dx

+

∫

∂Ω

ω grad⊥ (eω) · n︸ ︷︷ ︸
u·n=:un

v ds

−
∫

Ω

grad⊥ (ec) · grad⊥ (v) dx

+

∫

∂Ω

(grad (ec)) · n︸ ︷︷ ︸
yc

v ds,

∫

Ω

µ−1
c ec φ dx =

∫

Ω

grad⊥ (eω) · grad⊥ (φ) dx

−
∫

∂Ω

(grad (eω)) · n︸ ︷︷ ︸
u∧n=:uτ

φ ds.

(17)

Normal and tangential boundary controls for the velocity
(un and uτ respectively) are now available in the weak
formulation.

Let (vj)j=1,··· ,Nω
(resp. (φ�)�=1,··· ,Nc

) be a finite element
basis of approximation for ω and ψ (resp. ec). We denote:

ωd(t, x) =

Nω∑
j=1

ωj(t)vj(x), ψd(t, x) =

Nω∑
j=1

ψj(t)vj(x),

edc(t, x) =

Nc∑
�=1

e�c(t)φ
�(x),

the approximations of ω, ψ and ec respectively. Let also
(ξn)n=1,··· ,N∂

be a finite element basis for the approxima-
tion of un, yc and uτ on the boundary ∂Ω (chosen identical,
for sake of simplicity).

The discrete weak formulation is then given by: taking
v = vi for all i ∈ {1, · · · , Nω} and φ = φk for all
k ∈ {1, · · · , Nc} as test functions:
[
Mω 0
0 Mc

](
ω̇
ec

)
=

[
Jω(ω

d) −D

D� 0

](
eω
ec

)
+

[
Bn Bc 0
0 0 Bτ

](un

yc
uτ

)
,

where � is the collection of the time-dependent coefficients
of the approximation �d in the associated finite element
basis, a dot denotes the time derivative, and:

(Mω)i,j =

∫

Ω

ρ0v
jvi dx, (Mc)k,� =

∫

Ω

µ−1
c φ�φk dx,

(Jω(ω
d))i,j =

∫

Ω

ωd grad⊥ (
vj
)
· grad

(
vi
)
dx,

(D)i,� =

∫

Ω

grad⊥(φ�) · grad⊥(vi) dx,

(Bn)i,n =

∫

∂Ω

ωd ξn vi dx, (Bc)i,n =

∫

∂Ω

ξn vi dx,

(Bτ )k,n = −
∫

∂Ω

ξn φk dx.

Note that D ∈ RNω×Nc is not square in general (as
Bn, Bc ∈ RNω×N∂ and Bτ ∈ RNc×N∂ ).
Remark 10. Interestingly, integration by parts has been
here performed on both lines, while PFEM usually relies
on one integration by parts on the appropriate line (de-
pending on the considered causality).

About ω and eω: unfortunately, a huge difficulty appears
in the previous system, since the constitutive relation
between ω and eω is differential, namely −∆eω = ω and
not algebraix. Several strategies could be considered to
tackle this numerically.
Let us first point out why adding the constitutive relation
as an extra constraint would not solve the problem: indeed,
the extra constraint which would be necessary, −∆eω = ω,
is already present in (16): it is exactly the second line of
the port-Hamiltonian structure, hence it would not help
to solve the problem.
Now, a second approach seems to be the most promising
in our opinion: the idea relies on a general comment on
PFEM: the co-energy formulation, i.e. taking all consti-
tutive relations into account at the continuous level, such
that the system only writes in term of co-energy variables,
and still allows dealing with sparse matrices only. Indeed,
with the energy formulation, matrix inversions would be
necessary to reduce the finite-dimensional system. An ex-
ample of that occurs if one first discretizes ec = µcfc,
before its substitution in (16). If the same idea of substi-
tution before discretisation is applied with the differential
constitutive relation, one obtains:

[
M̃ω 0
0 Mc

](
˙eω
ec

)
=

[
Jω(ω

d) −D

D� 0

](
eω
ec

)
+

[
Bn Bc 0 B̃τ

0 0 Bτ 0

]
un

yc
uτ

u̇τ


 ,

where (M̃ω)i,j :=
∫
Ω
ρ0 grad(v

j) · grad(vi) dx, and
(B̃τ )i,n :=

∫
∂Ω

ρ0ξ
n vi dx. Note that M̃ω is symmetric posi-

tive, and even positive-definite as soon as stream functions
are well-defined, for instance in simply connected domains.
According to Brugnoli et al. (2020), yc is the Lagrange
multiplier of the boundary control uc of eω = ψ, which
clearly depends (up to a constant) on un and uτ .
The problem of relating ω and eω being solved, this strat-
egy requires a more thorough study to conclude that it is
promising on the computational side. Indeed, the system
can prove difficult to solve, since the mass matrix M̃ω

is a stiffness-like matrix. Also, one can expect that some
compatibility conditions between the finite element bases
are mandatory.

About Jω(ω
d): At first sight, the ωd-dependent matrix

Jω(ω
d) will obviously generate a difficulty, especially for

the time stepping of the finite-dimensional pHs. For in-
stance, it seems difficult to make use of an implicit scheme
as such: the classical approach is to update the matrix
using the approximation ωd at the previous time step (not
necessarily with a full re-assembling, but still). We propose
here another novel approach, based on tensor algebra.

Let us come back to:

(Jω(ω
d))i,j =

∫

Ω

ωd grad⊥ (
vj
)
· grad

(
vi
)
dx,

and develop the approximation ωd:

(Jω(ω
d))i,j =

Nω∑
κ=1

ωκ(t)

∫

Ω

vκ grad⊥ (
vj
)
· grad

(
vi
)
dx,

This rewrites: (Jω(ωd(t)))i,j =
(
Jω

)
i,j,κ

ωκ(t), where Jω ∈
RN3

ω is a constant third-order tensor.

The size of this tensor, N3
ω coefficients, seems to be a major

drawback in terms of memory for efficient computations.
However, the sparsity property of the matrices generated
by the finite element method remains true, and Jω is in-
deed (very!) sparse, allowing for optimized computations.
Of course, the same strategy can be apply to Bn.
Remark 11. To the best of our knowledge, the idea con-
sisting of considering a polynomial non-linearity as a mul-
tilinear application when dealing with finite elements is
new.

This also reveals major advantages when dealing with non-
linearity in the constitutive relations, but this is not the
scope of this work.

5. CONCLUSION AND PERSPECTIVES

The formulation of the incompressible Navier-Stokes equa-
tions with collocated control and observation has been
recalled in two forms: either with respect to the velocity,
or with respect to the vorticity. In the 2D case, the pHs
involves only 2 scalar fields, which is an advantage for
simulation. However the interconnection matrix depends
on vorticity, which is a drawback. A novel application of
the Partitioned Finite Element Method to this latter case
has been proposed, implementation considerations have
been listed, and first convincing simulations results have
already been obtained.

Appendix A. USEFUL IDENTITIES

Computing the convective term in 3D makes use of:

(u · grad)u = grad(
1

2
|u|2) + curl(u) ∧ u . (A.1)

Hence, setting ω := curl(u) the vorticity vector, we can
define

G(ω) := ω∧ =

[
0 −ω3 ω2

ω3 0 −ω2

−ω2 ω1 0

]
.

In dimension 2, ω = ω3k, matrix G(ω) simplifies into

G(ω) := ω

[
0 −1
1 0

]
,

with ω := curl2D(u), and identity (A.1) simplifies into

(u · grad)u = grad(
1

2
|u|2)− ωRu , (A.2)

where R is the rotation of angle −π
2 : R(u1, u2) =

(u2,−u1).

In dimension 3, another useful identity comes from two
expressions to be found for C·(E∧H) = H·(C∧E) = −E·
(C∧H), and applied with the derivation operator ∇, which
gives in turn:

div(E ∧H) = H · curlE−E · curlH . (A.3)
An immediate consequence of this identity is its integral
version, involving Stokes formula:∫

Ω

(E · curlH−H · curlE) = −
∫

∂Ω

Π · n , (A.4)

introducing the Poynting vector Π := γ(E∧H) defined on
the boundary ∂Ω.
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the extra constraint which would be necessary, −∆eω = ω,
is already present in (16): it is exactly the second line of
the port-Hamiltonian structure, hence it would not help
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Now, a second approach seems to be the most promising
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tutive relations into account at the continuous level, such
that the system only writes in term of co-energy variables,
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multiplier of the boundary control uc of eω = ψ, which
clearly depends (up to a constant) on un and uτ .
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egy requires a more thorough study to conclude that it is
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stance, it seems difficult to make use of an implicit scheme
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ωd grad⊥ (
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and develop the approximation ωd:

(Jω(ω
d))i,j =
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ωκ(t), where Jω ∈
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ω is a constant third-order tensor.

The size of this tensor, N3
ω coefficients, seems to be a major

drawback in terms of memory for efficient computations.
However, the sparsity property of the matrices generated
by the finite element method remains true, and Jω is in-
deed (very!) sparse, allowing for optimized computations.
Of course, the same strategy can be apply to Bn.
Remark 11. To the best of our knowledge, the idea con-
sisting of considering a polynomial non-linearity as a mul-
tilinear application when dealing with finite elements is
new.

This also reveals major advantages when dealing with non-
linearity in the constitutive relations, but this is not the
scope of this work.
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The formulation of the incompressible Navier-Stokes equa-
tions with collocated control and observation has been
recalled in two forms: either with respect to the velocity,
or with respect to the vorticity. In the 2D case, the pHs
involves only 2 scalar fields, which is an advantage for
simulation. However the interconnection matrix depends
on vorticity, which is a drawback. A novel application of
the Partitioned Finite Element Method to this latter case
has been proposed, implementation considerations have
been listed, and first convincing simulations results have
already been obtained.
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,
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2 : R(u1, u2) =

(u2,−u1).

In dimension 3, another useful identity comes from two
expressions to be found for C·(E∧H) = H·(C∧E) = −E·
(C∧H), and applied with the derivation operator ∇, which
gives in turn:

div(E ∧H) = H · curlE−E · curlH . (A.3)
An immediate consequence of this identity is its integral
version, involving Stokes formula:∫

Ω

(E · curlH−H · curlE) = −
∫
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introducing the Poynting vector Π := γ(E∧H) defined on
the boundary ∂Ω.



166	 Ghislain Haine  et al. / IFAC PapersOnLine 54-19 (2021) 161–166

Appendix B. FACTORIZING OUT THE OPPOSITE
OF THE VECTORIAL LAPLACIAN

For the vectorial Laplacian, both in dimension 2 and 3,
the following factorizations prove useful.
Proposition 12. In dimension 2, the vectorial Laplacian
can be factorized out as follows:

− ∆2D := grad⊥curl2D − grad div (B.1)

= C∗
cCc + C∗

dCd = C∗C (B.2)

Proof. The proof is straightforward, and uses the fact
that the formal adjoint of curl2D := [−∂y ∂x] is curl∗2D =[
∂y
−∂x

]
:= grad⊥. �

Proposition 13. In dimension 3, the vectorial Laplacian
can be factorized out as follows:

− ∆ := curl curl−grad div (B.3)

= C∗
cCc + C∗

dCd = C∗C (B.4)

Proof. The proof is straightforward, and uses the fact that
the formal adjoint of curl is curl. �
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