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Abstract. The heat-wave system is recast as the coupling of port-
Hamiltonian subsystems (pHs), and discretized in a structure-preserving
way by the Partitioned Finite Element Method (PFEM) [10,11]. Then,
depending on the geometric configuration of the two domains, different
asymptotic behaviours of the energy of the coupled system can be recov-
ered at the numerical level, assessing the validity of the theoretical results
of [22].
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1 Introduction and Main Results

Multi-physical systems arise in many areas of science, and high-fidelity simula-
tions are often needed to reduce the number of real-life experiments, hence the
cost of optimal design in industry. Such problems can be encountered for instance
in aeronautics [12], in chemistry [1] and so on [20]. A first difficulty consists in
finding an admissible way to model each physical subsystem of the experiment,
with a precise identification of negligible phenomena, as well as feasible controls
and available measurements. The second difficulty lies in the coupling of the
subsystems altogether to build the final system to simulate. And the last diffi-
culties are obviously the construction of appropriate discretization schemes and
the simulations themselves.

Port-Hamiltonian systems (pHs) have been extended to infinite-dimensional
setting in [21] two decades ago, allowing to tackle Partial Differential Equations
(PDE), and especially those appearing in physics. One of the major force of the
port-Hamiltonian approach lies in its ease of use for coupling, since the resulting
system remains a pHs [13]. Another strength is its versatility with respect to the
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conditions of experiment: on the one hand, axioms of (classical) physics are used
to derive an algebraic structure, namely the Stokes-Dirac structure, and on the
other hand, physical laws, state equations, and definitions of physical variables
close the system (in the algebraic sense).

This formalism seems very appropriate also for structured computer codes
dedicated to efficient simulation. Indeed, each subsystem of the general exper-
iment can be separately discretized before the interconnection: provided that
the discretization is structured-preserving, meaning that it leads to a finite-
dimensional pHs, the final simulation will enjoy the aforementioned advantages.
Furthermore, if each subsystem is also well-structured, meaning that it keeps
the separation of axioms and laws, the final simulation codes should be easy
to enrich with more and more models. This is the purpose of the discretization
scheme known as the Partitioned Finite Element Method (PFEM) [11], which
can be seen as an adaptation of the well-known, well-proved, and robust Mixed
Finite Element Method (MFEM) [5], not to mention that most, if not all, scien-
tific programming languages already propose finite element libraries [9]. PFEM
proves to be very well-adapted to discretized pHs and shows an ever-growing
range of applications [6,7,17,19]. Nevertheless, only a few of them tackle and
test the interconnection problem [8].

The goal of this work is to provide an application of PFEM, together with
numerical simulations, for a simplified and linearised system of fluid-structure
interaction (FSI), for which long-time behaviour is known [2,22]. Since PFEM
aims at mimicking the pHs structure at the discrete level, hence the power bal-
ance satisfied by the energy of the system, a good approximation of the long-time
behaviour provided in [22] is expected.

1.1 A Simplified and Linearised Fluid-Structure Model

Let Ω ⊂ R
n be a bounded domain with a C2 boundary Γ := ∂Ω. Let Ω1 be a

subdomain of Ω and Ω2 := Ω \ Ω1. Denote Γint the interface, Γj := ∂Ωj \ Γint

(j = 1, 2), and nj the unit outward normal vector to Ωj . Note that Γ = Γ1 ∪ Γ2.
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Fig. 1. Different geometrical configurations

We are interested in the structure-preserving discretisation of the following
system, ∀t > 0:

{
∂tT (t, x) − ΔT (t, x) = 0, x ∈ Ω1,

T (t, x) = 0, x ∈ Γ1,

{
∂ttw(t, x) − Δw(t, x) = 0, x ∈ Ω2,

w(t, x) = 0, x ∈ Γ2,
(1)
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together with transmission conditions across the boundary Γint:

T (t,x) = ∂tw(t,x), and ∂n1T (t,x) = −∂n2w(t,x), ∀ t > 0, x ∈ Γint, (2)

and initial data T (0,x) = T0(x),∀x ∈ Ω1, and w(0,x) = w0(x), ∂tw(0,x) =
w1(x),∀x ∈ Ω2.

From [22, Thm. 1], it is known that (1)–(2) is well-posed in the finite energy
space X := L2(Ω1) × H1

Γ2
(Ω2) × L2(Ω2), endowed with the following norm:

‖u‖2X := ‖u1‖2L2(Ω1)
+ ‖u2‖2L2(Ω2)

+ ‖∇ (u2)‖2(L2(Ω2))
n + ‖u3‖2L2(Ω1)

. (3)

The semi-norm |u|2X := ‖u1‖2L2(Ω1)
+ ‖∇ (u2)‖2(L2(Ω2))

n + ‖u3‖2L2(Ω1)
is a norm

on X , equivalent to (3), when Γ2 has strictly positive measure.
In [22, Thm. 11 & 13], the asymptotic behaviours of these (semi-)norms have

been proved, depending on the geometry of Ω (see Fig. 1).

1.2 Main Contributions and Organisation of the Paper

As a major result, we provide a numerical method able to mimick the expected
time behaviour in the different geometrical configurations of Fig. 1.

In Sect. 2, the heat and wave PDEs are recast as port-Hamiltonian systems
(pHs). In Sect. 3, the Partitioned Finite Element Method (PFEM) is recalled
and applied to the coupled system. In Sect. 4, numerical results are provided
and compared with the theoretical results of [22].

2 Port-Hamiltonian Formalism

The physical models are recast as port-Hamiltonian systems. However, all phys-
ical parameters are taken equal to 1, to stick to system (1)–(2) studied in [22].

2.1 The Fluid Model

The simplified linearised model used for the fluid is the heat equation. The chosen
representation corresponds to the Lyapunov case already presented in [16,18],
with Hamiltonian H1(t) = 1

2

∫
Ω1

T 2(t,x) dx, where T denotes the temperature.
Denoting JQ the heat flux, the port-Hamiltonian system reads:

(
∂tT

−∇T

)

=
[

0 −div
−∇ 0

] (
T

JQ

)

, (4)

together with boundary ports:

∇T (t,x) · n1(x) = u1(t,x), y1(t,x) = T (t,x), ∀ t > 0, x ∈ Γint, (5)
T (t,x) = 0, yT (t,x) = ∇T (t,x) · n1(x), ∀ t > 0, x ∈ Γ1. (6)

To close the system, Fourier’s law has been used as constitutive relation: JQ =
−∇T . The power-balance of the lossy heat subsystem classically reads:

d
dt

H1 = −
∫

Ω1

|∇T |2 + 〈u1, y1〉
H− 1

2 (Γint),H
1
2 (Γint)

. (7)
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2.2 The Structure Model

The structure model is the wave equation, a hyperbolic equation widely studied
as a pHs (see e.g. [19]). The Hamiltonian is the sum of the kinetic and potential
energies, H2(t) = 1

2

∫
Ω2

(∂tw(t,x))2+ |∇w(t,x)|2 dx, w being the deflection and
∂tw its velocity. The port-Hamiltonian system reads:

(
∂t(∂tw)
∂t(∇w)

)

=
[

0 div
∇ 0

] (
∂tw
∇w

)

, (8)

together with boundary ports:

∂tw(t,x) = u2(t,x), y2(t,x) = ∇w(t,x) · n2(x), ∀ t > 0, x ∈ Γint, (9)
∂tw(t,x) = 0, yw(t,x) = ∇w(t,x) · n2(x), ∀ t > 0, x ∈ Γ2. (10)

The power-balance of the lossless wave subsystem is:

d
dt

H2 = 〈y2, u2〉
H− 1

2 (Γint),H
1
2 (Γint)

. (11)

2.3 The Coupled System

First note that the homogeneous boundary conditions of (1) have already been
taken into account in (6) and (10). The coupling is then obtained by a gyrator
interconnection of the boundary ports on Γint, meaning that the input of one
system is fully determined by the output of the other one, namely:

u1(t,x) = −y2(t,x), u2(t,x) = y1(t,x), ∀ t > 0, x ∈ Γint. (12)

As a consequence, the closed coupled system proves dissipative, since the power
balance for the global Hamiltonian, H = H1 + H2 := 1

2 |(T,w, ∂tw)|2X , reads:

d
dt

H = −
∫

Ω1

|∇T |2 . (13)

3 The Partitioned Finite Element Method

The main idea of PFEM, as in the mixed finite element method, is to integrate
by parts only one line of the weak formulation of the system. For our purpose,
the choice of which line is to be integrated by parts is dictated by the desired
boundary control, see [11] and references therein for more details.

The method leads to a finite-dimensional pHs, which enjoys a discrete power
balance, mimicking the continuous one: it is thus structure-preserving. The inter-
connection of each subsystem is then made using the pHs structure, ensuring an
accurate discrete power balance for the coupled system.
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3.1 For the Fluid

The heat equation with Hamiltonian H1 has already been addressed in [17].
The difficulty lies in the mixed Dirichlet–Neumann boundary conditions. Here,
following [8], we choose the Lagrange multiplier approach. Let ψ1, ϕ1 and ξ1 be
smooth test functions (resp. vectorial, scalar, and scalar at the boundary). Using
γ0 the Dirichlet trace, the weak form of (4)–(5)–(6) reads, after integration by
parts of the first line and taking Fourier’s law into account in the second:

⎧
⎪⎪⎨

⎪⎪⎩

∫
Ω

∂tT ϕ1 =
∫

Ω
JQ · ∇(ϕ1) − ∫

Γ1
yT γ0(ϕ1) − ∫

Γint
u1 γ0(ϕ1),∫

Ω
JQ · ψ1 = − ∫

Ω
∇(T ) · ψ1,∫

Γ1
γ0(T ) ξ1 = 0,∫
Γint

y1 ξ1 =
∫

Γint
γ0(T ) ξ1.

The output yT is the Lagrange multiplier of the Dirichlet constraint on 3rd line.
Let (ψ1

i )1≤i≤NQ
, (ϕ1

j )1≤j≤NT
, (ξ1k)1≤k≤NΓ1

and (ξintk )1≤k≤NΓint
be finite ele-

ments (FE) bases. Note that boundary functions ξ1 have been divided in
two distinct families, on Γ1 and Γint. Approximating each quantity in the
appropriate basis leads to a port-Hamiltonian Differential Algebraic Equation
(pHDAE) [4,15]:

⎡

⎢
⎢
⎣

MT 0 0 0
0 MQ 0 0
0 0 M1 0
0 0 0 Mint

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

Ṫ
JQ

0
−y1

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

0 D1 B1 Bint

−D�
1 0 0 0

−B�
1 0 0 0

−B�
int 0 0 0

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

T
JQ

yT

u1

⎞

⎟
⎟
⎠ , (14)

where M� is the mass matrix of the FE basis corresponding to �, � is the column
vector collecting the coefficients of the approximation of � in its FE basis, and:

(D1)j,i =
∫

Ω1

ψ1
i · ∇(ϕ1

j ) ∈ R
NT ×NQ , (B�)j,k = −

∫

Γ�

ξ�
k γ0(ϕ1

j ) ∈ R
NT ×NΓ� .

Defining the discrete Hamiltonian Hd
1 as the evaluation of H1 on T d :=

∑NT

j=1 Tjϕ
1
j , one gets Hd

1(t) = 1
2T�MT T . Thanks to the structure of (14), it

satisfies a perfectly mimicking discrete counterpart of (7):

d
dt

Hd
1 = −JQ

�MQJQ + u1
�Minty1. (15)

3.2 For the Structure

The wave equation, studied in e.g. [19], does not present difficulty here, since
only Dirichlet boundary conditions are considered. One can integrate by parts
the second line of the weak form of (8)–(9)–(10) and project on FE bases
(ψ2

i )1≤i≤Nq
, (ϕ2

j )1≤j≤Np
, (ξ2k)1≤k≤NΓ2

and (ξintk )1≤k≤NΓint
, where q-type quanti-

ties are related to stress and strain (αq := ∇(w)) and p-type quantities to linear
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momentum and velocity (αp := ∂tw). The finite-dimensional pHs then reads:

⎡

⎢
⎢
⎣

Mp 0 0 0
0 Mq 0 0
0 0 M2 0
0 0 0 Mint

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

α̇p

α̇q

−yq

−y2

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

0 D2 0 0
−D�

2 0 B2 Bint

0 −B�
2 0 0

0 −B�
int 0 0

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

αp

αq

0
u2

⎞

⎟
⎟
⎠ , (16)

with (D2)j,i =

∫
Ω2

div(ψ2
j ) ϕ2

i ∈ R
Np×Nq , (B�)j,k = −

∫
Γ�

ξ�
k φ2

j · n2 ∈ R
Nq×NΓ� .

Defining the discrete Hamiltonian Hd
2(t) = 1

2

(
αp

�Mpαp + αq
�Mqαq

)
, thanks

to the structure of (16), one easily gets the discrete counterpart of (11):

d
dt

Hd
2 = u2

�Minty2. (17)

3.3 Coupling by Gyrator Interconnection

The gyrator interconnection (12) is now imposed weakly, at the discrete level:
for all ξint, smooth boundary test functions on Γint:

∫

Γint

ξintu1 = −
∫

Γint

ξinty2,

∫

Γint

ξintu2 =
∫

Γint

ξinty1.

After projection on the FE basis (ξintk )1≤k≤NΓint
, this becomes:

Mintu1 = −Minty2, Mintu2 = Minty1. (18)

In Sect. 4, the interconnection matrix C := B1M
−1
int B�

2 (and its transpose) is
used. However, the inverse M−1

int appearing is not a drawback, since only the
interface mass matrix is involved, which is of very small size.

The total discrete Hamiltonian Hd = Hd
1 + Hd

2 then satisfies thanks to (18):

d
dt

Hd = −JQ
�MQJQ − y2

�Minty1 + y1
�Minty2 = −JQ

�MQJQ,

which perfectly mimics (13) with no approximation (compare with [3,14]): hence,
PFEM also proves to be a reliable structure-preserving method for coupled pHs.

4 Numerical Simulations

In order to test numerically the behaviours proved in [22], two geometries are
chosen. Switching the domains Ω1 and Ω2, four cases are covered. These geome-
tries are given in Fig. 2. The time integration is performed by IDA SUNDIALS
(BDF adaptative scheme) via assimulo. Moreover, P

1 Lagrange elements of
order 1 (both distributed and at the boundary) have been used for scalar fields,
while RT1 Raviart-Thomas elements of order 1 have been used for vector fields.
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Fig. 2. The colors define the subdomains Ω1 and Ω2. On the left, either Γ1 or Γ2

is empty. On the right, either Ω1 is the L-shape subdomain and the geometric optic
condition (GCC) is satisfied in Ω, or Ω1 is the rectangle and the GCC fails.

Fig. 3. On the left, the “circles” cases. On the right, the “L-shape” cases.

On the one hand, when Γ2 = ∅ or when the GCC is satisfied by Ω1, [22,
Thm. 11] asserts a polynomial decay, of rate at least −1/3. One can appreciate
the blue curves on both plots of Fig. 3, showing this polynomial decay (dashed
blue lines) in the long time range. On the other hand, when Γ1 = ∅ or when the
GCC fails, [22, Thm. 13, Rem. 20 & 22] assert that the best decay that could
be expected is logarithmic. This is indeed the asymptotic behaviour of the red
curves on both plots of Fig. 3.

Note that even in the case of a very coarse mesh (see the “L-shape” case on
Fig. 2) and the apparent loss of precision on the right plot of Fig. 3, PFEM still
captures the underlying structure, hence the expected decays.

5 Conclusion

PFEM also proves efficient for the structure-preserving simulation of coupled
pHs, and long time (polynomial) behaviour can be recovered in many cases.

Further works concern more realistic fluid-structure interactions, i.e. non-
linear ones, also moving body, hence moving interface, applied e.g. to piston
dynamics.
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