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Abstract A 2D wave equation with boundary damping of impedance type can be recast into an
infinite-dimensional port-Hamiltonian system (pHs) with an appropriate feedback law, where
the structure operator 7 is formally skew-symmetric. It is known that the underlying semigroup
proves dissipative, even though no dissipation operator R is to be found in the pHs model.
The Partitioned Finite Element Method (PFEM) introduced in Cardoso-Ribeiro et al. (2018),
is structure-preserving and provides a natural way to discretize such systems. It gives rise to a
non null symmetric matrix R. Moreover, since this matrix accounts for boundary damping, its
rank is very low: only the basis functions at the boundary have an influence. Lastly, this matrix
can be factorized out when considering the boundary condition as a feedback law for the pHs,
involving the impedance parameter. Note that pHs — as open system — is used here as a tool to
accurately discretize the wave equation with boundary damping as a closed system.

In the worked-out numerical examples in 2D, the isotropic and homogeneous case is presented
and the influence of the impedance is assessed; then, an anisotropic and heterogeneous wave
equation with space-varying impedance at the boundary is investigated.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Keywords: Port-Hamiltonian systems (pHs), distributed-parameter system (DPS), structure
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1. INTRODUCTION

The analysis and modeling of multi-physical system as
port-Hamiltonian systems (pHs) originates from Maschke
and van der Schaft (1992), where the authors proposed
a Hamiltonian formulation of lumped-parameter systems
by introducing ports which account for energy exchange
with the external environment. In van der Schaft and
Maschke (2002), the authors provided a generalization
of pHs formulation to distributed-parameter systems in
a differential-geometrical setting. For an introductive
overview, we refer the reader to e.g. van der Schaft and
Jeltsema (2014); Duindam et al. (2009). Subsequently,
several works have been carried out on the construction of
a mathematical framework for linear infinite-dimensional
pHs with the purpose of proving existence, uniqueness, and
stability of the solutions, see e.g. Jacob and Zwart (2012).

In an attempt to perform numerical simulation or to
apply some dedicated control laws, a growing body of
structuring-preserving (SP) methods has been investigated
in the last decade. By SP discretization, we mean a
mimetic method that preserves the structure and all the
properties of the infinite-dimensional pHs, when passing
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to the finite-dimensional system. In this direction, the au-
thors in Golo et al. (2004) proposed a "mixed finite element
method", also a pseudo-spectral method is provided for
1D pHs in in Moulla et al. (2012); a generalization of
this method to arbitrary spatial dimension using mixed
Galerkin discretization was recently proposed in Kotyczka
et al. (2018).

A recent SP method, first introduced in Cardoso-Ribeiro
et al. (2018), named Partitioned Finite Element Method
(PFEM), is a kind of mixed finite element methods, based
on the weak formulation of the port-Hamiltonian system,
where an integration by parts is performed on a subset of
the variables only. In this method, boundary control and
observation appear naturally, which allows simulation and
control of infinite-dimensional pHs. A major advantage of
PFEM is that it can be easily implemented in a Finite
Element numerical software, and does not require further
specific treatment.

In this paper, we study the effect of boundary damping on
a wave equation in 2D: the main parameter of interest is
the impedance Z. The first systematic study and simula-
tion of such a wave equation with an absorbing boundary
condition was conducted in Engquist and Majda (1977),
while in Cowsar et al. (1996), a mixed finite element
method with different time integration schemes was fully
studied. Otherwise, this paper presents an analysis and
discretization of the dissipative pHs of anisotropic hetero-
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geneous wave equation with boundary damping. A class
of dissipative pHs with structural and fluid damping was
studied in Matignon and Hélie (2013) and Le Gorrec and
Matignon (2013), while in Villegas et al. (2009) a boundary
damping was used to get the exponential stability of a 1-
D system. The theoretical analysis of our dissipative pHs
heavily relies on the results of Kurula and Zwart (2015).
Then, the discretization procedure is carried out in two
steps: first, the pHs system with boundary control and
observation is considered alone, and PFEM is applied to it,
leading to collocated boundary control and observation of
finite dimension; second, an output feedback control law is
applied, at the discrete level, which mimicks the impedance
boundary condition; moreover, in the last stage, a dissi-
pation matrix R appears in a straighforward way. The
motivation for such an approach relies on avoiding the
explicit discretization of D(J): indeed, since the boundary
condition is natural (i.e. included in the domain of the
unbounded operator), and not essential (i.e. included in
the weak formulation of interest), one might think about
adding some Lagrange multipliers (DAE) to overcome
this difficulty, but this strategy proves irrelevant for such
a problem. Finally, another advantage of this two-step
approach is to provide a factorization of the dissipation
matrix R giving meaningful information about its low
rank, as shown in § 3.4.

The paper is organized as follows, Section 2 reformulates
the mathematical analysis of our wave equation based on
results in Kurula and Zwart (2015). In Section 3, the
discretization of the pHs formulation of the boundary con-
trolled and observed wave equation is presented first, then
the output feedback control law related to the impedance
boundary condition is applied, the resulting matrices and
their properties are given. Section 4 is dedicated to the
simulation results of two worked-out examples of the wave
equation, as a closed system.

2. INFINITE-DIMENSIONAL PORT-HAMILTONIAN
SYSTEM

2.1 Physical model at stake

We consider the 2-dimensional heterogeneous anisotropic
wave equation defined for all ¢ > 0 as

p(x) 8t2iw(t,x) = div (?(x) - grad w(hx)), x € Q,

Z(x) (T(x) - grad w(t,x)) -n + dw(t,x) =0, x € 9Q,
w(0,x) = wp(x), x€Q, t =0,
Ow(0,x) = wi(x), x€Q, t=0,

where © € RY is an open bounded spatial domain with
Lipschitz-continuous boundary 92, w(¢,x) is the deflec-
tion from the equilibrium position at point x € € and
time ¢ > 0, and vector n denotes the outward normal at
the boundary. The physical parameters in the domain are

p € L>®(Q) (positive and bounded from below) and T €
L (£2)2%2 (symmetric and coercive), they denote the mass
density and Young’s elasticity modulus respectively. Fi-
nally, the physical parameter at the boundary, Z(x) > 0, is
the impedance function, the inverse of which is the admit-
tance, accounting for boundary damping: the case where
the admittance is null corresponds to a homogeneous
non-standard Dirichlet boundary condition (é)tw|89 =0,

clamped), while when the impedance vanishes, we recover
a homogeneous Neumann boundary condition for the same
variable w (free).

2.2 Formulation as an infinite-dimensional Hamiltonian
system

In order to formulate the wave equation with impedance

boundary condition as a (closed) Hamiltonian system, we
. . T T

first introduce the energy variables o := [aq ]

Oé;,;(t, X) = p(x)atw(tv X)7

which are respectively the strain and linear momentum

and the associated Hamiltonian (total mechanical energy)

1O =5 [ @t ) Tt + o
5

then the corresponding co-energy variables, e = [eq ep],
obtained from the variational derivative of the Hamilto-
nian w.r.t. the energy variables, are the stress and velocity

Qp

ay(t, x) = grad w(t, x),

ap(t,x)? dx,

= 1

e, =0a,H=T"- g ep i=0a,H = ;ozp. (1)
Henceforth, we end up with an infinite-dimensional Hamil-
tonian system of the form

Oag| | 0 grad| |e, @)
Oap | |div O epl’
Zey - n+e,=0. (3)
The power balance of this system is computed by the time

derivative of the Hamiltonian along the trajectories, it
reads thanks to Green’s formula

d
ZH() = —|VZ e, nHQLQ(am <0, (4)

where || - is the norm on L?(99).

200

More compactly, (2) can be rewritten as

oo = JQav,

oo = Je or

0 grad

where J = [ div 0 ] is the unbounded interconnection

operator, and Q := E 1(/) ] is the bounded operator
P

containing the physical parameters of the system, it is
symmetric and positive definite. Finally, (3) also writes

with the energy variables as: Z (T - o) - n + O‘—p” =

In 1D, the critical value of impedance providing the
balance between Dirichlet trace of the velocity and normal
trace of the stress in (3) is called characteristic impedance
Z.. When Z < Z. we get a dominant Dirichlet boundary
condition, while for Z > Z. the normal trace of the stress
is dominant. From acoustical literature, if T = Tyl and
p = po are constant then the characteristic impedance is

given by Z. = +/Tppo-
2.8 Mathematical framework

Let L?(Q) and L*(Q) := L?(Q)? the usual Hilbert spaces
associated to the scalar products (-,-)o and (-,-)g. Then
H'(9) and HY(Q) are the usual Sobolev spaces, where
HY(Q) = {v, € L2 (N, divo, € L2(Q)}.
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Theorem 1. (Kurula and Zwart (2015)).

For all initial data (e, o) € T HdiV(Q) x pH(Q), there
exists a unique solutlon (aq7ap) satisfying (2)—(3) in

c(o,t;?_lﬂd”(m x pH'(Q)) N CY (0,4 L*(Q) x L*(Q)).

3. PARTITIONED FINITE ELEMENT METHOD
(PFEM)

This method is a recent structure-preserving method for
port-Hamiltonian systems, first published in Cardoso-
Ribeiro et al. (2018), and more developped in Cardoso-
Ribeiro et al. (2019). The principle of the method lies on
the application of Stokes’ theorem! only on a subset of
equations that contains the control term; note that a link
can be made with Farle et al. (2013), where the authors
make use of exterior derivatives. The description of the
application of the method to our problem is detailed below.

The proposed geometric discretization of problem (2)—(3)
proceeds in four steps

(1) write the pHs of a lossless boundary controlled and
observed wave equation;

(2) write this pHs in weak formulation;

(3) apply PFEM on it;

(4) use an output feedback control law to recover (3).

3.1 A lossless wave equation as pHs

Let us consider the following boundary controlled and
observed wave equation

pOZw = div(? grad w),

uy = 0w, (5)
Yo = ?gradw . n|09.

Following Section 2, the associated pHs reads

[0iy] [ 0 grad] [e,
|Orap |~ |div 0 epl’

(6)

uy = €p| e,

Yo =eq-n|,,.
Its power balance is then: %H(t) = <ua,ya>%7 L where
(,+)1 _1 is the duality bracket of Hz(09) x H™2(09).

207 2

3.2 Weak formulation

The dynamical part of pHs (6) in weak form reads
(ataqavq)ﬂ = (grad ep7vq)Qv (7)
(Orap, vp)a = (diveg, vp)a,

where v, and v, are sufliciently smooth test functions.

Applying Green’s formula on the subsystem containing the
control term, it appears explicitly in the new system: in
the sequel, since the control term uy = ep| o 1 chosen,

then the corresponding subsystem to be integrated is (7).
Thus
uy
. P
(Orarg,vq) g = —(ep, divog)g + (Tep s vp)oa
(atap, ’Up)Q = (le €q, 'Up)Q .

1 in our problem we use a particular case: Green’s formula.

Note that the physical meaning of this control is not
addressed here, as the aim is to provide an accurate
discretization of (3).

3.3 PFEM

The weak form of (6), with v, v, and vy sufficiently
smooth scalar or vector-valued functions, is then

(ataqvvq)ﬂ = 7(6P7divvq)9 + (Ua,’vq ' n)afb
(Orap, vp)a = (div eq, vp)a, (8)
<Ua,ya>%7,% = <’Ua,€q : n>%’7%-
A suitable approximation of (8), starts by choosing fam-
ilies of finite-dimensional bases (in general polynomials,

conforming with the mathematical framework). Then the
proposed families of approximation are

Vg := span{p}, }1<i<n,
V, = span{¢} hi<i<n,
Va 1= span{y5 F1<m<N,-
Henceforth, we define the notation
ay(t,x) ~ i (t,x) = 3,1 al (el (x) = B - ay, )
eq(t;x) ~ ef(t,x) 1= T el ()l (x) = D, - ¢,

where o’ and e! are the coefficients of a? and eg in

q q q
. T
the basis V,, and @, := [(pé,...,(péVQ] € RNax2 Q, =
1 N, T N ) 1 N T N
[aq,...,aqq €Ry and e, = [eq,...,eqq] ERy.

Likewise for the rest of the variables, we define
NP
ap(ta X) ~ ag(tvx) = Zk 1ak( )@I;( ) = (I);—l;— CQy,
ep(t,X) ~ eg(t7x) Ek 1 p( )(Pp( ) (I)z—)r “Epo

where @, := [¢}, ...7@1],\["] € RNpx1,
Similarly for the boundary variables

Sl ug (g (x) = V5 - u
ZNG 13/6( Wy (x) = ‘l’g Yy

where Wy := [43, ..., év"] € RNox1,

Plugging the approximation (9)—(10)—(11) into the weak

form (8), and choosing any test functions v, v, and vg in
Vy, Vp, and Vy leads to

(10)

ug(t,x) ~ ug(t, X) 1=
ya(tv X) ~ yg(tv X) =

(11)

Ny i d
DI (‘an‘Pq)th a= _Ek 1(‘Pp’le‘Pq)Q €p>
(EN@ 11/)8 ’9011 ) ud’
j=1,...,Ng

N (b oy 4 g
Ekil(wp’wp)ﬂaap =

(53

N, . i Vi i
DI (le Py wp)QeZ,Z =1,..,Np

"L w@)agya - (Z qlcpq awg)aQeZp”: 1,..,Ns

m=1
In matrix form, we obtain
d
Mg J0q =D e, + Buy
d T 12
M, %gp -D' ¢, (12)
Maﬂa BTeq

where
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Ng XN,
€ RNaxNq

MQ)ij = (¢5, ‘PZ)Q’

Mp)u = (va @’;)Q,

M, :/<I>q.<1>;,r
Q

— T Np XN,
M, _/cbp-cbq € RN» X Np
Q
— kg j — . T Ng X N,
i _—(Lpp,dwcpg)g, D ——/dlv{)q'@p € RNaxNp
Q

)
B),, = () o = [

o0
Ma)mn = (wgaﬂjgb)aga Moy :f
o9
System (12) is a finite-dimensional pHs, as defined in Egger
et al. (2018), i.e. including mass matrices.

<I>q‘n~\1/:3r E]RN‘?XN"),

3

Ty W) € RNoxNo,

For simulation and control purposes, it is very interesting
to get the discrete counterpart of Q and substitute the
discrete part of the variable e by a. To do so, we rewrite
the constitutive relation (1) in a weak sense

(eq;v9)q = (Taqu)ﬂ
by writing and testing e, and a, over the family of basis
functions {902}195 N,» We have

[[on-oi] o= [0 7o)

then we can define Q1 as the spatially averaged value of
T on the basis functions {cpfl}lgig]vq as

o= [ o0-al) [ [0 T o] o,

Qr
e, = Qr oy, Qr € RNoxNa
For example in a homogeneous isotropic problem, i.e.
T= T(jg with Ty = cst, then Qr = Toly,, i-e. e, = Tog,
Likewise for e, = %ap, we define @), as

o= [ [ oo [ [ 20 2] o,
Q Q P

Qp
Q, € RN»r> Mo,

=

q

R

= &= Qp Qs

Hence, we can write (12) as

[qu ASJ % {Zi] = [_fy ﬂ [QoT G?J [ZZ

Yy = My BT Qr oy,

B
+[o] 2o

(13)
Since the finite element approach discretizes identity into
mass matrix, we define the new scalar products associated
to these matrices

R N,
(vi,v2) ==v] Mgva, w103 €RY,

R N,
<’01,’l)2>p = vy Mp Vo, V1,V2 € RTP,

R N
<’Ul,’02>8 = vy Mpwva, wvi,v9 € RV,

where <~, > o 1s the scalar product associated to the mass
matrix My, not to be confused with the duality bracket.

Consequently, the matrices ()7 and (), are symmetric
positive definite with respect to the scalar products <-, ->q
and <-, ->p. Also yp is exactly the conjugate output of ug

with respect to <~, ~>8.

Discrete Hamiltonian Then we define the discrete

Hamiltonian as

= 5(2; My Qra, + al M, ngp)

1 1
= §<gq7 Qr gq>q + 5(9,,7 Qp gp>p-
Moreover, the discrete power balance is

d
%Hd(t) = y;—Mag(’) = <U87§l/6>37 (14)

which perfectly fits with the pHs framework of Egger et al.
(2018).

8.4 Closed-Loop system

The boundary condition (3), Z e,-n+e, = 0, corresponds
to an output feedback law —Z, hence system (6) can be
rewritten with ug = —Zys, and once again, the closure
relation is to be approximated in a weak sense

(uav 1/’8)8(2 = - (Zyaa 11[}3)397

{/BQ%-\I/EI} gaz—{/m%-zqu} Y

then we can define Z; as

—1
M, My

-1
ga:—[/ wa'wg} {/ wa.zwg} Yo
o0 o

Zq
Zg=M;"' My,

= Uy = —ZaY, Zq4, M. € RNoxNo,

Hence
uy=—Zq¢My' BT Qr a,.

Thus we can plug the latter expression in the discrete
system (13)

d _
Mq@gq =D Q,a,—BZsM, 'BT Qra,
d T
Mp@gp =-D Qr q,
Let us set

Ry =B Z; M;'B", (15)

then the finite-dimensional dissipative Hamiltonian system
derived from system (2)—(3) is

o) ] = 7 o [ e )

More compactly

d
Mda@ =(Ja—R) Q4 «, (16)
0 D
= i - i ] - [3:1]
:QTO} dR:[RZo>0fth R
Qd |:0 Qp an o ol =Y urthermore iy

is of maximum rank Ny, since My is.
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+ R
15 15 ol 15
+ +
J + J + J +
10 t 10 B 10 I
51 51 51 N
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Figure 1. The spectrum for L, = 2, T =1, and p =g for: (left): Z = 0; (center): Z = 0.1; (right): Z = 10°® ~ oc.

Discrete Hamiltonian ~ We get the discrete power bal-
ance, counterpart of (4), from (14)

d
%Hd(t) = <U8,ya>a = _<Zd ya’y6>3 S 0.

Indeed, Z; is a positive semi-definite matrix with respect
to (-,-),, since (Zaya,ya), = Ys Mo Zaya = y5 Mz yo
and My is positive semi-definite by construction.

(17)

4. NUMERICAL SIMULATION: TWO CASE STUDIES

In § 4.1, the classical test case of a uniform impedance
is investigated, and an optimal value of this impedance is
discussed. Then, in § 4.2, our method is applied to a more
complex test case, providing coherent results.

The simulation and computation below are performed
using FEniCS software and Python 3. We consider a
rectangle domain 2 = (0, L, ) x (0,1) and the chosen finite
elements families are RTy (lowest order Raviart-Thomas
element), P; (Lagrange element) and P; respectively for
q, p and 0 variables. The associated numbers of degrees of
freedom are N, = 369, N, = 140 and Ny = 48.

4.1 A simple test case: isotropic, homogeneous medium
with uniform impedance at the boundary

Following Kergomard et al. (2006) in the 1D case, where
both the spectrum and the eigenfunctions are analytically
computed (the Riesz basis property of the eigenfunctions
is also fully proved), we can infer some spectral properties
of the 2D case when 2 is rectangle.

First, we look at the spectrum for three different values
of Z = 0,0.1,00. As said in § 2.1, Z = 0 and Z = o0
mean that the system is conservative, implying that their
spectrums must lie on ¢R, which is confirmed in the left
and right plot in Figure 1 (numerically we chose oo ~ 108).
For Z = 0.1, we see that the eigenvalues of Z = 0 moved
from iR to the left half-plane.

Remark 1. Since zero is always an eigenvalue, one may
show that the proposed method preserves also the station-
ary fields.

Optimal value of the impedance It is interesting to see
the behavior of the spectrum in term of Z. Then, Figure 2
shows the largest non-null real part of the eigenvalues of
the system (16) (i.e. —maxy,2oRe(A,)) as a function of
Z. The computations are done for Ty = 5 and py = 3,

then the peak in Figure 2 allows to find the numerical
optimal impedance Z,,; = 1.16 in order to obtain the
optimal decay rate in (17).

L=2, kappa=5.0, rho=3.0

F.od *  Zop=1.16
X
0.10 A
+ \
\
. 008 i' %
= ¥ v
= hd X
' 0.06 ¢ x
5 i ]
£ 0.04 > %
\
i ]
0.02 S+ N
’/ -
P ~
0.00 ot = = o ek o oy o e e
T
1072 10° 107 104 10°

7

Figure 2. Decay rate of H as a function of Z

Another important point already emphasized on Figure 1
is remarkable on Figure 2: if Z = 0,00, we indeed have
a conservative equation, i.e. JQ is skew-adjoint in the
appropriate functional space.

4.2 A more involved test case: anisotropic, heterogeneous
medium with space-varying impedance at the boundary

For an anisotropic heterogeneous case, we compute the
discrete Hamiltonian (Figure 3), with physical parameters

p, T and Z taking different values in the domain and at the
boundary. Let L, =3, Q = U;l:l Q; and 0N) = U?Zl Ty, we
1 05
0.5 1
plo.ua, = 1, Zlr,urs = 1 and Z|r,ur, = 0.5. Figure 3
shows the evolution of the discrete Hamiltonian over time.
Int €0, %t 7], we have a conservative system: we do not
apply boundary control, indeed we see the conservation
of the Hamiltonian. Just after, for ¢ > %tf, we apply
the output feedback control law, mimicking the impedance
boundary condition, then the system becomes dissipative.
Note however that it does not decay to 0 due to the
existence of stationary solutions (A = 0 belongs to the
spectrum).

The time integration is performed thanks to Crank-
Nicholson scheme (2nd order accurate, unconditionally
stable) with ¢; = 20 and dt = 1073. The initial data are a
trigonometric vector function for oy, (0) and zero for «,(0),
which prove compatible with the boundary conditions.

set T'|o,u0s = , Tla,u0, = {1 2} plo,uas = 0.5,
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251

[~
o
L

Hamiltonian value
=
o
|

=
o
L

0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
Time (£)

Figure 3. Decreasing Hamiltonian for the anisotropic het-
erogeneous medium with space-varying impedance.

5. CONCLUSION AND PERSPECTIVES

To sum up, a structure-preserving discretization of the
anistropic heterogeneous wave equation with boundary
damping has been presented. From the proposed strategy,
the dissipation matrix R that was hidden in D(JQ) in
the continuous model has been derived, and, thanks to
an equivalent formulation in terms of output feedback
control law, a meaningful factorization of R that makes its
low rank obvious has been obtained. New scalar products
associated to the mass matrices fit perfectly into the finite
element framework, furthermore they allow for recovering
a discrete Hamiltonian system from the discrete Hamilto-
nian Hg. The overall theoretical and numerical work has
been illustrated by simulation results, both on the well-
known constant coefficient cases and on some more general
situation, either anisotropic, heterogeneous or with space-
varying impedance.

As interesting perspectives in the near future, let us men-
tion first the optimal order of convergence of PFEM de-
pending on the choice of the finite elements, see Serhani
et al. (2019), and second the impact of the refinement of
the mesh at the boundary on the decay rate of the damped
solutions.

Then, in the spirit of Egger et al. (2018), a structure-
preserving reduction procedure could eventually be ap-
plied to such a dissipative system in order to reduce it
to a relatively small dimension for efficient simulation and
control purposes.

Finally, in many applications, e.g. in acoustics, the prob-
lem involves a time-varying impedance and gives rise to dy-
namic boundary damping; the associated filters are either
of low-pass type Z(s) = %, or of high-pass type Z(s) =
Z T+ and even non-rational, see e.g. Monteghetti et al.
(2018): applying PFEM to these systems would be a major
breakthrough for aeronautical applications.
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