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Abstract

We propose to use the observer-based algorithm of
Ramdani, Tucsnak and Weiss [29] for the initial state
recovery of the wave equation involved in thermoacous-
tic tomography. We proved the rate of convergence of
the iterative algorithm to the observable part of the ini-
tial state. We performed 3D numerical test in the rel-
evant case where the measurement is performed on a
grid of transducers on a half-sphere.

1. Introduction

In medical imaging, we mostly need to recover the
initial (or final) state of a physical system from partial
observation over some finite time interval. In general,
measurements are performed outside the body. This
constraint leads to incomplete data. For instance in
breast or kidney imaging, we cannot expect a measure-
ment all around the object of interest. In this paper we
investigate the problem of data recovery with this lack

[20, 21, 22] and time reversal method [17]. A new
method has been proposed in [30], based on time rever-
sal and leading to a Neumann series. It has been studied
in recent works [28, 26]. Finally, observer-based algo-
rithm for data assimilation [2] has been successfully ap-
plied to thermoacoustic tomography [3].

We propose the use of the iterative observer-based
algorithm of [29], which also leads to a Neumann
series as it is proven in Proposition 2.2. However, it
involves only the resolution of direct wave equations
in practice. Our main result, Theorem 2.1, shows that
the algorithm converges at least polynomially to the
initial state. Moreover, in the case of incomplete data,
we prove that it converges to the observable part of the
initial state.

Let us state our mathematical inverse problem. We
consider the wave equation in the whole domain R3,
with initial position compactly supported in a bounded
open set Q C R3. More precisely, let wy € H} (), and
consider the following system

of information. In other words, we investigate systems 9? L w(x,1) = Aw(x,1), VreR31>0

which are not exactly observable (more than one initial orz V7 =

state lead to the same observation). (Xa 0) = wo(x), Vx € Q% (1)
In the last decade, new algorithms based on time (x, 0) =0, Yx e R°\ Q,

reversal (see Fink [9, 10]) have been proposed for data Ew(x’ 0) =0, Vx € R3.

recovery. We can mention, for instance, the Back and
Forth Nudging proposed by Auroux and Blum [2], the
Time Reversal Focusing by Phung and Zhang [27], the
algorithm proposed by Ito, Ramdani and Tucsnak [18]
and finally, the one we will consider in this paper, the
algorithm studied in [29].

In thermoacoustic tomography, the problem is to
recover the initial state of a wave equation from sur-
face measurements (see Gebauer and Scherzer [12]).
For mathematical issues related to this medical imag-
ing technique, see for instance the survey of Kuchment
and Kunyansky [19].

Various methods have been used to tackle the prob-
lem of thermoacoustic tomography, such as inverse
source concepts in Fourier domain [!], Fourier series
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The observation is performed on a surface surrounded
the initial state. We then suppose that we observe
the state w on d€, during a time interval [0, 7], with
T > diam (Q), where diam (Q) is the supremum of the
path rays from boundary to boundary Q (see typical
configuration on Fig. 1). This last assumption will lead
to a well-posed inverse problem. However, our method
allows to consider ill-posed cases. For instance, we
could observe only on a part of the boundary, as it is
done in the numerical tests.
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Figure 1: Cut in the plane containing diam (Q) of an
example of configuration.

The paper is organized as follows. In Section 2,
we described the algorithm of [29] and state Theorem
2.1. In Section 3, we prove that thermoacoustic tomog-
raphy fits into our framework, and leads to a well-posed
inverse problem when we observe on a closed surface
surrounding the body. In Section 4, we test the accuracy
of this method, with both complete and partial observa-
tion, in presence of white noise.

2. The observer-based algorithm

Let X be Hilbert spaces and A be a skew-adjoint
operator on X. We investigate the initial state recovery

of
{Z'(t):Az(t), Vi >0,

2(0) = z0 € X. 2)

Such systems are often used to model vibrating sys-
tems (acoustic or elastic waves) or quantum systems
(Schrodinger equations).

Let Y be another Hilbert space and C € .Z(X,Y).
We suppose that we have access to z through the opera-
tor C, during a time interval [0, 7], T > 0, leading to

y(t) = Cz(1),

We call C the observation operator.

For systems described by evolution partial differ-
ential equations (i.e. when A is a differential operator
in the space variables on a domain Q), C € Z(X,Y)
generally correspond to measurement on a subdomain
0 C Q, as unbounded observation operator correspond
mostly to measurement on the boundary of Q. We will
see that the observation operator corresponding to ther-
moacoustic tomography is bounded, i.e. C € Z(X,Y).

vt € [0,7]. 3

Let W; be the operator which maps zo on y. The in-
verse problem is well-posed when W is left-invertible,
with continuous inverse. This will be the case if and
only if ¥; is bounded from below

Jk: >0, |[Wezoll > kellz0ll, V2o € X. 4

2
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The pair (A,C) is said to be exactly observable in time
T when relation (4) holds.

Let us introduce the algorithm proposed by Ram-
dani, Tucsnak and Weiss [29] in the particular case of a
skew-adjoint generator and bounded observation opera-
tor, when (A, C) is exactly observable in time 7 > 0. Let
T+ (respectively T™) be the exponentially stable Co-
semigroup generated by AT = A — yC*C (respectively
A™ = —A—yC*C), for some y > 0 (see Liu [23]). For
all n € N*, we define the following systems (called re-
spectively the forward and backward observers)

G (t) = At (1) +yCy(1),

77 (0) =z§ €X,

7 (0) =z, ,(0),
g, (1) = —A7z, (1) = ¥C*y(1),
5 (1) =2, (1), Vn>1.

The forward error e;f (t) = 7, (¢) — z(t) verifies

¢y (1) =(A—=yC*Cey (1),
e (0) :Z(T*Zo eX,
e (0)=e, ,(0), Vn>2,

and the backward error e, (1) = z,; (t) — z(¢) verifies

{ én (1) = (A+7C"C)e, (1),

(1) =¢f (1), Vn>1.

So, we have

vt € [0,1],
&)
Vn>2,

vt €0, 1], ©)

vt € [0,1],

+=

vt € [0, 1],

I ) = 2ol < | T T2 " [lz5 20l (D

According to Ito, Ramdani and Tucsnak [I18,
Lemma 2.2] we have o = ||’]I‘;Tj||$(x) < 1 and thus

e (0) ~ 0]l < 0"l 2ol —0.

In the case of exactly observable systems, we call sys-
tems (5)—(6) forward and backward observers as it is a
generalization to infinite dimensional systems of the so-
called Luenberger’s observer [24], well-known in con-
trol theory.

If we drop the exact observability assumption, we
get the following result.

Theorem 2.1 Let X and Y be Hilbert spaces. As-
sume that A is a skew-adjoint operator on X and C €
Z(X,Y). Denote by AT =A—yC*Cand A~ = —A —
yC*C for some 'y > 0 and z,\ and z;; the solutions of (5)
and (6) respectively, and let ¥ € £ (X,L*([0,7),Y))
be the operator which maps zo on y (via (3)). Fur-
thermore, we denote by I1 the orthogonal projector
Sfrom X onto (Ker ‘PT)J‘, then we have for all 7y € X,
zf € (KerW,)™:
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1. 2, (0) € (KerWq)* foralln> 1 and
[(1 =11) (2, (0) = 20) || = I(1 = TD) 2o -

2. The sequence (||z, (0) —zo|),,» verifies

2 (0) — Tzgl| = o (1) .

3. The convergence is exponential, i.e. there exists a
constant o, € (0,1), independent of zo and z§, such
that

|z (0) —Tzo|| < & ||z —zo

, Vn=>1,

if and only if W; is bounded from below on
(Ker ;)™

Remark 2.1 In practice, it is not easy to characterize
the kernel Ker W;. However, it is often possible to char-
acterize a subspace of this kernel, and from this a class
of initial data zo the algorithm can reconstruct. Fur-
thermore, the first guess zg can be taken equal to zero,
ensuring the assumption z; € (Ker ‘I’T)L. Then, start-
ing from zero and identifying a class of available initial
data, we do not need to know Il anymore.

The only part of the theorem that is not proved in
[14] is the polynomial rate of convergence.
— T+
LetL=T;T} |(Ker W) From [ 14], we know that

Le? ((Ker ‘Pf)l) is a positive self-adjoint operator,
satisfying ||Lz|| < ||z|| for all z € (Ker W)™\ {0}. Fur-
thermore, we have

[z (0) = TTzo || = IL" (25 — zo) -

Let z € (KerW;)", ||zl = 1. Since ||L""'z]| <
IL"z]| we have
1L ]| < L]

1
= In||L" 7| < EIHHL"Z”

n+1 1 1
& |[LH || T < [|L7z

So that the sequence defined by up = 1 and u, =

for n > 1 is strictly decreasing and thus con-

Z
J
2]

verges in [0, 1), for all z € (Ker¥;)". From Cauchy’s
o o z
oL’z = [zl Eazo L

Il

1
vergent. In particular |L"z|| = o () for all z €
n

rule, is absolutely con-

(Ker ;)"

855

Proposition 2.2 Under the assumptions and notation
of Theorem 2.1, suppose that zj = 0. Denote by z~(0)
the first approximation of zo obtain after one forward-
backward cycle of (5)—(6). Then we have

Mzo= Y L'z (0). (8)
n=0

Remark 2.2 Thus, at least theoretically, the recon-
struction of the observable part of the initial state is
given by (8). Note that the computation of the first
term in the above sum requires to solve the two non-
homogeneous systems (5) and (6), while the terms for
n > 1 involve the resolution of the two homogeneous
systems associated with (5) and (6) (i.e. fory=0). In
practice, this leads to a gain in computation time.

Let zj = 0. After one forward-backward cycle of
(5)—(6), we have

T, TS z0 =20 —2z (0).

Taking the projection on (KerW;)" and using [14,
Corollary 3.7], we get

(I—L)Izg =z (0).
So that if we can invert the operator (I — L), we obtain
Mzo = (I-L)"'z7(0).

If |L]| < 1, the result is trivial, but it can be equal to 1.
However, in the proof of Theorem 2.1, we saw that

Y L'z, vze (Ker ;)"
n=0

is absolutely convergent. An easy computation shows
that this is the inverse of (I —L).

3. Application to Thermoacoustic Tomog-
raphy

The main difficulty is that the problem is set on the
whole space, and thus we cannot expect to obtain exact
observability (because of geometric optic conditions of
Bardos, Lebeau and Rauch [4]).

Let us start by the addition of boundary conditions
on a sufficiently large bounded domain. Thus we will be
able to rewrite the problem in the suitable abstract form
(2)-3).

When wy € C*(R?), the solution of (1) is given
by the well-known Poisson-Kirchhoff formula [&, p. 72
equation (21)]

VxeR3.t>0
ot xeRLE2D,

(tSwo(x)), 9)

w(x,t) =
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where Sf(x,t) = f(x+1tv)do(v) is the spherical
1

mean operator. In particular, this formula implies that
the solution is supported in Q, = {y € R | |[x—y| <
t,x € Q}, for all + > 0. This phenomena is known as
Huygens’ principle [8, p. 80]. We can thus add an arti-
ficial condition (for instance Dirichlet condition) on the
boundary of

Qi ={yeR|x—y|<t+exeQ},

for some fixed € > 0, and get that the solution of (1) is
also the solution of (until time 7 + €)

2

ﬁw(x,t) = Aw(x,1), Vx € Q.+, €10,7],
w(x,1) =0, Vx € Q. +,t €[0,7],
w(x,0) = wo(x), Vx € Q,

w(x,0) =0, Vx e Qi \ Q,

d

Ew(x, 0) =0, Vx € Qp+.

(10)
Of course, for ¢ < 7, the Poisson-Kirchhoff formula re-
mains true. In the sequel, we denote by w both the so-
lutions of (1) and (10).

Let 1 € & (Hg (Qpe),H? (ag)) be the Dirichlet
trace operator. We define
7 (Ao) = H* Qe+ ) NHy (Qr+),  H=L*(Qqs),
Ag=—A: _@(A()) — H,

and

7 (A

S~

) =HY(Qu) 5 H(9Q), Y =I2(0Q),

cozyO:@(Aé> — H2(9Q) Y.

We can rewrite (10) (we forget the assumption on the
support of wy here)

w(t)+Aw(t) =0, Vrel0,1],
w(0)=wo€ P <Aé> ,

W(O):wl €H.

As our algorithm (5)—(6) is written for first-order sys-
tems, we also introduce the following definitions

2(1) = [38] X:@(Aé) ¥ H,
Az(_?% é) @(A)z@(AO)XQ(Aé),
Ce Z(X)Y), c=I[C 0],

856

to obtain
{ (1) = Az(t), Vre[0,1],
2(0)=z0 € X,
and
y(t) =Cz(t), Vte]0,1].

It is clear that A is skew-adjoint, C is bounded, but
(A,C) is not exactly observable in time T in general.
Indeed, there exists configurations where the geometric
optic condition of Bardos, Lebeau and Rauch [4] fails,
as on Fig. 2. We define the observers z;} and z,, by (5)-

Figure 2: Cut in the plane containing diam (Q) of an
example of configuration, with artificial boundary con-
dition, without exact observability: the dashed ray is
trapped.

(6), for some gain parameter ¥ > 0, using the operators

e (-XCC T - (—¥CiCo —I
A_<—A0 o)’A_< A4 0)

On second order form, i.e. with

co-[3i8]. <o-[z0)

(1)
the observers (5)—(6) take the following form

Wy (1) = —yCiCow, (1)

W, () +vCoy(1), V[0,
W (1) = —Agw; (1), vt € [0, 1],
WT(O) =0, (11
Wy (0) =0,
w;t(0) =w,_,(0), Vn > 2,
w(0)=w_,(0), Vn>2,
W, (1) = yCyCow,, (1)

+w, (1) = yCoy(t),  Vie[0,1],
w, (t) = —Agw, (1)(1), vielo,7], (12
w, (T) =w; (1), Vn>1,
w, (t) =w, (1), Vn > 1.
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Note that () = wiF (¢) correspond to the case when
Y — o (see Chapelle, Cindea, De Buhan and Moireau
[5] for more details on this type of observers). How-
ever, it is well-known (see for instance [16, 25]) that
there exists an optimal value for Y, with an overdamp-
ing phenomena for larger choice. Of course, this opti-
mal value depends on the observation surface, and we
expect it to be different for the three cases we will test
in the following section.

It remains to show that the compactly supported
initial state considered in thermoacoustic tomography
belongs to (Ker ¥;)™ to apply Theorem 2.1.

Suppose that wg € C5(Q.+) is compactly sup-
ported in Q (which can be supposed connected without
loss of generality) and leads to an output y =0, i.e. that
(wo,0) € (C5(Q;+) x {0}) NKer ¥;. Then the solution
of (1) verifies

w(x,7) =0, VxedQ,re]0,1].
From Poisson-Kirchhoff formula (9), we easily show
that

w(x,t) =0, VxedQ,re0,7]

=  Swo(x)(r) =0, VxedQ,r>0,

where S is the spherical mean operator. Then we apply
[19, Corollary 2] to prove injectivity

Swo(x)(£) =0, Vx€dQit>0 = wy=0.

We conclude by the density of C5*(Q+) in H} (Qq+).
4. Numerical simulations

We implement the algorithm on GMSH [13] and
GetDP [6] to test the accuracy of our approach. To
speed up the time resolution, we use the formula (8)
(GetDP is optimized for the resolution of homogeneous
linear problems). The optimal value for the gain param-
eter is a difficult issue (see [16] for the string equation
case), we then perform different simulations in each
case and select the best for the corresponding observa-
tion (we tested Yy =1, 5, 15 and 30).

In these first tests performed on a coarse mesh, we
observe on a sphere of radius 0.5 surrounding the sup-
port of the initial data to recover, with gain parameter
v =15. We add Gaussian noise to the observation, with
0.25 of deviation.

We see that this algorithm is quite efficient on
Fig. 3, even with the white noise that is not taken into
account in the theoretical framework. After 10 itera-
tions, we reached less than 5% of relative error in L2.

In practice, it is not relevant to measure on a surface
surrounding the initial state. We know from Theorem
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Figure 3: Initial state (left) and the reconstructed state
(right) from complete data after 10 iterations. This pic-
tures are obtained from the three planes XY, YZ and
XZ, passing by (—0.125,—-0.125,—0.125). The color
scale are the same for all pictures.

2.1 that the observer-based algorithm will converge to
the observable part of the initial data in any case. Sup-
pose now that we observe only on a half-sphere, since
the initial velocity is null, the information spread out
in all directions, and we can hope, intuitively, to re-
construct some non null part of the initial data. This
is what we tested in the next simulation. We use the
same mesh and the same observation, but truncated on
a half-sphere, and the same gain parameter y = 5. We
see on Fig. 4 that the initial state, despite the lack of ob-
servation, is quite well reconstructed. We reached near
to 20% of relative error in L2. Of course, we cannot
expect a full reconstruction. A further investigation has
to be done to know exactly what is loss in this case. In
other words, (Ker ¥;)" has to be explicitly constructed.
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Figure 4: Initial state (left) and the reconstructed state
(right) from measurement on the half sphere after 10
iterations.

As far as we know, in practice, it is not possible to
measure on a surface. But line detector exists', so we
can measure the pressure on lines, distributed on a half-
sphere. As a first test, we use a very coarse grid of 10
lines detector as shown on Fig. 5, with y = 1 (we again
use the same noisy observation than for the previous
tests, truncated on the grid). In spite of this, we see on
Fig. 6 that the reconstructed initial position is sufficient
to localize the default of pressure, used to identify sick
cells in thermoacoustic tomography.

Figure 5: View of the grid used to perform the observa-
tion.

I'See for instance http://www.recendt.at/528_ENG_HTML.php for
the recent developments to construct such devices.
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Figure 6: Initial state (left) and the reconstructed state
(right) from measurement on a coarse grid along the
half sphere after 10 iterations.

Remark that if we do more iterations, we could ex-
pect a better reconstruction. However, the relative error
will start to increase after some numbers of back and
forth cycle of observers. This phenomena is not due to
the specific case we simulated here. In fact, it has been
shown by Haine and Ramdani [15] that, numerically,
there exists an optimal number of iterations, depending
on the mesh parameters in time and space. Using a nu-
merical viscosity method, as in the paper of Ervedoza
and Zuazua [7], we can remove this limitation of the
approach by the algorithm of [29]. It has been done suc-
cessfully in a recent work of Garcia and Takahashi [11].
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Figure 7: Comparison of the evolution of the relative
errors in the three cases, in function of the iterations,
with different gain parameter y (1, 5 and 15).

5. Conclusion

We proposed an alternative and original way to
solve thermoacoustic tomography, close to the algo-
rithm of [30] based on Neumann series. However, our
method only needs direct wave solver in practice.

Numerical aspects of this approach have to be in-
vestigate in future works, especially to improve the
computation time, quite expensive for the moment, es-
pecially in comparison with the results obtained by
Kunyansky in [21]. Furthermore, while the algorithm
seems to be robust to Gaussian noise in the numeri-
cal tests, theoretical works are needed to add it in the
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model.

In this work, we add artificial Dirichlet boundary
conditions sufficiently far away from the support of the
initial state. One could ask if these conditions have an
influence on the algorithm, especially on the numerical
aspects, and if other kind of boundary conditions could
lead to a better rate of convergence.
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