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A B S T R A C T

This paper presents a state of the art on port-Hamiltonian formulations for the modeling and numerical
simulation of open fluid systems. This literature review, with the help of more than one hundred classified
references, highlights the main features, the positioning with respect to seminal works from the literature on
this topic, and the advantages provided by such a framework. A focus is given on the shallow water equations
and the incompressible Navier–Stokes equations in 2D, including numerical simulation results. It is also shown
how it opens very stimulating and promising research lines towards thermodynamically consistent modeling
and structure-preserving numerical methods for the simulation of complex fluid systems in interaction with
their environment.
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Introduction

Port-Hamiltonian (pH) systems formulations are an extension of
Hamiltonian formulations initially proposed in the context of classical
mechanics for closed systems to model open physical systems. These
energy-based formulations encode through a well-defined geometric
structure the links existing between the dynamics of the energy vari-
ables, the thermodynamic driving forces, the energy function and the
environment using the notion of ports of interaction. They are then
particularly well suited for the modular modeling of complex multi-
physics systems. These formulations have recently been generalized
to distributed parameters systems in [135] defining the notion of
boundary port variables from the evaluation of the co-states variables
at the boundary of the spatial domain. They have been extensively
used in continuous mechanics to model flexible/compliant structures
such as beams or plates. Their application to the modeling of fluids,
as systems with possible interactions with the environment through
open flows or fluid structure interactions is more recent but has shown
to be very interesting for both modeling and simulation purposes in
various fields of application such as aeronautics, acoustics, microfluidic
systems, process control. There are indeed a lot of structure-preserving
numerical schemes that have been developed to preserve the energy
balances and to avoid the numerical stiffness due to the interdomain
couplings between different subsystems. In this paper, we give an
overview of these recent results, focusing on their applications to fluid
dynamics in general and to some well-known application cases such
as shallow water equations or incompressible Navier–Stokes equations.
We also give some open research lines that are currently investigated
in this field of research.

The paper is organized as follows: a comprehensive state of the art
is presented in Section 1, with an emphasis on structure-preserving
numerical methods for partial differential equations (PDE). Then, in
Section 2, pH modeling in fluids mechanics is addressed: a general set-
ting is presented and possible extensions to dissipative pH systems are
introduced; moreover two motivating examples are treated, which will
be of interest throughout the paper, the shallow water equation (SWE)
in Section 2.3 and the incompressible Navier–Stokes equation (NSE)
in Section 2.4. In Section 3, the structure-preserving discretization
method called Partitioned Finite Element Method (PFEM) is detailed
on the worked out example of the 2D SWE, in the irrotational and
non-dissipative case; then it is shown how dissipation can be taken into
account at the discrete level in a structure-preserving manner; finally,
the control of the 2D SWE by boundary feedback helps illustrate the
effectiveness of the approach. The example of the 2D incompressible
NSE is presented as a more difficult example, and first rephrased into a
linear pH system, when the choice is made to describe it with vorticity
as energy variable, and stream function as co-energy variable; convinc-
ing numerical results are provided for 3 different values of the Reynolds
number on the benchmark of the lid-driven cavity problem. Finally, in
Section 4, an extension of the approach, including thermodynamics,
is addressed: first in Section 4.1, quasi pH systems are presented,
when the dynamical system depends on the co-energy variables instead
of a modulation by the energy variables; finally in Section 4.2, the
formalism of irreversible pH system is introduced.

1. State of the art

Since the topic addressed in this review paper bears strong links
with several scientific fields, the comprehensive review will be orga-
nized under the following scientific themes of interest: some corner-
stone publications on pH systems will be presented first, immediately
2 
followed by a list of worked-out applications of this approach. Then,
the focus will be made on Hamiltonian formulations available in fluid
mechanics. The most detailed part is devoted to so-called compatible
discretization. Finally, some links to thermodynamics are provided.

Port-hamiltonian systems. A complete and comprehensive framework
for modeling the dynamics of complex interconnected systems as pH
systems can be found first in [43] and later in [133]: in both these
books, infinite-dimensional systems are tackled, but not only. The sem-
inal paper that presents distributed-parameter systems as pH systems
for the first time is [135]; since then, many extensions and novelties
have been explored, which are extensively traced back in the literature
review paper [119]. In particular, this approach is based on Hamiltonian
ystems for closed physical systems, see [106], and on the abstract
otion of Dirac structures, defined in [38], for open physical systems.
ne of the main properties of pH systems is their invariance under
ower-conserving interconnection, detailed in [34]. The particular 1D
ase has been fully understood from the original work [83], dissipation
as been taken into account in [139] thanks to the introduction of
xtra dissipative ports, and [73] is a monograph on the 1D linear case:
xistence, uniqueness and regularity results are given in these refer-
nces. For the 𝑛𝐷 case, such theoretical results can be found in [80]
or the wave equation, a generalization to other first-order operators
inear systems is proposed in [127], and a generalization to first- and
econd-order operators linear systems encompassing the previous one
an be found in [22]; a more abstract setting via system nodes is
rovided in [112]. In particular in 2D, the geometric setting has been
xtended to tensor-valued functionals, see [18]. In [140], the symmetry
eduction of a pH system is proved to give rise to another pH system in
smaller space dimension, which is another very interesting property

f pH system for the modeling of multiscale systems. Preserving the pH
tructure through Model Order Reduction also proves possible, as has
een studied, for instance in [63]; a more recent work in this direction,
ocusing on the realization of pH systems in a data-driven manner
an be found in [12]. Finally, note that the link between infinite-
imensional pH systems and the GENERIC1 framework, which helps
ncode the first and second laws of thermodynamics, has been given
n [86,102].

ome worked-out examples. Many references put forward the interest
f the modular approach enabled by pH systems: let us mention [5]
or a rotating flexible spacecraft, or [142] for the dynamics of complex
echanical structures where, typically, subsystem dynamics can be

ormulated in a domain-independent way and interconnected by means
f power flows. In [70], the 1D longitudinal vibrations of a nanorod
re modeled as a differential–algebraic pH system. Now, the reader
nterested in examples involving fluid mechanics models will have
uite a wide choice also: the 1D SWE has been presented in [68,69]
here a network of irrigation channels is modeled and controlled by

nterconnection, an extension to 2D can be found in [109], using the
anguage of exterior calculus and differential forms. The 2D SWE has
lso been studied in [28] together with boundary control of a circular
ater tank. Coupled systems of Fluid–Structure Interaction (FSI) have
een extensively studied in 1D in [32] for a liquid sloshing in a moving
ontainer, then generalized in 2D in [33]; note that these latter works
se vector calculus, in many available coordinate systems, instead of
xterior calculus. In [4] one can find a derivation of the 1D NSE coupled

1 the acronym stands for General Equation for the Non-Equilibrium
Reversible–Irreversible Coupling
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with chemical reactions. Moreover, quite a number of examples are
applied either to vocal folds, see e.g. [97,98], or to musical instruments,
typical for multi-physics problem, see e.g. [87] where the jet interacting
with the brass player’s lip is modeled as a pH system, and also [121]
where the guitar is modeled as a pH system resulting from FSI. A careful
derivation of a poro-elastic model can be found in [3]. The thermo-
magneto-hydrodynamics (TMHD) interdomain couplings is studied in
depth in [105] for plasma high confinement in Tokamaks.

Hamiltonian formulations in fluid mechanics. The solutions to systems
of PDEs such as the NSE satisfy strong constraints, which reflect the
underlying mathematical structure of the equations (e.g., Hamiltonian
tructure, Poisson structure, de Rham sequence). The seminal paper
n such a structured viewpoint is [101]. The modeling of gas flow,
ased on the Euler equations, is fully reported in e.g. [41]. A first
escription of NSE as a pH system can be found in 1D in [4], and in
D in [96]. A more geometric-oriented description of the NSE has been

roposed in [25], a work based on the companion papers [117,118].
ecently, the same authors introduced an extension of their framework

o thermodynamics with an application to Fourier–Navier–Stokes fluid
n [27], and also to FSI in [26]. All these works are based on the
lassical derivation of the equations of fluid mechanics, which can be
ound in the monographs [16,35].

ompatible discretization. One of the best expositions of this central
opic can be found in [143]: In recent years, there has been an increasing
nterest in the various aspects of structure preservation at the discrete level.
his interest is rooted in three important points. First, there are well-
nown connections between discrete structure preservation and standard
roperties of numerical methods. Second, standard properties only guarantee
hysical fidelity in the limit of fully (at least highly) resolved discretizations.
eaching this limit requires infeasible computational resources. In contrast,
tructure-preserving discretizations, by construction, generate solutions that
atisfy the underlying physics even in highly under-resolved simulations.
his is extremely relevant since most (if not all) simulations are inherently
nder-resolved. Third, physics preservation is fundamental when coupling
ystems in multi-physics problems. The underlying principle behind structure-
reserving discretizations is to construct discrete approximations that retain
s much as possible the structure of the original system of PDEs. A departure
rom this principle introduces spurious nonphysical modes that pollute the
hysics of the system being modeled.

General presentation of this topic can be found in [14,71]. With
his main concern of compatible discretization at stake, many different
lavors have been presented: the first structure-preserving discretization
cheme for distributed pH systems was proposed by [60], where the
uthors proposed a mixed finite element method for the 1D wave
quation; the method used a low-order Whitney bases function and
as based on exact satisfaction of the strong-form equations in the

orresponding spanned finite-dimensional approximation spaces. Based
n this, [110] presented a structure-preserving numerical scheme for
he nonlinear SWE, which proves useful since both mass and energy are
reserved at the discrete level. An extension of this method to use the
igher order pseudo-spectral polynomial approximation basis was then
roposed by [103], and the Bessel function was used by [141]. A similar
dea was considered by [50–52] for the 1D linear transmission line and
he Maxwell equations. There, one equation was kept in the strong
orm, and the other in the weak form. All these previous methods,
hich rely on finding compatible bases that exactly satisfy at least
ne of the equations in strong form, are relatively straightforward to
pply for 1D equations. However, they seem cumbersome for higher
imension. Using rather the weak form of both equations, and two
ifferent types of basis functions for flows and efforts were studied
n [77] and applied for the 2D wave equation, requiring a projection in
he very last step. A comprehensive overview of this type of method can
e found in the monograph [76]. An adaptation of the finite difference
ethod to pH systems both in 1D and 2D can be found in [130], where

he pH framework is combined with finite differences on staggered
 t

3 
rids to derive control oriented reduced order systems for the 2D wave
quation.

Discrete exterior calculus (DEC), see [94] and references therein,
as been applied to pH system in [126]. Finite element exterior calculus
FEEC), with the seminal papers [6,7], has recently been applied to pH
ystem in [24], also inspired by the dual-field mixed weak formula-
ion introduced in [143]. The primal–dual setting is also a key point
n [129]. And a full review of the subject of compatible finite elements
or geophysical fluids can be found in [37]. More recently, another
pproach has developed a discretization of the physical field laws based
n discrete variational principles: this approach has been used in the
ast to construct variational integrators for Lagrangian systems, see
.g. [54]. Also, structure-preserving schemes applied to the GENERIC
ramework have been explored by [78]. Tackling dissipative evolution
quations in a structure-preserving way has been studied by [46].

In a nutshell, the Partitioned Finite Element Method (PFEM) is
ased on the mixed finite elements method for first-order coupled
ystems, an integration by parts or the appropriate Stokes formula
o make the boundary control appear naturally, and also the finite
lement method to take into account the constitutive relations linking
nergy variables to co-energy variables; it comes along with sparse
atrices which might help a lot for the scientific computing aspect.
hus, this method is based on classical applied mathematics theories,
hich are fully developed in the monographs [15,59]. A first global
resentation of the PFEM can be found in [30]. The PFEM has already
njoyed many successful examples where the dynamics is linear and
he Hamiltonian quadratic: the 2D wave equation [125], an extension
o the damped case [123], the 𝑛D heat equation [124], the 3D or
D Maxwell equations [66,111], the Reissner–Mindlin plate [18], the
irchhoff–Love plate [19] for example. The extension to some implicit
H system, like the Dzektser seepage model in 2D or the nanorod in 1D,
re to be found in [9]. When mixed boundary controls are to be taken
nto account, different adaptations of the PFEM can be used, see [20],
r [21] for the use of the Hellinger–Reissner principle. Note that a full
haracterization of the optimal choice of finite elements families based
n the numerical analysis of the scheme, together with worked out
imulation results for the 2D wave equation on different geometries, is
vailable in [67]; in particular, the importance of the discrete de Rham
omplex is enlightened. As a convincing example of the advantage of
eveloping structure-preserving numerical methods for coupled sub-
ystems, one can cite [65], in which some refined asymptotics, that
ere predicted theoretically at the continuous level, can be recovered
t the discrete level. However, the application of the PFEM to fluid
echanics requires some care, since the dynamical system is intrin-

ically non-linear: nevertheless, as will be detailed in this paper, it
an be extended to these models, either when the non-linear relation
roves of polynomial nature [28], or when the constitutive relation,
hough linear, becomes of differential nature [64]. Last, but not least,
he PFEM comes along with a user guide [23,53], and the source
odes are made available at https://g-haine.github.io/scrimp/. In this
espect, a useful benchmark on numerical models for pHs can be found
t https://algopaul.github.io/PortHamiltonianBenchmarkSystems.jl/.

bout differential algebraic equations. In the classical energy-coenergy
ormulation of pH system, the dynamic equations are supplemented
y the so-called constitutive relations, which do play the role of con-
traints. As far as coupling is concerned in modeling civil engineering
tructures, a representation of the interconnected systems is used to
enerate coupling constraints, which leads to differential algebraic
quations (DAEs) of index at most two. [79] is one of the first mono-
raphs on these kinds of equations. Infinite-dimensional setting for DAE
as been tackled in [82], while the pH formulation has been studied
n [40]. A strong link between pHs and DAEs has been fully detailed
n [131]. The general definition of so-called finite-dimensional descrip-
or pH system followed in [8]. [136] provides a closer look at such

https://g-haine.github.io/scrimp/
https://algopaul.github.io/PortHamiltonianBenchmarkSystems.jl/
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systems with many examples, and in particular both the Lagrange sub-
space and Dirac structure are introduced. The works [91,138] and re-
cently [92] testify of the specific interest in dissipative pH-DAEs, which
are more likely to appear in the modeling of real-world processes. A full
review on the subject of DAEs has been published in [90]. Recently,
there has been a renewed interest in infinite-dimensional DAEs with
the question of solvability addressed in [72], the Weierstraßcanonical
form in [48], and the notion of index in [49].

The role of thermodynamics. In numerous physical scenarios, thermal
spects and irreversible thermodynamic processes play a crucial role.
his is particularly evident in heat transfer, chemical reactions and
eacting fluids, among others [13,39]. The dissipative pH system for-
ulation can fall short in these instances, necessitating the integration

f heat or entropy balance equations into the models. Modeling, sim-
lation and control challenges in chemical engineering are notably
omplex due to nonlinearities arising from thermodynamic properties
nd flux relationships [42]. A promising method for creating non-
inear controllers involves leveraging the characteristics of dynamical
odels based on fundamental principles. These include symmetries,

nvariants, and balance equations related to specific thermodynamic
otentials, like entropy. In many fluid systems, these balance equa-
ions have been effectively applied as dissipation inequalities [36,68]
n passivity-based control schemes, now a well-established area of
tudy [43]. For chemical processes, different thermodynamic poten-
ials such as the entropy or Helmholtz free energy are considered in
esigning controllers based on Lyapunov functions and passivity [2].
owever, developing constructive structure preserving methods for
umerical approximations in this context remains a challenge. Several
ypes of ‘‘thermodynamic’’ dynamical models have been proposed, aim-
ng to account for both energy conservation and irreversible entropy
roduction. These include pseudo-gradient systems [96], which are
edefined with a pseudo-metric, similar to the approach for electri-
al circuits in [17]. Other types include metriplectic systems such as
he General Equation for the Non-Equilibrium Reversible–Irreversible
oupling GENERIC [61,62,108], nonlinearly constrained Lagrangian
ystems [55,93], and implicit Hamiltonian control systems [44,104,
15,116], defined on submanifolds of thermodynamic phase spaces
r their symplectic extensions, and controlled by systems on contact
anifolds or their symplectizations [137]. More recently a non-linear

xtension of pH systems with a clear underlying geometric structure
as been proposed to cope with both the first and second laws of
hermodynamics, namely Irreversible pH (IpH) systems [115,116].

. Port-Hamiltonian modeling of fluid mechanics

.1. General setting

In what follows, we consider fluids filling a spatial domain denoted
defined by the spatial coordinate 𝜻 and boundary 𝜕𝛺. We denote

y 𝐻(𝛺) the Sobolev space of weakly differentiable functions, and
y  ⊂ 𝐻(𝛺), the space of state variables. Infinite-dimensional pH
ystems formulation consists in writing balance equations on extensive
ariables of thermodynamics, i.e. the energy variables, as a function of
he corresponding intensive variables of thermodynamics, i.e. the co-
nergy variables, derived from the variational derivative of the energy.
hen the constitutive relations linking the state and co-state variables

re linear, and when only conservative phenomena are considered, it
eads to a system of PDEs of the form 𝜕𝑡𝒙(𝜻 , 𝑡) =  𝛿𝒙 where 𝑥(𝜻 , 𝑡) ∈

is the state,  is a formally skew symmetric differential operator
efined over 𝛺 and  the total energy of the system defined by:

∶= ∫𝛺
ℋ (𝒙) d𝛺, (1)

where ℋ ∶  → 𝐿1(𝛺,R) is the energy density. PH formulations also
allow to explicit, in the case of open physical systems, the links existing
between the dynamics of the system, the energy and the power flow at
the boundary of the spatial domain, as stated in Definition 1.
4 
Definition 1. A distributed-parameter pH system is defined by the set
of PDEs and boundary port variables defined by:

𝜕𝑡𝒙(𝜻 , 𝑡) = 𝛿𝒙, (or 𝒇 =  𝒆), (2)
(

𝒇 𝜕
𝒆𝜕

)

=𝜕𝛺 𝛿𝑥, (3)

here  is a formally skew-symmetric differential operator, known as
he structure (matrix) operator, 𝒇 𝜕 and 𝒆𝜕 are the boundary flow and
ffort port variables, 𝜕𝛺 is an operator that is related to the normal
nd tangential projections on 𝜕𝛺 of the co-energy variables 𝒆 ∶= 𝛿𝒙
nduced by  such that:

̇ = ∫𝜕𝛺
𝒇 𝜕 ⋅ 𝒆𝜕 d𝛾, (4)

here ̇ denotes the time derivative of the Hamiltonian, and ∫𝜕𝛺 𝒇 𝜕 ⋅
𝜕 d𝛾 describes the power supplied to the system through the bound-
ries.2

From a geometrical point of view, (𝒇 , 𝒆,𝒇 𝜕 , 𝒆𝜕) ∈  at any time 𝑡 > 0,
here  is a Dirac structure3.

From (4) one can see that the total energy of the system is constant
long the state trajectories as soon as the boundary port variables are
et to zero, i.e. when the system is closed with respect to energy.
his reflects the fact that the considered system is conservative, and
alance equations reduce to a system of conservation laws. When the
ystem is subject to internal dissipation, as it is the case for fluids with
iscous damping, it is possible to extend the Dirac structure with some
issipative ports associated to dissipative closure relations as detailed
n the next section. An alternative approach that will be discussed in
ection 4 is to include in the system description the thermal domain.
H formulations have also been recently extended to systems with
onstraints or implicit definitions of the energy in [89]; boundary-
mplicit port-Hamiltonian systems have been thoroughly treated in the
hesis [99].

.2. Dissipative port-Hamiltonian systems

As it is the case for finite-dimensional systems, infinite-dimensional
H formulations initially proposed to represent conservative systems
ave been extended in [139] to systems with dissipation of the form
𝑡𝒙(𝜻 , 𝑡) =  𝛿𝒙 − 𝑆∗𝛿𝒙, where  is a differential operator and
∗ the corresponding formal adjoint, and 𝑆 ≥ 0 is a non-negative
ounded matrix operator of appropriate dimensions. In this case, 𝑆∗
epresents the dissipation and can be split into two parts such as to
xtend the Dirac structure, as stated in Definition 2.

efinition 2. A distributed-parameter dissipative pH system is defined
y the set of PDEs and boundary port variables defined by:

𝜕𝑡𝒙(𝜻 , 𝑡)
𝒇 𝑑

)

=
[

 
−∗ 0

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
̃

(

𝒆
𝒆𝑑

)

, with 𝒆𝑑 = 𝑆𝒇 𝑑 , (5)

(

𝒇 𝜕
𝒆𝜕

)

=̃𝜕𝛺

(

𝒆|d𝛺
𝒆𝑑 ||d𝛺

)

, (6)

here 𝜕𝑡𝒙(𝜻 , 𝑡) ∈  and 𝑆 > 0. ̃ is an extended formally skew-
ymmetric differential operator, 𝒇 𝜕 and 𝒆𝜕 are the boundary flow and
ffort port variables, 𝑊𝜕𝛺 is an operator induced by ̃ , that is related to

2 In this work, we will always assume a strong regularity (i.e. at least 𝐶1 in
pace and time) for the solutions to a pH system. In this case, the boundary
races of such solutions are then sufficiently regular to allow the identification
f the duality bracket at the boundary of 𝛺 with the 𝐿2-inner product at the
oundary.

3
 Some useful definitions are recalled in Appendix A, see also e.g. [83]
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Fig. 1. The one-dimensional shallow water equation.

he normal and tangential projections on 𝜕𝛺 of the co-energy variables
∶= 𝛿𝒙 and dissipative effort 𝒆𝑑 , such that:

̇ = ∫𝜕𝛺
𝒇 𝜕 ⋅ 𝒆𝜕 d𝛾 − ∫𝛺

𝒇 𝑑 ⋅ 𝒆𝑑 d𝛺 ≤ ∫𝜕𝛺
𝒇 𝜕 ⋅ 𝒆𝜕 d𝛾, (7)

here ∫𝜕𝛺 𝒇 𝜕 ⋅𝒆𝜕 d𝛾 describes the power supplied to the system through
he boundaries and ∫𝛺 𝒇 𝑑 ⋅ 𝒆𝑑 d𝛺 the power dissipated into heat by the
nternal phenomena (such as friction or viscosity).

.3. Example of shallow water equations

The SWE are among the most researched fluid dynamical problems
ithin the pH framework. These non-linear, wave-like equations have

ound applications in various domains. They have been employed,
or example, to model free-surface fluids in water channels (see, for
nstance, [68,69,109]), as well as for simulating and controlling fluids
n moving tanks and fluid–structure systems (see [32,33]).

In this subsection, we aim to provide a clear and pedagogical expo-
ition of the 1D SWE within the context of the pH framework, which
an be found in Section 2.3.1. Subsequently, we extend our discussion
o the 2D version of these equations, presented in Section 2.3.2.

.3.1. 1D SWE
The 1D SWE are nonlinear PDEs, typically written as two conser-

ation laws, the first one models the conservation of mass, while the
econd one model the conservation of linear momentum:
⎧

⎪

⎨

⎪

⎩

𝜕𝑡ℎ = −𝜕𝜁 (ℎ𝑢) ,

𝜕𝑡𝑢 = −𝜕𝜁

(

𝑢2

2
+ 𝑔ℎ

)

,
(8)

where ℎ(𝜁, 𝑡) is the fluid height, 𝑢(𝜁, 𝑡) the fluid average velocity in a
cross-section, 𝜁 the spatial coordinate, 𝑡 the time and 𝑔 the gravitational
acceleration, see Fig. 1 for a schematic view of the different variables
in play.

The total energy  of the system inside the 1D domain 𝛺 = [0, 𝐿]
is given by the sum of kinetic and potential (gravitational) energy:

 = 1
2 ∫[0,𝐿]

(

𝜌𝑏 ℎ𝑢2 + 𝜌𝑏𝑔 ℎ2
)

d 𝜁 , (9)

where 𝑏 is the width of the water channel (or fluid tank) and 𝜌 the
fluid density (assumed to be a constant). Defining the energy variables
𝑞(𝜁, 𝑡) ∶= 𝑏ℎ(𝜁, 𝑡) and 𝛼(𝜁, 𝑡) ∶= 𝜌𝑢(𝜁, 𝑡), the system Hamiltonian (total
energy) is given by:

 [𝑞(𝜁, 𝑡), 𝛼(𝜁, 𝑡)] = 1
2 ∫[0,𝐿]

(

𝑞𝛼2

𝜌
+
𝜌𝑔
𝑏
𝑞2
)

d 𝜁 . (10)

sing these newly defined variables, (8) can be rewritten as4:
(

𝜕𝑡𝑞
𝜕𝑡𝛼

)

=
(

0 −𝜕𝜁
−𝜕𝜁 0

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟


(

𝑒𝑞
𝑒𝛼

)

, (11)

4 In this case,  ∶ 𝐻1(𝛺)×𝐻1(𝛺) ⊂ 𝐿2(𝛺)×𝐿2(𝛺) → 𝐿2(𝛺)×𝐿2(𝛺) is indeed
formally skew-symmetric, thanks to integration by parts, see Appendix A
5 
where 𝑒𝑞(𝜁, 𝑡) and 𝑒𝛼(𝜁, 𝑡) are the co-energy variables (respectively, the
total pressure and the water flow) which are defined as the variational
derivatives of the Hamiltonian with respect to 𝑞(𝜁, 𝑡) and 𝛼(𝜁, 𝑡):

⎧

⎪

⎨

⎪

⎩

𝑒𝑞 ∶=
𝛿
𝛿𝑞

= 𝛼2

2𝜌
+
𝜌𝑔
𝑏
𝑞 = 𝜌

(

𝑢2

2
+ 𝑔ℎ

)

,

𝑒𝛼 ∶= 𝛿
𝛿𝛼

=
𝑞𝛼
𝜌

= 𝑏ℎ𝑢 .
(12)

Finally, from the time-derivative of the Hamiltonian (10) along
the trajectories constrained to (11), one obtains the following power
balance:

̇ = ∫[0,𝐿]

(

𝑒𝑞(𝜁, 𝑡)𝑞̇(𝜁, 𝑡) + 𝑒𝛼(𝜁, 𝑡)𝛼̇(𝜁, 𝑡)
)

d 𝜁 ,

= −∫[0,𝐿]
𝜕
𝜕𝜁

(

𝑒𝑞(𝜁, 𝑡)𝑒𝛼(𝜁, 𝑡)
)

d 𝜁 ,

= −∫𝜕[0,𝐿]
𝑒𝑞(𝜁, 𝑡)𝑒𝛼(𝜁, 𝑡)d 𝜁 ,

= 𝒆𝑇𝜕 𝒇 𝜕 ,

(13)

where the effort boundary ports, 𝒆𝜕 , are defined as the values of the
o-energy variable 𝑒𝛼 evaluated in the spatial domain boundary:

𝜕 ∶=
(

𝑒𝛼(0, 𝑡)
𝑒𝛼(𝐿, 𝑡)

)

, (14)

hile the power-conjugate flow boundary ports 𝒇 𝜕 are defined as:

𝜕 ∶=
(

𝑒𝑞(0, 𝑡)
−𝑒𝑞(𝐿, 𝑡)

)

. (15)

emark 1. Eqs. (11), together with the Hamiltonian (10) and the
o-energy variables (12) and boundary effort/flow (14), (15) defi-
itions, describe a distributed-parameter pH system as presented in

efinition 1, with 𝒙 ∶=
(

𝑞
𝛼

)

as state.

Furthermore, one may identify the distributed flow 𝒇 ∶=
(

𝜕𝑡𝑞
𝜕𝑡𝛼

)

and

effort 𝒆 ∶=
(

𝑒𝑞
𝑒𝛼

)

variables, together with the boundary ports 𝒇 𝜕 and 𝒆𝜕 .

They belong to a Dirac structure , i.e. (𝒇 , 𝒆,𝒇 𝜕 , 𝒆𝜕) ∈  at any time
𝑡 > 0, which is generated by the structure operator  and the boundary
variables.

Remark 2. The effort/flow boundary ports, defined in (14) and (15)
represent one possible choice of boundary ports as defined in the
general setting (3). The choices made here exhibit a clear physical
meaning: they represent the fluid total pressure and volumetric flow
at the boundaries (such that their product represents the power that
flows through the boundary). Obviously, only one of these ports can
be imposed at a given time. Typically, from a control perspective, these
variables are written as input and output (observation) variables (since
one of them is imposed as a control input, and the other is an output).

Remark 3. It is possible to modify (11) to introduce a distributed
dissipation function. The friction of the fluid with the channel bottom
is usually introduced as a force 𝑒𝑑 distributed along the fluid:
(

𝜕𝑡𝑞
𝜕𝑡𝛼

)

⏟⏟⏟
𝜕𝑡𝒙

=
(

0 −𝜕𝜁
−𝜕𝜁 0

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟


(

𝑒𝑞
𝑒𝛼

)

⏟⏟⏟
𝒆

+
(

0
𝑒𝑑

)

, (16)

where 𝑒𝑑 is proportional and opposite to the fluid momentum, i.e. 𝑒𝑑 =
−𝑆𝑒𝛼 . Thus, defining 𝑓𝑑 ∶= −𝑒𝛼 , we can recast this dissipative version
of the SWE as:
(

𝜕𝑡𝒙(𝜁, 𝑡)
𝑓𝑑

)

=
[

 1
−1 0

]

⏟⏞⏞⏟⏞⏞⏟

(

𝒆
𝑒𝑑

)

, with 𝑒𝑑 = 𝑆𝑓𝑑 . (17)
̃
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It is straightforward to verify that the power balance is given by:

̇ = −∫[0,𝐿]
𝑓𝑑𝑒𝑑d 𝜁 + 𝒆𝑇𝜕 𝒇 𝜕 ,

= −∫[0,𝐿]
𝑆𝑓𝑑

2d 𝜁 + 𝒆𝑇𝜕 𝒇 𝜕 ≤ 𝒆𝑇𝜕 𝒇 𝜕 .
(18)

Consequently, the Eqs. (17) together with the system Hamilto-
ian and boundary ports, define a distributed-parameter dissipative pH
ystem as presented in Definition 2.

The definition of 𝑆, which can be a nonlinear function of the energy
ariables 𝑞 and 𝛼, such as 𝑆 = 𝑆(𝑞, 𝛼) ≥ 0 lead to different water-
ed friction models that are commonly found in the SWE literature.
or instance, the Darcy–Weisbach model is such that 𝑆 = 𝑓𝐷𝑊 𝑏|𝛼|

8𝑞 ,
where 𝑓𝐷𝑊 is an empirically obtained friction coefficient (see, for
instance, [81, Sec. 7.2.6]).

In addition, a dissipation model related to fluid viscosity can also
be obtained, as we recently presented in [29].

2.3.2. 2D SWE
Similarly, in a 2D setting, the frictionless SWE can be written as5:

(

𝜕𝑡ℎ
𝜕𝑡𝜶

)

=
[

0 −div
−𝐠𝐫𝐚𝐝 0

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟


(

𝑒ℎ
𝒆𝛼

)

, (19)

where ℎ(𝜻 , 𝑡) is the height of the fluid, 𝜶(𝜻 , 𝑡) ∶= 𝜌𝒖 is the linear
omentum, 𝑒ℎ = 1

2𝜌 ‖𝒖‖
2 + 𝜌𝑔ℎ is the total pressure, 𝒆𝛼 = ℎ𝒖 is the

volumetric flow of the fluid and 𝜻 is the spatial coordinate variable.
The total energy  of the fluid is given by:

 = ∫𝛺
1
2
𝜌ℎ‖𝒖‖2 + 1

2
𝜌𝑔ℎ2d𝛺 , (20)

ewriting as a functional of the energy variables ℎ and 𝜶, we can define
he system Hamiltonian:

[ℎ(𝜻 , 𝑡),𝜶(𝜻 , 𝑡)] ∶= ∫𝛺
1
2𝜌
ℎ‖𝜶‖2 + 1

2
𝜌𝑔ℎ2d𝛺 . (21)

he co-energy variables are given by the variational derivative of the
amiltonian:

𝑒ℎ ∶= 𝛿ℎ = 1
2𝜌

‖𝜶‖2 + 𝜌𝑔ℎ = 1
2
𝜌 ‖𝒖‖2 + 𝜌𝑔ℎ ,

𝛼 ∶= 𝛿𝜶 = ℎ𝜶
𝜌

= ℎ𝒖 .
(22)

The power-balance of the system can then be computed from the
time-derivative of the Hamiltonian as:

̇ = ∫𝛺

(

𝜕𝑡ℎ 𝑒ℎ + 𝜕𝑡𝜶 ⋅ 𝒆𝛼
)

d𝛺 . (23)

Then, from (19), and using Stokes theorem6:

̇ = ∫𝜕𝛺
𝑒ℎ

(

−𝒆𝛼 ⋅ 𝒏
)

d 𝛾 , (24)

which enables to define collocated flow and effort distributed ports
along the boundary 𝜕𝛺. For example:

𝑒𝜕 = −𝒆𝛼 ⋅ 𝒏 ,

𝑓𝜕 = 𝑒ℎ ,
(25)

5 The structure operator  ∶ 𝐻1(𝛺) × 𝐻div(𝛺) ⊂ 𝐿2(𝛺) × (𝐿2(𝛺))2 →

𝐿2(𝛺)×(𝐿2(𝛺))2 is well-defined and formally skew-symmetric thanks to Green’s
formula, see Appendix A

6 The power flow through the boundary is a duality bracket between
𝐻

1
2 (𝜕𝛺),𝐻− 1

2 (𝜕𝛺) in general. However, we assume strong solution in this work
see Remark 19), reducing this bracket to a more convenient 𝐿2-inner product

at the boundary. More involved discussions and results about this concern may
be found in e.g. [67, Section 2.1] or [30, Section 3.1] and the many references
therein.
6 
and the power-balance is given by a product between the flow and
effort boundary ports:

̇ = ∫𝜕𝛺
𝑒𝜕𝑓𝜕d 𝛾 . (26)

Remark 4. The Eqs. (19), together with the definitions of the system
Hamiltonian, the co-energy variables and the boundary ports define a
distributed-parameter pH system, as presented in Definition 1.

Remark 5. A modified version of (19) can be defined, that takes into
account the (scalar) vorticity 𝜔 ∶= curl2𝐷𝒖 = 𝜕𝜁1𝑢2 − 𝜕𝜁2𝑢1 of the fluid:
(

𝜕𝑡ℎ
𝜕𝑡𝜶

)

=
[

0 −div
−𝐠𝐫𝐚𝐝 ℎ−1.𝐺(𝜔)

](

𝑒ℎ
𝒆𝛼

)

, (27)

here 𝐺(𝜔) ∶= 𝜌
[

0 1
−1 0

]

𝜔. Since the matrix 𝐺(𝜔) is skew-symmetric,

t will play no role in the power balance (and it computes exactly as
26)).

.4. Example of incompressible Navier–Stokes equations

The NSE for a Newtonian fluid filling a domain 𝛺 ⊂ R𝑛, 𝑛 = 2, 3,
ommonly read [16,35]:
{

𝜕𝑡𝜌 + div(𝜌 𝒖) = 0 ,
𝜌 (𝜕𝑡 + 𝒖 ⋅ 𝐠𝐫𝐚𝐝)𝒖 = −𝐠𝐫𝐚𝐝(𝑃 ) + 𝜇∆𝒖 + (𝜆 + 𝜇) 𝐠𝐫𝐚𝐝(div(𝒖)) ,

(28)

here 𝜌 is the mass density, 𝒖 is the particle velocity, 𝑃 is the static
ressure, 𝜇 > 0 is the dynamic viscosity, and 𝜆 is related to 𝜂 ∶= 𝜆+ 2

3𝜇,
known as the bulk viscosity, the latter being equal to 0 under Stokes
assumption (in which case, 𝜆 = − 2

3𝜇).
Thanks to the identity −∆ = 𝐜𝐮𝐫𝐥 𝐜𝐮𝐫𝐥−𝐠𝐫𝐚𝐝 div, the linear momen-

tum evolution rewrites:

𝜌 𝜕𝑡𝒖 = −𝜌 (𝒖 ⋅ 𝐠𝐫𝐚𝐝)𝒖 − 𝐠𝐫𝐚𝐝(𝑃 ) − 𝜇 𝐜𝐮𝐫𝐥(𝐜𝐮𝐫𝐥(𝒖)) + (𝜆 + 2𝜇) 𝐠𝐫𝐚𝐝(div(𝒖)).

Let 𝜌 ↦ 𝑒(𝜌) be the internal energy density, and define the Hamil-
onian functional as the total energy of the system:

∶= ∫𝛺

( 1
2
𝜌 ‖𝒖‖2 + 𝜌 𝑒(𝜌)

)

d𝛺.

hoosing the density 𝜌 and the velocity 𝒖 as energy variables, one can
ompute the co-energy variables 𝑒𝜌 ∶= 𝛿𝜌 = 1

2 ‖𝒖‖
2 + 𝑃

𝜌 = ℎ(𝜌, 𝒖)
which is the enthalpy density, and 𝒆𝒖 ∶= 𝛿𝒖 = 𝜌 𝒖 which is the linear
momentum density.

Let us introduce two extra dissipation ports:

• 𝒇 𝑐 ∶= 𝝎 = 𝐜𝐮𝐫𝐥 𝒖 = 𝐜𝐮𝐫𝐥(𝜌−1𝒆𝒖),
• 𝑓𝑑 ∶= div 𝒖 = div(𝜌−1𝒆𝒖),

hich are both physically meaningful, and add the closure relations
𝑒𝑑 = 𝜇𝑑 𝑓𝑑 and 𝒆𝑐 = 𝜇𝑐 𝒇 𝑐 (with 𝜇𝑐 = 𝜇 and 𝜇𝑑 = 𝜆 + 2𝜇 = 4

3𝜇). Then,
following [96], we are in a position to recast the NSE for an isentropic
Newtonian fluid as a pH system.

Theorem 1. The NSE (28) rewrites:

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑡𝜌
𝜕𝑡𝒖
𝒇 𝑐
𝑓𝑑

⎞

⎟

⎟

⎟

⎟

⎠

= ̃

⎛

⎜

⎜

⎜

⎜

⎝

𝑒𝜌
𝒆𝒖
𝒆𝑐
𝑒𝑑

⎞

⎟

⎟

⎟

⎟

⎠

, (29)

where the interconnection differential operator ̃ is:

̃ =

⎡

⎢

⎢

⎢

⎢

0 −div 0 0
−𝐠𝐫𝐚𝐝 𝜌−1.𝐺(𝝎) −𝜌−1.𝐜𝐮𝐫𝐥 𝜌−1.𝐠𝐫𝐚𝐝

0 𝐜𝐮𝐫𝐥(𝜌−1.) 0 0
−1

⎤

⎥

⎥

⎥

⎥

. (30)
⎣

0 div(𝜌 .) 0 0
⎦
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Defining as state variable 𝒙 ∶=
(

𝜌 𝒖⊤
)⊤, collecting the dissipative vari-

bles into vectors 𝒆𝑑 ∶=
(

𝒆⊤𝑐 𝑒𝑑
)⊤ and 𝒇 𝑑 ∶=

(

𝒇⊤𝑐 𝑓𝑑
)⊤ related by the

losure relation 𝒆𝑑 = 𝑆𝒇 𝑑 , with 𝑆 = Diag(𝜇𝑐𝐼𝑛, 𝜇𝑑 ), gives a dissipative
pH system in the sense of Definition 2, provided appropriate collocated
boundary controls and observations are added.

Proof. See [96, eq. (22)]. □

Let us now consider an incompressible fluid with constant mass
density 𝜌 ≡ 𝜌0. The first line of (29) simplifies, and multiplying the
second line by 𝜌0 leads to:

⎛

⎜

⎜

⎝

𝜌0𝜕𝑡𝒖
𝒇 𝑐
0

⎞

⎟

⎟

⎠

=
⎡

⎢

⎢

⎣

𝐺(𝝎) −𝐜𝐮𝐫𝐥 𝐠𝐫𝐚𝐝
𝐜𝐮𝐫𝐥 0 0
div 0 0

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝒖
𝒆𝑐
𝑒𝑑

⎞

⎟

⎟

⎠

. (31)

The divergence-free constraint 𝑓𝑑 = div(𝒖) = 0 is ensured by the
presence of a Lagrange multiplier in the dynamics, under the form
𝐠𝐫𝐚𝐝(𝑒𝑑 ), where −𝑒𝑑 = 𝑃 + 1

2𝜌0 ‖𝒖‖
2 is the total pressure. Hence, the

pressure is determined up to a constant in these equations, as expected
for incompressible fluids. It is intrinsically an infinite-dimensional pH-
DAE. The linearized Navier–Stokes model at low Reynolds number,
known as Oseen PDE, deserves a specific study; the Oseen model recast
in a pH setting has recently been tackled in [120]. For the reformulation
of the Navier–Stokes system and the removal of the pressure term, see
e.g. [47,128], where an explicit solution formula for the linear case is
provided.

Theorem 2. The kinetic energy  = 1
2 ∫𝛺

𝜌0 ‖𝒖‖2 satisfies the power-
balance:

̇ = −∫𝛺
𝒆𝑐 ⋅ 𝒇 𝑐 + ∫𝜕𝛺

(

𝑒𝑑 𝒖 ⋅ 𝒏 − 𝒆𝑐 ⋅ (𝒖 ∧ 𝒏)
)

,

= −∫𝛺
𝜇𝑐 ‖𝝎‖2 + ∫𝜕𝛺

((

𝑃 + 1
2
𝜌0 ‖𝒖‖2

)

𝒖 ⋅ 𝒏 − 𝜇𝑐 𝝎 ⋅ (𝒖 ∧ 𝒏)
)

.
(32)

Proof. See Appendix B.1. □

Remark 6. The negative term in (32) represents the transfer of kinetic
energy into internal energy due to the viscosity.

Remark 7. The boundary power flows show that the normal velocity
𝒖 ⋅ 𝒏 is available for boundary control, whether the fluid be viscous
or not, while the viscous damping is mandatory to have access to the
tangential control of the velocity 𝒖 ∧ 𝒏, since it is multiplied by the
viscous term 𝜇𝑐 .

From now on, we only consider the 2D case. Our goal is to rewrite
the initial problem given in a velocity–pressure formulation into an
equivalent problem written in vorticity-stream function, see e.g. [84].
ollowing [35, §. 1.2], we recall that the curl2𝐷 differential operator is
efined by curl2𝐷(𝒗) ∶= 𝜕𝜁1𝑣2−𝜕𝜁2𝑣1, and that the following integration
y parts formula holds:

∫𝛺
curl2𝐷 (𝒗)𝑤d𝛺 = ∫𝛺

𝒗 ⋅ 𝐠𝐫𝐚𝐝⟂(𝑤)d𝛺 + ∫𝜕𝛺
(𝛩𝒗) ⋅ 𝒏 𝑤 d 𝛾, (33)

here7 𝐠𝐫𝐚𝐝⟂(𝑤) ∶=
(

𝜕𝜁2𝑤
−𝜕𝜁1𝑤

)

, and 𝛩 denotes the rotation of angle − 𝜋
2

in the 2D plane.
Applying curl2𝐷 to the linear momentum conservation equation, the

first line of (31), leads to the following evolution equation for the scalar
vorticity 𝜔 ∶= curl2𝐷(𝒖):

0 𝜕𝑡𝜔 = curl2𝐷 (𝐺(𝜔) 𝒖) − 𝜇𝑐 curl2𝐷 𝐠𝐫𝐚𝐝⟂(𝜔),

7 Care must be taken that in some references, like [106] or [101], the
pposite definition for 𝐠𝐫𝐚𝐝⟂ is chosen. We stick to this one in order to be

consistent with the formal adjoint of the curl operator.
2𝐷 s

7 
where we have used 𝒆𝑐 = 𝜇𝑐 𝐜𝐮𝐫𝐥 𝒖 = 𝜇𝑐 𝜔𝒌 in 3D, and then 𝐜𝐮𝐫𝐥(𝜔𝒌) =
𝐫𝐚𝐝⟂(𝜔) in 2D (since the third component is 0). Another key point is
hat curl2𝐷𝐠𝐫𝐚𝐝 ≡ 0. This classical trick enables eliminating the total

pressure 𝑒𝑑 from the system, as a Leray projector would do.
Assume moreover that the velocity 𝒖 is fully determined by a stream

unction 𝜓 , which is the case for instance if𝛺 is simply connected8; thus

here exists a potential such that 𝒖 = 𝐠𝐫𝐚𝐝⟂𝜓 ∶=
(

𝜕𝜁2𝜓
−𝜕𝜁1𝜓

)

. Substituting

𝒖 with this definition gives in turn:

𝜌0 𝜕𝑡𝜔 = curl2𝐷
(

𝐺(𝜔) 𝐠𝐫𝐚𝐝⟂(𝜓)
)

− 𝜇𝑐 curl2𝐷 𝐠𝐫𝐚𝐝⟂(𝜔). (34)

Proposition 3. For all sufficiently smooth functions 𝜓 :

curl2𝐷
(

𝐺(𝜔) 𝐠𝐫𝐚𝐝⟂(𝜓)
)

= 𝜕𝜁1 (𝜔𝜕𝜁2𝜓) − 𝜕𝜁2 (𝜔𝜕𝜁1𝜓),
= div

(

𝜔 𝐠𝐫𝐚𝐝⟂(𝜓)
)

,
=∶ 𝐽𝜔𝜓.

urthermore, the operator 𝐽𝜔, which is modulated by the energy variable
, is formally skew-symmetric, and satisfies Jacobi identities (see e.g. [106,
xample 7.10]).

roof. Let us compute:

(𝜔) 𝐠𝐫𝐚𝐝⟂(𝜓) =
⎛

⎜

⎜

⎝

0
0
𝜔

⎞

⎟

⎟

⎠

∧
⎛

⎜

⎜

⎝

𝜕𝜁2𝜓
−𝜕𝜁1𝜓

0

⎞

⎟

⎟

⎠

=
(

𝜔𝜕𝜁1𝜓
𝜔𝜕𝜁2𝜓

)

= 𝜔 𝐠𝐫𝐚𝐝𝜓.

Applying curl2𝐷 gives the claimed result.
Then, the formal skew-symmetry is obvious by integration by parts

since, for all 𝜓 ∈ ∞
𝑐 (𝛺):

∫𝛺
div

(

𝜔 𝐠𝐫𝐚𝐝⟂(𝜓)
)

𝜓d𝛺 = −∫𝛺
𝜔 𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝐠𝐫𝐚𝐝(𝜓)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

d𝛺. □

The evolution equation (34) that replaces the initial linear momen-
tum evolution, this induces a change in the energy variable that has to
be considered to write the pH system. More precisely, the Hamiltonian
 must now be considered as a functional of the vorticity:

(𝜔) = 1
2 ∫𝛺

𝜌0 ‖𝒖‖2 d𝛺. (35)

In turn, the co-energy variable has to be computed with respect to this
new energy variable.

Proposition 4. The variational derivative 𝛿𝜔(𝜔) of  is 𝜌0𝜓 .

Proof. This can be found in [106, Example 7.10] up to the presence
of 𝜌0, which plays no role in the computation. □

It is clear that the presence of 𝜌0 has to be taken carefully into
account. There are several ways to deal with it, but one elegant one
is to include this (constant-in-time) parameter in the metric, leading to
the following.

Corollary 5. Consider the weighted 𝐿2-inner product ⟨𝑢, 𝑣⟩𝜌0 ∶=
∫𝛺 𝑢𝑣𝜌0d𝛺, then the variational derivative of , 𝑒𝜔 ∶= 𝛿𝜌0𝜔 (𝜔), is 𝜓 .

Thanks to these results, one can finally write the dynamical system
34) in the pH form:
(

𝜌0𝜕𝑡𝜔
𝑓𝑐

)

=
[

𝐽𝜔 −curl2𝐷𝐠𝐫𝐚𝐝⟂
curl2𝐷𝐠𝐫𝐚𝐝⟂ 0

](

𝜓
𝑒𝑐

)

, (36)

with 𝜔 = curl2𝐷𝒖, 𝑒𝜔 = 𝜓 and 𝑒𝑐 = 𝜇𝑐𝜔, together with the constitutive
relation 𝑒𝑐 = 𝜇𝑐𝑓𝑐 .

The power-balance (32) may be computed with respect to these new
variables.

8 In general, thanks to the Hodge–Helmholtz decomposition of 𝐿2(𝛺), the
tream function is defined up to a divergence-free, irrotational potential.
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Theorem 6. The evolution of the Hamiltonian along the trajectories of
dynamical system (36) with the closure relation is given by:

̇ = −∫𝛺
𝜇𝑐 𝜔

2d𝛺 + ∫𝜕𝛺
𝜔𝜓 𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝒏d 𝛾

+𝜇𝑐 ∫𝜕𝛺
(𝜓 𝐠𝐫𝐚𝐝(𝜔) ⋅ 𝒏 − 𝜔 𝐠𝐫𝐚𝐝(𝜓) ⋅ 𝒏)d 𝛾 , (37)

where we can identify the tangential control 𝑢𝜏 = 𝐠𝐫𝐚𝐝(𝜓)⋅𝒏 and the normal
control 𝑢𝑛 = 𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝒏.

Proof. See Appendix B.2 □

Remark 8. Note that both controls 𝑢𝑛 and 𝑢𝜏 are available in this
formulation. However, another term appears at the boundary in (37),
namely 𝜇𝑐 𝜓 𝐠𝐫𝐚𝐝(𝜔) ⋅ 𝒏, the physical meaning of which is not clear so
far. Noticing that this can be viewed as the power flow corresponding to
the boundary control of 𝜓 , which obviously requires being compatible
with both controls on 𝒖, is crucial to successfully apply the PFEM, as
will be enlightened in Section 3.

Nevertheless, a comparison of (37) with (32) allows deducing the
following property about the pressure 𝑃 :

Corollary 7.

∫𝜕𝛺
𝑃 𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝒏d 𝛾 = ∫𝜕𝛺

(

(

𝜔𝜓 − 1
2
𝜌0‖𝐠𝐫𝐚𝐝⟂(𝜓)‖2

)

𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝒏

𝜇𝑐 𝜓 𝐠𝐫𝐚𝐝(𝜔) ⋅ 𝒏
)

d 𝛾.

Remark 9. In this context, the factorization of minus the 2D scalar
Laplacian −𝛥 = curl2𝐷 𝐠𝐫𝐚𝐝⟂ proves more appropriate than the usual
one, namely −𝛥 = −div 𝐠𝐫𝐚𝐝. The computation is straightforward.

Remark 10. In (36), one can get rid of the realization of dissipation
thanks to dissipative ports, and find the dissipative dynamics in the
classical form  − 𝑆∗ =  −:

𝜌0 𝜕𝑡𝜔 = 𝐽𝜔 𝜓 − 𝜇 𝛥2𝜓 , with 𝜓 = 𝛿𝜌0𝜔  . (38)

Moving from (36) to (38) is not only formal, indeed one of the two
equivalent formulations can bring advantages in some applications:
for example, the interest of the second formulation at the numerical
level has been investigated in the case of the 2D dissipative shallow
water equations in [29]. However, at the theoretical level, the first
formulation with ̃ could be more beneficial, since the domains of
the unbounded operators 𝜔 and  could not coincide, and make the
(𝜔 −) formulation awkward, see e.g. [112] and references therein.

Remark 11. Now the 2D incompressible NSE depend wholly on 2
scalar fields, in comparison with the former velocity formulation which
relied on one vector field and two scalar fields. At the discrete level, this
considerably reduces the number of degrees of freedom.

3. Structure-preserving discretization

This section is devoted to the discretization of distributed pH sys-
tems in a structure-preserving way: the finite-dimensional discrete (in
space) system must be a pH system, and its discrete Hamiltonian should
satisfy a power balance that preserves the continuous power balance.

It is recalled in Appendix A that this power balance is encoded in a
(Stokes-)Dirac structure [38], which can be represented as the graph
of an extended structure operator constructed from the differential
operator  and the boundary operators [22]. At the discrete level, it
should result in two matrices 𝑀 and 𝐽 , the former being symmetric, and

the latter skew-symmetric. 𝑀

8 
In addition to the discretization of the Stokes–Dirac structure, the
constitutive relations require a particular attention to be consistent with
the targeted discrete power balance.

The strategy adopted below relies on the mixed finite element
method, well-established for elliptic problems, and known to be robust
and efficient [15,59]. However, this approach does not allow capturing
discontinuities as is, and would require further work.

3.1. Non-dissipative irrotational shallow water equations

Let us start with the Stokes–Dirac structure generated by the struc-

ture operator  =
[

0 −div
−𝐠𝐫𝐚𝐝 0

]

, i.e., for the irrotational shallow

water equation (19).
The weak formulation of (19) reads, for all test functions (𝜑,𝝓)

smooth enough:

⎧

⎪

⎨

⎪

⎩

∫𝛺
𝜕𝑡ℎ𝜑d𝛺 = −∫𝛺

div
(

𝒆𝛼
)

𝜑d𝛺,

∫𝛺
𝜕𝑡𝜶 ⋅ 𝝓d𝛺 = −∫𝛺

𝐠𝐫𝐚𝐝
(

𝑒ℎ
)

⋅ 𝝓d𝛺.

The boundary control 𝑒𝜕 = −𝒆𝛼 ⋅𝒏, defined in (25), is taken into account
by performing an integration by parts on the first line, leading to:

⎧

⎪

⎨

⎪

⎩

∫𝛺
𝜕𝑡ℎ𝜑d𝛺 = ∫𝛺

𝒆𝛼 ⋅ 𝐠𝐫𝐚𝐝 (𝜑) d𝛺 + ∫𝜕𝛺
𝑒𝜕𝜑d 𝛾,

∫𝛺
𝜕𝑡𝜶 ⋅ 𝝓d𝛺 = −∫𝛺

𝐠𝐫𝐚𝐝
(

𝑒ℎ
)

⋅ 𝝓d𝛺.
(39)

Consider three finite element families (𝜑𝑖)𝑖=1,…,𝑁ℎ , (𝝓𝑘)𝑘=1,…,𝑁𝛼 and
(𝜉𝑚)𝑚=1,…,𝑁𝜕 for the approximation of the ℎ-type variables, the 𝛼-type
variables and the boundary variables respectively, as follows:

ℎ(𝜻 , 𝑡) ≃ ℎ𝑑 (𝜻 , 𝑡) ∶=
𝑁ℎ
∑

𝑖=1
ℎ𝑖(𝑡)𝜑𝑖(𝜻), 𝑒ℎ(𝜻 , 𝑡) ≃ 𝑒𝑑ℎ(𝜻 , 𝑡) ∶=

𝑁ℎ
∑

𝑖=1
𝑒𝑖ℎ(𝑡)𝜑

𝑖(𝜻),

for the scalar fields,

𝜶(𝜻 , 𝑡) ≃ 𝜶𝑑 (𝜻 , 𝑡) ∶=
𝑁𝛼
∑

𝑘=1
𝛼𝑘(𝑡)𝝓𝑘(𝜻), 𝒆𝜶(𝜻 , 𝑡) ≃ 𝒆𝑑𝜶(𝜻 , 𝑡) ∶=

𝑁𝛼
∑

𝑘=1
𝑒𝑘𝛼(𝑡)𝝓

𝑘(𝜻),

for the vector fields, and at the boundary:

𝑒𝜕(𝒔, 𝑡) ≃ 𝑒𝑑𝜕 (𝒔, 𝑡) ∶=
𝑁𝜕
∑

𝑚=1
𝑒𝑚𝜕 (𝑡)𝜉

𝑚(𝒔), 𝑓𝜕(𝒔, 𝑡) ≃ 𝑓 𝑑𝜕 (𝒔, 𝑡) ∶=
𝑁𝜕
∑

𝑚=1
𝑓𝑚𝜕 (𝑡)𝜉

𝑚(𝒔).

The coefficients □𝑗 (𝑡) of the approximation □𝑑 of □ are collected in a
vector denoted □(𝑡).

Plugging these approximations into (39) and taking the finite ele-
ments families as test functions, one gets:
[

𝑀ℎ 0
0 𝑀𝜶

](

ℎ̇(𝑡)
𝛼̇(𝑡)

)

=
[

0 𝐷
−𝐷⊤ 0

]

(

𝑒ℎ(𝑡)
𝑒𝛼(𝑡)

)

+
[

𝐵
0

]

𝑒𝜕(𝑡), (40)

where the mass matrices on the left-hand side are defined as:

(𝑀ℎ)𝑖,𝑗 ∶= ∫𝛺
𝜑𝑗 𝜑𝑖d𝛺, (𝑀𝜶)𝑘,𝓁 ∶= ∫𝛺

𝝓𝓁 ⋅ 𝝓𝑘d𝛺,

nd the differential and control matrices on the right-hand side are
efined as:

𝐷)𝑘,𝑗 ∶= ∫𝛺
𝝓𝑘 ⋅ 𝐠𝐫𝐚𝐝

(

𝜑𝑗
)

d𝛺, (𝐵)𝑚,𝑗 ∶= ∫𝜕𝛺
𝜉𝑚𝜑𝑗d 𝛾.

ote that 𝐷 ∈ R𝑁ℎ×𝑁𝛼 and 𝐵 ∈ R𝑁ℎ×𝑁𝜕 are not square matrices.
If furthermore one writes the weak form of the output 𝑓𝜕 defined

n (25), one obtains:

𝜕𝛺
𝑓𝜕 𝜉d 𝛾 = ∫𝜕𝛺

𝑒ℎ 𝜉d 𝛾,

hich leads once approximated with the boundary finite elements:

𝑓 (𝑡) = 𝐵⊤𝑒 (𝑡),
𝜕 𝜕 ℎ
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where the boundary mass matrix is defined as:

(𝑀𝜕)𝑚,𝓁 ∶= ∫𝜕𝛺
𝜉𝓁𝜉𝑚d 𝛾.

his latter equation gathered with (40) allows one to identify the
atrices representing a finite-dimensional Dirac structure:

⎡

⎢

⎢

⎣

𝑀ℎ 0 0
0 𝑀𝜶 0
0 0 𝑀𝜕

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑴

⎛

⎜

⎜

⎝

ℎ̇(𝑡)
𝛼̇(𝑡)

−𝑓𝜕(𝑡)

⎞

⎟

⎟

⎠

=
⎡

⎢

⎢

⎣

0 𝐷 𝐵
−𝐷⊤ 0 0
−𝐵⊤ 0 0

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑱

⎛

⎜

⎜

⎜

⎝

𝑒ℎ(𝑡)
𝑒𝛼(𝑡)
𝑒𝜕(𝑡)

⎞

⎟

⎟

⎟

⎠

. (41)

t is clear that 𝑴 is symmetric positive-definite and that 𝑱 is skew-
ymmetric. Then, the graph of 𝑱 proves to be a Dirac structure in
(𝑁ℎ+𝑁𝛼+𝑁𝜕 )2 equipped with the metric induced by 𝑴 , see [133].

To achieve the structure-preserving discretization, it remains to take
he constitutive relations into account, in such a way the power balance
f the discrete Hamiltonian will mimic the continuous one.

At least two approaches may be used to reach our goal, which prove
quivalent in the case of a polynomial (but not necessarily quadratic)
amiltonian, as considered in this work. The first way is to define the
onstitutive relations at the discrete level, by making use of the gradient
f the discrete Hamiltonian in the metrics induced by 𝑀ℎ and 𝑀𝜶 , as
t has been done, e.g., in [31, Section 4.2]. On the other hand, one can
irectly write down the weak formulations of (22), as follows:

𝛺
𝑒ℎ𝜑d𝛺 = ∫𝛺

‖𝜶‖2 𝜑
2𝜌

d𝛺 + ∫𝛺
ℎ 𝜌𝑔𝜑d𝛺,

∫𝛺
𝒆𝜶 ⋅ 𝝓d𝛺 = ∫𝛺

ℎ𝜶 ⋅
𝝓
𝜌
d𝛺.

he finite element approximations then lead to:

ℎ 𝑒ℎ(𝑡) = 𝑁[𝛼(𝑡)] 𝛼(𝑡) +𝑄ℎ ℎ(𝑡),

where:

(𝑄ℎ)𝑖,𝑗 ∶= ∫𝛺
𝜑𝑗𝜌𝑔𝜑𝑖d𝛺, (𝑁[𝛼(𝑡)])𝑖,𝓁 ∶= ∫𝛺

𝜶𝑑
2𝜌

⋅ 𝝓𝓁 𝜑𝑖d𝛺,

nd,

𝜶 𝑒𝛼(𝑡) = 𝑄𝜶[ℎ(𝑡)] 𝛼(𝑡),

here:

𝑄𝜶[ℎ(𝑡)])𝑘,𝓁 ∶= ∫𝛺
ℎ𝑑

𝜌
𝝓𝓁 ⋅ 𝝓𝑘d𝛺.

These may be gathered in a more compact form as:
[

𝑀ℎ 0
0 𝑀𝜶

]

(

𝑒ℎ(𝑡)
𝑒𝛼(𝑡)

)

=
[

𝑄ℎ 𝑁[𝛼(𝑡)]
0 𝑄𝜶[ℎ(𝑡)]

](

ℎ(𝑡)
𝛼(𝑡)

)

. (42)

Let us define the discrete Hamiltonian 𝑑 as the evaluation of the
continuous one , defined in (21), in the approximated variables, as
follows:

𝑑 (ℎ(𝑡), 𝛼(𝑡)) ∶= (ℎ𝑑 (𝑡,𝒙),𝜶𝑑 (𝑡,𝒙)) = ∫𝛺

[

ℎ𝑑

2𝜌
‖

‖

‖

𝜶𝑑‖‖
‖

2
+
𝜌𝑔
2
(ℎ𝑑 )2

]

d𝛺.

Hence, with the notations of this section, the discrete Hamiltonian 𝑑

rewrites:

𝑑 (ℎ(𝑡), 𝛼(𝑡)) = 1
2
𝛼(𝑡)⊤𝑄𝜶[ℎ(𝑡)] 𝛼(𝑡) +

1
2
ℎ(𝑡)⊤𝑄ℎ ℎ(𝑡). (43)

Remark 12. As already said, the polynomial structure of the Hamilto-
nian is crucial in this work, as the discrete weak form of the variational
derivatives of the continuous Hamiltonian turns out to be the gradient
of the discrete Hamiltonian in the metric induced by the mass matrices.
Indeed, compare (42) with [30, Eq. (4.25) and (4.29)]. This is indeed
true, thanks to the equality:
1
2
𝛼(𝑡)⊤𝑄𝜶[ℎ(𝑡)] 𝛼(𝑡) = 𝛼(𝑡)⊤𝑁[𝛼(𝑡)]⊤ ℎ(𝑡),

which would not occur if the Hamiltonian were not polynomial.
9 
Thanks to this equality, the notations 𝑄𝜶[ℎ(𝑡)] and 𝑁[𝛼(𝑡)] indeed
make sense, even if it is ℎ𝑑 and 𝜶𝑑 , respectively, which appear in the
definitions of the nonlinear matrices 𝑄𝜶[ℎ(𝑡)] and 𝑁[𝛼(𝑡)].

Two worked-out examples where the polynomial structure of the
relations proves crucial in applying the PFEM can be found in [11] for
Allen–Cahn model, and in [10] for the Cahn–Hilliard model.

Theorem 8. Let (ℎ(𝑡), 𝛼(𝑡), 𝑒ℎ(𝑡), 𝑒𝛼(𝑡)) be a trajectory, i.e., it satisfies the
iscrete system (41)–(42) for some initial data and some control 𝑒𝜕(𝑡), for
𝑡 ≥ 0. Then, the discrete Hamiltonian 𝑑 defined in (43) satisfies the
discrete power balance:
d
d𝑡
𝑑 (ℎ(𝑡), 𝛼(𝑡)) = 𝑒𝜕(𝑡)⊤𝑀𝜕𝑓𝜕(𝑡), (44)

which preserves the continuous one (26) at the discrete level.

Proof. See Appendix B.3 □

3.2. Tackling dissipation

Dissipation in the framework of pH systems has been presented in
Section 2.2. It relies on an extra port (𝒇 𝑑 , 𝒆𝑑 ), called dissipative, which
models the loss of energy (i.e., the decay of ). It has been recalled that
such a port, combined with a dissipative constitutive relation linking 𝒆𝑑
to 𝒇 𝑑 (e.g., for linear dissipation 𝒆𝑑 = 𝑆𝒇 𝑑 with 𝑆 > 0), may be viewed
as an appropriate decomposition of the dissipative operator  = 𝑆⋆
of the PDE under consideration.

The PFEM is versatile enough to consider both approaches for
simulations, either including  in the dynamics, or its decomposition
𝑆⋆. The former is straightforward as it does not need the addition
of a dissipative port, while the latter may require more attention for
discretization. The choice of one or the other form depends on the
desired outcomes of the numerical experiments.

Nonlinear dissipation. In this case,  ≡
[

0
𝐼

]

(the dissipation acts on

the linear momentum equation) and the operator generating the non-
linear dissipation is considered outside the Dirac structure, i.e., in the
dissipative constitutive relation as  (ℎ,𝜶, 𝒆𝑑 ,𝒇 𝑑 ) = 0, as presented
for the 1D SWE in Remark 3. The dissipative port is of the same
mathematical nature as the 𝜶-type port, and can be approximated with
the same finite element family (although this is not mandatory). Hence,
this leads to the extended Dirac structure:

⎡

⎢

⎢

⎢

⎢

⎣

𝑀ℎ 0 0 0
0 𝑀𝜶 0 0
0 0 𝑀𝜶 0
0 0 0 𝑀𝜕

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

ℎ̇(𝑡)
𝛼̇(𝑡)
𝑓𝑑 (𝑡)
−𝑓𝜕(𝑡)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

0 𝐷 0 𝐵
−𝐷⊤ 0 𝑀𝜶 0
0 −𝑀𝜶 0 0

−𝐵⊤ 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝑒ℎ(𝑡)
𝑒𝛼(𝑡)
𝑒𝑑 (𝑡)
𝑒𝜕(𝑡)

⎞

⎟

⎟

⎟

⎟

⎠

.

his Dirac structure implies straightforwardly the following power
alance:
d
d𝑡
𝑑 (ℎ(𝑡), 𝛼(𝑡)) = 𝑒𝜕(𝑡)⊤𝑀𝜕𝑓𝜕(𝑡) − 𝑒𝑑 (𝑡)⊤𝑀𝜶 𝑓𝑑 (𝑡),

hich contains the term 𝑒𝑑 (𝑡)⊤𝑀𝜶 𝑓𝑑 (𝑡), non-negative if the dissipative
onstitutive relation  (ℎ,𝜶, 𝒆𝑑 ,𝒇 𝑑 ) = 0 is indeed a dissipation, e.g.,

of the form 𝒆𝑑 = 𝐶(𝜶, ℎ)𝒇 𝑑 , with 𝐶(𝜶, ℎ) ≥ 0. Such a constitutive
elation would give at the discrete level: 𝑀𝜶 𝑒𝑑 = 𝐶[ℎ𝑑 ,𝜶𝑑 ] 𝑓𝑑 , with
𝐶[ℎ𝑑 ,𝜶𝑑 ] ≥ 0. In this latter case, the power balance becomes:
d
d𝑡
𝑑 (ℎ(𝑡), 𝛼(𝑡)) = 𝑒𝜕(𝑡)⊤𝑀𝜕𝑓𝜕(𝑡) − 𝑓𝑑 (𝑡)⊤𝐶[ℎ𝑑 (𝑡),𝜶𝑑 (𝑡)] 𝑓𝑑 (𝑡)

≤ 𝑒𝜕(𝑡)⊤𝑀𝜕𝑓𝜕(𝑡) .

This encompasses the following empirical laws [81, § 7.2.6], which
are used to model the friction of the fluid with the bottom of the
channel:

• Fanning friction: (𝐶[ℎ𝑑 ,𝜶𝑑 ])𝑘,𝓁 = 𝐶𝑓
‖

‖

𝛼𝑑‖
‖ 𝝓𝓁 ⋅ 𝝓𝑘d𝛺;
∫𝛺 ℎ𝑑
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Fig. 2. Total energy and Lyapunov Function.
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• Manning friction: (𝐶[ℎ𝑑 ,𝜶𝑑 ])𝑘,𝓁 = 𝑔𝑛2 ∫𝛺

‖

‖

𝛼𝑑‖
‖

(ℎ𝑑 )
4
3

𝝓𝓁 ⋅ 𝝓𝑘d𝛺;

• Darcy–Weisbach: (𝐶[ℎ𝑑 ,𝜶𝑑 ])𝑘,𝓁 =
𝑓𝐷𝑊
8 ∫𝛺

‖

‖

𝛼𝑑‖
‖

ℎ𝑑
𝝓𝓁 ⋅ 𝝓𝑘d𝛺;

• Kellerhals friction: (𝐶[ℎ𝑑 ,𝜶𝑑 ])𝑘,𝓁 = 𝑔𝑟2 ∫𝛺

‖

‖

𝛼𝑑‖
‖

(ℎ𝑑 )
3
2

𝝓𝓁 ⋅ 𝝓𝑘d𝛺.

inear dissipation of Navier–Stokes type. Indeed, in addition to model-
ng the friction of the fluid with the bottom of the channel, viscous
issipation can be introduced by incorporating the analogue of the
avier–Stokes dissipative terms in the SWE model: it involves an
nbounded linear operator. One could first guess to add a −𝜟 diffusion
erm, as was first proposed in [31]; however the careful derivation of
he damping model should be made with care, see [56] in 1D and [88]
n 2D, where the model exhibits a ℎ-dependent dissipation term. A
tructure-preserving pH discretization of this more advanced model,
nvolving symmetric tensors, can be found in [29].

.3. Example of the rotational SWE with boundary-feedback control

In this example, previously discussed in [28], a boundary-feedback
ontrol law is used with the goal of damping the waves. Indeed, one of
he motivations for using the pH framework is that applying passivity-
ased control laws is straightforward. For example, a simple boundary
utput-feedback as:

𝜕 = −𝑘𝑒𝜕 , (45)

eads (26) to the following power-balance:
d
d𝑡
 = −𝑘∫𝜕𝛺

(

𝑒𝜕
)2 d 𝛾 , (46)

from which the Hamiltonian is monotonically decreasing d
d𝑡
 ≤ 0 if

> 0. Recall that from (25), 𝑒𝜕 = −𝒆𝛼 ⋅ 𝒏 , is the ingoing volumetric
luid flux and 𝑓𝜕 = 𝑒ℎ is the pressure, both at the boundary.

This control law is of low applicability for the SWE, since it removes
nergy not only by damping the waves, but also by removing water
rom inside the tank (thus, the potential energy is reduced). For this
eason, we used the following slightly modified control law:

𝜕 = −𝑘(𝑒𝜕 − 𝑒0𝜕) , (47)

here 𝑒0𝜕 is the desired output, given by the steady-state total pressure
t the boundary (𝑒ℎ = 𝜌𝑔ℎ0) at the desired fluid height ℎ0.

It is straightforward to prove that the previous boundary control law
tabilizes the infinite-dimensional dynamical system in the sense of Lya-
unov around an equilibrium: We can define a ‘‘desired Hamiltonian’’,
r Lyapunov function, given by:

=
[

1𝜌𝑔
(

ℎ − ℎ0
)2 + 1 ℎ‖𝜶‖2

]

d𝛺 , (48)
∫𝛺 2 2𝜌 a

10 
By computing the time-derivative of the Lyapunov function along
trajectories, using the feedback law proposed in (47), we get:

𝑉̇ = −𝑘∫𝜕𝛺

(

𝑒𝜕 − 𝑒0𝜕(𝜃)
)2 d 𝛾 . (49)

Thus, if 𝑘 > 0, the Lyapunov function shall reduce monotonically
towards the minimum point of (48) (ℎ = ℎ0 and 𝜶 = 𝟎).

Numerical results for the closed-loop SWE
The feedback control law, from (47), can be implemented as an

additional constitutive relationship that relates 𝑓𝜕 and 𝑒𝜕 in the finite-
imensional approximated system (41).

The following simulation considers a circular tank with radius 𝑅,
ith radial coordinate 𝑟 and polar coordinate 𝜃, assuming the following

nitial conditions:
ℎ(𝑡 = 0, 𝑟, 𝜃) = cos(𝜋𝑟∕𝑅) cos(2𝜃) ,

(𝑡 = 0, 𝑟, 𝜃) = 𝜌𝒖 = 𝟎 .
(50)

he boundary conditions are assumed to be:

𝜕 = 0 , 𝑡 ≤ 0.5 s ,

𝜕 = −𝑘
(

𝑒𝜕(𝑡, 𝑠) − 𝑒0𝜕
)

, 𝑡 > 0.5 s ,
(51)

.e. the feedback control law proposed is activated after 0.5 s of sim-
lation. A video of this simulation can be downloaded in https://
extcloud.isae.fr/index.php/s/4TrMBSZa86cL6w2.

Continuous Galerkin elements with 1st-order Lagrange polynomials
re used for approximating the ℎ variable, and discontinuous Galerkin
lements with 0-order Lagrange polynomials are used for approximat-
ng the 𝜶 variables. The system Hamiltonian as well as the Lyapunov
unction are presented as a function of time in Fig. 2. Note that during
he first 0.5 s of the simulation, both the Hamiltonian (total energy) and
he Lyapunov function are constant. After 0.5 s, the Hamiltonian re-
uces and oscillates until converging to the new energy minimum. The
yapunov function monotonically decreases towards zero. Snapshots of
he simulation are presented in Fig. 3.

.4. Example of the incompressible Navier–Stokes equations

In order to reduce as much as possible the number of degrees of
reedom needed to discretize the incompressible NSE in a structure-
reserving way, the vorticity–stream function formulation has been
hosen in Section 2.4. However, some adaptations are required for the
oundary controls to remain identical to those of the initial system,
s another term appears in the power balance (37). Furthermore, the
onstitutive relation linking the vorticity 𝜔 to the stream function 𝜓
eveals differential: −𝛥𝜓 = 𝜔. This means that at least two choices

re possible for the resolution in time of the discrete system: either

https://nextcloud.isae.fr/index.php/s/4TrMBSZa86cL6w2
https://nextcloud.isae.fr/index.php/s/4TrMBSZa86cL6w2
https://nextcloud.isae.fr/index.php/s/4TrMBSZa86cL6w2


F.L. Cardoso-Ribeiro et al. Computers and Fluids 283 (2024) 106407 
Fig. 3. Boundary control using a proportional gain 𝑡end = 3[𝑠].
we differentiate twice, requiring sufficiently rich finite elements, or we
perform an integration by part to reduce the order of derivation, to the
price of another boundary term, involving the time derivative of the
control. In the following, the latter is chosen, in an implicit form: the
constitutive relation is embedded in the dynamical system, see (52).

Indeed, to reduce the complexity of the system, an efficient strategy
is to consider the co-energy formulation, involving only the co-energy
and effort variables by substituting the constitutive relations into the
dynamical system: −𝛥𝜓 = 𝜔, and 𝜇−1𝑐 𝑒𝑐 = 𝑓𝑐 are used in (36), leading
to the system:
(

−𝜌0 𝛥𝜕𝑡𝜓
𝜇−1𝑐 𝑒𝑐

)

=
[

𝐽𝜔 −curl2𝐷 𝐠𝐫𝐚𝐝⟂
curl2𝐷 𝐠𝐫𝐚𝐝⟂ 0

](

𝜓
𝑒𝑐

)

. (52)

We may now apply the PFEM: we write the weak formulation of (52),
perform appropriate integration by part, and project the system on
finite element families.

For all sufficiently smooth test functions (𝜑,𝛷), one has:

⎧

⎪

⎨

⎪

⎩

−∫𝛺
𝜌0 𝜕𝑡𝛥𝜓 𝜑 d𝛺 = ∫𝛺

𝐽𝜔𝜓 𝜑 d𝛺 − ∫𝛺
curl2𝐷 𝐠𝐫𝐚𝐝⟂

(

𝑒𝑐
)

𝜑 d𝛺,

∫𝛺
𝜇−1𝑐 𝑒𝑐 𝛷 d𝛺 = ∫𝛺

curl2𝐷 𝐠𝐫𝐚𝐝⟂ (𝜓) 𝛷 d𝛺.

(53)

Every differential operators in this system, including 𝐽𝜔, are of second
order. Let us integrate by part on each of them.

−∫𝛺
𝜌0 𝜕𝑡𝛥𝜓 𝜑 d𝛺 = −∫𝛺

𝜌0 𝛥𝜕𝑡𝜓 𝜑 d𝛺

= ∫𝛺
𝜌0 𝐠𝐫𝐚𝐝

(

𝜕𝑡𝜓
)

⋅ 𝐠𝐫𝐚𝐝 (𝜑) d𝛺 − ∫𝜕𝛺
𝜌0 𝐠𝐫𝐚𝐝

(

𝜕𝑡𝜓
)

⋅ 𝒏 𝜑 d 𝛾

= ∫𝛺
𝜌0 𝐠𝐫𝐚𝐝

(

𝜕𝑡𝜓
)

⋅ 𝐠𝐫𝐚𝐝 (𝜑) d𝛺 − ∫𝜕𝛺
𝜌0 𝜕𝑡 𝐠𝐫𝐚𝐝 (𝜓) ⋅ 𝒏⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝒖∧𝒏=𝑢𝜏

𝜑 d 𝛾.

(54)

∫𝛺
𝐽𝜔𝜓 𝜑 d𝛺 = ∫𝛺

div
(

𝜔𝐠𝐫𝐚𝐝⟂ (𝜓)
)

𝜑 d𝛺

= −∫𝛺
𝜔 𝐠𝐫𝐚𝐝⟂ (𝜓) ⋅ 𝐠𝐫𝐚𝐝 (𝜑) d𝛺

+∫𝜕𝛺
𝜔 𝐠𝐫𝐚𝐝⟂ (𝜓) ⋅ 𝒏
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝜑 d 𝛾.

(55)
𝒖⋅𝒏=𝑢𝑛

11 
−∫𝛺
curl2𝐷 𝐠𝐫𝐚𝐝⟂

(

𝑒𝑐
)

𝜑 d𝛺 = −∫𝛺
𝐠𝐫𝐚𝐝⟂

(

𝑒𝑐
)

⋅ 𝐠𝐫𝐚𝐝⟂ (𝜑) d𝛺

+∫𝜕𝛺

(

𝐠𝐫𝐚𝐝
(

𝑒𝑐
))

⋅ 𝒏
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=𝑦𝑐

𝜑 d 𝛾. (56)

∫𝛺
curl2𝐷 𝐠𝐫𝐚𝐝⟂ (𝜓) 𝛷 d𝛺 = ∫𝛺

𝐠𝐫𝐚𝐝⟂ (𝜓) ⋅ 𝐠𝐫𝐚𝐝⟂ (𝛷) d𝛺

−∫𝜕𝛺
(𝐠𝐫𝐚𝐝 (𝜓)) ⋅ 𝒏
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝒖∧𝒏=𝑢𝜏

𝛷 d 𝛾. (57)

Plugging (54)–(55)–(56)–(57) into (53) gives:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∫𝛺
𝜌0 𝐠𝐫𝐚𝐝

(

𝜕𝑡𝜓
)

⋅ 𝐠𝐫𝐚𝐝 (𝜑) d𝛺 = −∫𝛺
𝜔 𝐠𝐫𝐚𝐝⟂ (𝜓) ⋅ 𝐠𝐫𝐚𝐝 (𝜑) d𝛺

+∫𝜕𝛺

(

𝜌0 𝜕𝑡𝑢𝜏 + 𝜔𝑢𝑛
)

𝜑 d 𝛾 + ∫𝜕𝛺
𝑦𝑐 𝜑 d 𝛾,

∫𝛺
𝜇−1𝑐 𝑒𝑐 𝛷 d𝛺 = ∫𝛺

𝐠𝐫𝐚𝐝⟂ (𝜓) ⋅ 𝐠𝐫𝐚𝐝⟂ (𝛷) d𝛺

−∫𝜕𝛺
𝑢𝜏 𝛷 d 𝛾.

(58)

Normal and tangential boundary controls for the velocity (𝑢𝑛 and 𝑢𝜏 re-
spectively) are now available in the weak formulation. The observation
variable 𝑦𝑐 is the colocated boundary observation of the extra control
of 𝜓 at the boundary (appearing in (37)), that has to be carefully
set for compatibility with the two controls 𝑢𝑛 and 𝑢𝜏 . Furthermore,
the tangential control appears to require 𝐶1 regularity in time for
the resolution. This comes from the substitution of the differential
constitutive relation into the dynamical system, as expected.

Let (𝜑𝑖)𝑖=1,…,𝑁𝜓 , (𝛷𝑘)𝑘=1,…,𝑁𝑐 , and (𝜉𝑚)𝑚=1,…,𝑁𝜕 be three finite el-
ement basis of approximation for 𝜓 , 𝑒𝑐 , and boundary scalar fields
respectively. We denote:

𝜓𝑑 (𝜻 , 𝑡) ∶=
𝑁𝜓
∑

𝑖=1
𝜓 𝑖(𝑡)𝜑𝑖(𝜻), 𝑒𝑑𝑐 (𝜻 , 𝑡) ∶=

𝑁𝑐
∑

𝑘=1
𝑒𝑘𝑐 (𝑡)𝛷

𝑘(𝜻),

𝑢□(𝒔, 𝑡) ∶=
𝑁𝜕
∑

𝑚=1
𝑢𝑚□(𝑡)𝜉𝑚(𝒔), 𝑦𝑐 (𝒔, 𝑡) ∶=

𝑁𝜕
∑

𝑚=1
𝑦𝑚𝑐 (𝑡)𝜉

𝑚(𝒔),

the approximations of 𝜓 , 𝑒𝑐 , 𝑢𝑛 and 𝑢𝜏 , and 𝑦𝑐 . Note that we take the

same finite element basis at the boundary for the sake of simplicity.
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The discrete weak formulation is then given by: taking 𝜑 = 𝜑𝑖 for
ll 𝑖 ∈ {1,… , 𝑁𝜓} and 𝛷 = 𝛷𝑘 for all 𝑘 ∈ {1,… , 𝑁𝑐} as test functions:
[

𝑀𝜓 0
0 𝑀𝑐

]

(

𝜓̇
𝑒𝑐

)

=
[

𝐽𝜔[𝜔𝑑 ] −𝐷
𝐷⊤ 0

]

(

𝜓
𝑒𝑐

)

+
[

𝐵𝑛[𝜔𝑑 ] 0 𝐵d𝑡 𝐵𝑐
0 𝐵𝜏 0 0

]

⎛

⎜

⎜

⎜

⎜

⎝

𝑢𝑛
𝑢𝜏
̇𝑢𝜏
𝑦𝑐

⎞

⎟

⎟

⎟

⎟

⎠

, (59)

where □ is the collection of the time-dependent coefficients of the
approximation □𝑑 in the associated finite element basis, and:

(𝑀𝜓 )𝑖,𝑗 ∶= ∫𝛺
𝜌0 𝐠𝐫𝐚𝐝(𝜑𝑗 )⋅𝐠𝐫𝐚𝐝(𝜑𝑖) d𝛺, (𝑀𝑐 )𝑘,𝓁 ∶= ∫𝛺

𝜇−1𝑐 𝛷𝓁𝛷𝑘d𝛺,

(𝐽𝜔[𝜔𝑑 ])𝑖,𝑗 ∶= ∫𝛺
𝜔𝑑 𝐠𝐫𝐚𝐝⟂

(

𝜑𝑗
)

⋅ 𝐠𝐫𝐚𝐝
(

𝜑𝑖
)

d𝛺,

(𝐷)𝑖,𝓁 ∶= ∫𝛺
𝐠𝐫𝐚𝐝⟂(𝛷𝓁) ⋅ 𝐠𝐫𝐚𝐝⟂(𝜑𝑖)d𝛺,

(𝐵𝑛[𝜔𝑑 ])𝑖,𝑛 ∶= ∫𝜕𝛺
𝜔𝑑 𝜉𝑛 𝜑𝑖d 𝛾, (𝐵𝜏 )𝑘,𝑛 ∶= −∫𝜕𝛺

𝜉𝑛 𝛷𝑘d 𝛾,

(𝐵d𝑡)𝑘,𝑛 ∶= ∫𝜕𝛺
𝜌0 𝜉

𝑛 𝜑𝑖 d 𝛾, (𝐵𝑐 )𝑖,𝑛 ∶= ∫𝜕𝛺
𝜉𝑛 𝜑𝑖d 𝛾.

Note that 𝐷 ∈ R𝑁𝜓×𝑁𝑐 is not square in general (as 𝐵𝑛[𝜔𝑑 ], 𝐵𝑐 , 𝐵d𝑡 ∈
R𝑁𝜓×𝑁𝜕 and 𝐵𝜏 ∈ R𝑁𝑐×𝑁𝜕 ).

Remark 13. Interestingly, integration by parts has been here per-
formed on both lines, while PFEM usually relies on one integration by
parts on the appropriate line (depending on the considered causality).

Dirac-structure and power balance. Let us consider the colocated bound-
ary observations 𝑦𝑛, 𝑦𝜏 and 𝑦d𝑡 as well as the colocated control 𝑢𝑐 ,
obtained by taking the transpose of the big control matrix on the
right-hand side of (59):

⎡

⎢

⎢

⎢

⎢

⎣

𝑀𝜕 0 0 0
0 𝑀𝜕 0 0
0 0 𝑀𝜕 0
0 0 0 𝑀𝜕

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝑦𝑛
𝑦𝜏
𝑦d𝑡
𝑢𝑐

⎞

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵𝑛[𝜔𝑑 ]⊤ 0
0 𝐵⊤𝜏
𝐵⊤d𝑡 0
𝐵⊤𝑐 0

⎤

⎥

⎥

⎥

⎥

⎦

(

𝜓
𝑒𝑐

)

,

where:

(𝑀𝜕)𝑚,𝓁 ∶= ∫𝜕𝛺
𝜉𝓁 𝜉𝑚d 𝛾,

is the boundary mass matrix.
Then, a discrete Dirac structure is given by gathering the above

and (59) as follows:

Diag

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑀𝜓
𝑀𝑐
𝑀𝜕
𝑀𝜕
𝑀𝜕
𝑀𝜕

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐌

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜓̇
𝑒𝑐
−𝑦𝑛
−𝑦𝜏
−𝑦d𝑡
𝑢𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐽𝜔[𝜔𝑑 ] −𝐷 𝐵𝑛[𝜔𝑑 ] 0 𝐵d𝑡 −𝐵𝑐
𝐷⊤ 0 0 𝐵𝜏 0 0

−𝐵𝑛[𝜔𝑑 ]⊤ 0 0 0 0 0
0 −𝐵⊤𝜏 0 0 0 0

−𝐵⊤d𝑡 0 0 0 0 0
𝐵⊤𝑐 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜓
𝑒𝑐
𝑢𝑛
𝑢𝜏
𝑢̇𝜏
−𝑦𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (60)

This Dirac structure will help computing the power balance satisfied by

the discrete Hamiltonian, defined as the continuous one (35) evaluated

12 
in the discretization of the energy variable 𝜔𝑑 . Two difficulties arise:
first, we recall that 𝜔 is implicit in the definition (35), second, we do
not have access to 𝜔 in our simulation, but to 𝜓 and 𝑒𝑐 . Nevertheless,
the following proposition holds true.

Proposition 9. The discrete Hamiltonian can be defined as:

𝑑 (𝜔) = 1
2 ∫𝛺

𝜌0
‖

‖

‖

𝐠𝐫𝐚𝐝
(

𝜓𝑑
)

‖

‖

‖

2
d𝛺,

= 1
2
𝜓⊤𝑀𝜓 𝜓.

(61)

Proof. By definition of the stream function 𝜓 , one has 𝒖 = 𝐠𝐫𝐚𝐝⟂(𝜓).
At the discrete level, this reads 𝒖𝑑 = 𝐠𝐫𝐚𝐝⟂(𝜓𝑑 ), hence:

𝑑 (𝜔) = 1
2 ∫𝛺

𝜌0
‖

‖

‖

𝐠𝐫𝐚𝐝⟂
(

𝜓𝑑
)

‖

‖

‖

2
d𝛺,

holds. Furthermore, a trivial computation shows that ‖‖
‖

𝐠𝐫𝐚𝐝⟂
(

𝜓𝑑
)

‖

‖

‖

2
=

𝐠𝐫𝐚𝐝
(

𝜓𝑑
)

‖

‖

‖

2
, leading to the first claimed equality. Replacing 𝜓𝑑 (𝜻 , 𝑡)

by the sum ∑𝑁𝜓
𝑖=1 𝜓

𝑖(𝑡)𝜑𝑖(𝜻) gives the second claimed equality. □

Remark 14. The discretization 𝒖𝑑 of the velocity field as defined above
is consistent with both the discrete stream function 𝜓𝑑 (by definition)
and the discrete vorticity 𝜔𝑑 . Indeed, 𝜔𝑑 must satisfy 𝜔𝑑 = curl2𝐷𝒖𝑑 ,
which becomes 𝜔𝑑 = curl2𝐷𝐠𝐫𝐚𝐝⟂(𝜓𝑑 ) = −𝛥𝜓𝑑 (in a weak sense), i.e.
the constitutive relation that has been used to eliminate 𝜔𝑑 .

Remark 15. The ‘‘mass’’ matrix 𝑀𝜓 is a stiffness-like matrix in this
particular case where the constitutive relation −𝛥𝜓 = 𝜔 has been em-
bedded into the dynamical system. It is not positive-definite, however,
the big block diagonal ‘‘mass’’ matrix 𝐌 on the left-hand side of the
Dirac structure (60) is positive-definite as soon as the initial value of
the boundary control 𝑢𝑐 (0) is compatible with the initial value of 𝜙(0),
i.e., on:

𝑋 ∶=
{

(

𝜓⊤ 𝑒𝑐⊤ −𝑦𝑛⊤ −𝑦𝜏⊤ −𝑦d𝑡⊤ 𝑢𝑐⊤
)⊤

∈ R𝑁𝜓+𝑁𝑐+4𝑁𝜕 ∣ 𝐵⊤𝑐 𝜓 =𝑀𝜕𝑢𝑐
}

,

as a subspace of R𝑁𝜓+𝑁𝑐+4𝑁𝜕 . Indeed, one has a symmetric positive ma-
trix. Assume that

(

𝜓⊤ 𝑒𝑐⊤ −𝑦𝑛⊤ −𝑦𝜏⊤ −𝑦d𝑡⊤ 𝑢𝑐⊤
)⊤

∈ Ker𝐌 ⊂
, then 𝑀𝜓 𝜓 = 0. Now, recall that:

𝑀𝜓 )𝑖,𝑗 ∶= ∫𝛺
𝜌0 𝐠𝐫𝐚𝐝(𝜑𝑗 ) ⋅ 𝐠𝐫𝐚𝐝(𝜑𝑖) d𝛺,

ence, 𝑀𝜓 𝜓 = 0 implies that 𝜓𝑑 is constant (and the associated
velocity field 𝒖𝑑 is null). Since on the kernel, 𝑀𝜕 𝑢𝑐 = 0, one has
𝐵⊤𝑐 𝜓 = 0 in 𝑋. Or in other words: the Dirichlet trace of 𝜓𝑑 is
dentically zero, implying that the constant approximated function 𝜓𝑑

s identically zero. Finally, this proves that Ker𝐌 = {0} on 𝑋, hence 𝐌
s positive-definite.

With Proposition 9 and the discrete Dirac structure (60) at hand,
he power balance can be computed.

heorem 10. Let (𝜓, 𝑒𝑐 , 𝑦𝑛, 𝑦𝜏 , 𝑦d𝑡, 𝑦𝑐 ) be a trajectory, i.e., a solution
to (60) for some initial data and compatible controls 𝑢𝑛 ∈ 𝐶0(0,∞;R𝑁𝜕 ),
𝜏 ∈ 𝐶1(0,∞;R𝑁𝜕 ) and 𝑢𝑐 ∈ 𝐶0(0,∞;R𝑁𝜕 ). Then the following power

balance holds true for 𝑡 ≥ 0:

d
d𝑡
𝑑 (𝜔) = −𝑒𝑐⊤𝑀𝑐 𝑒𝑐 + 𝑢𝑛⊤𝑀𝜕 𝑦𝑛 + 𝑢𝜏⊤𝑀𝜕 𝑦𝜏 + 𝑦𝑐⊤𝑀𝜕 𝑢𝑐 , (62)

which preserves the power balance (37) at the discrete level.

Proof. See Appendix B.4 □
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Fig. 4. The configuration of the lid-driven cavity test case.

Numerical results for the lid-driven cavity problem
The vorticity-stream function formulation allows for the simulation

to be done at a reduced cost. To test its precision, let us consider
the lid-driven cavity problem, for which benchmarks can be found at
the following address: http://www.zetacomp.com, and are addressed
in [58].

The lid-driven cavity problem is a particular 2D test case where
the fluid fills a unit square and is controlled tangentially by the upper
boundary of the square at a constant velocity of 1 m s−1, see Fig. 4.

In the sequel, the simulations are performed in python, using GMSH
57] as mesh generator, FEniCS [85] as finite element library and
ETSc [1] for the time integration of the resulting nonlinear DAE. The
eshes are refined near the upper corners of the square, as the highest

elocity variations (hence, values for the vorticity), will occur at these
pots. In all the simulations, the initial data are identically null, and
he boundary control is constant and applied as soon as 𝑡 > 0. Videos
f these simulations can be downloaded in https://nextcloud.isae.fr/
ndex.php/s/4TrMBSZa86cL6w2.

eynolds 100. The first simulations are done at Reynolds 100, i.e., for a
luid of mass density 𝜌0 ≡ 1, with a viscosity 𝜇 = 1.𝑒−2. At this Reynolds
umber, one vortex takes place in the square.

The finite element families are chosen as follows: continuous La-
range finite elements of order 2 P2 for the co-energy variable 𝜓 ,
ontinuous Lagrange finite elements of order 1 P1 for the effort variable
𝑐 , and boundary continuous Lagrange finite elements of order 1 P1 for
ll boundary fields.

The discretization of the square leads to about 10,000 degrees
f freedom. One may appreciate how the streamlines are recovered
hen the dynamical system reaches the stationary solution, as can be
bserved in Fig. 5.

eynolds 400. The viscosity is lowered at 𝜇 = 2.5𝑒−3. At this Reynolds
umber, a first recirculation area appears in the lower-right corner of
he square.

The finite element families are chosen as for the case 𝜇 = 1.𝑒−2.
The simulation requires a finer discretization of the domain to

apture the higher variations of velocity in the fluid, which leads to
0,000 degrees of freedom. Fig. 6 shows the development of the two
ortices, and how the chosen strategy allows recovering the evolution
o the stationary solution.

eynolds 1000. Now, the viscosity is 𝜇 = 1.𝑒−3. At this Reynolds
umber, a second recirculation area appears in the lower-left corner
f the square.

The finite elements families are chosen as follows: continuous La-
range finite elements of order 3 P3 for the co-energy variable 𝜓 ,

2
ontinuous Lagrange finite elements of order 2 P for the effort variable p

13 
𝑐 , and boundary continuous Lagrange finite elements of order 1 P1 for
ll boundary fields.

The discretization is again finer than previously, once more, to con-
ider higher variations in the velocity field. To improve the numerical
ehavior near the first recirculation area, the lower-right corner is also
efined. These refinements and higher orders of finite elements lead to
nonlinear DAE of size 360,000. One may see in Fig. 7 the efficiency

f the proposed approach: both recirculation areas are captured, and
he center of the main vortex is well-recovered.

emark 16. Discretizing the velocity–vorticity–pressure formulation
31) would have required about one million degrees of freedom to
each the same precision (even after substitution of the constitutive
elation 𝒆𝑐 = 𝜇𝑐𝒇 𝑐 into (31), as 𝒇 𝑐 = 𝜇−1𝑐 𝒆𝑐). In this 2D setting,

the computational burden has been significantly reduced by using the
vorticity–stream function formulation (52), while preserving the un-
derlying geometric structure of the physical phenomena at the discrete
level.

4. Extension to thermodynamics

If thermal phenomena cannot be neglected then the thermal domain
needs to be taken into account in the model. This Section focuses on
Irreversible pH (IpH) systems, which is a specific thermodynamic for-
mulation closely related to dissipative pH systems. It is shown how by
relating the dissipative ports of a pH system with the entropy production
a quasi pH structure arises which assures both energy conservation
and irreversible entropy creation. Furthermore, by introducing a class
of pseudo-bracket it is possible to precisely parametrize the quasi
pH structure by the thermodynamic driving forces which induce the
irreversible phenomena in the system. The developments are illustrated
by systematically developing the 1D SWE.

4.1. Quasi pH system

Recall the formulation of dissipative pH systems which are of the
form 𝜕𝑡𝒙(𝜻 , 𝑡) =  𝛿𝒙 − 𝑆∗𝛿𝒙, where  is a differential operator
nd ∗ the corresponding formal adjoint, and 𝑆 ≥ 0 is a non-negative
ounded matrix operator of appropriate dimensions. In this case, 𝑆∗
epresents the dissipation and can be split into two parts such to express
he dissipative pH system from an extended Dirac structure as
(

𝜕𝑡𝒙(𝜻 , 𝑡)
𝒇 𝑑

)

=
[

 
−∗ 0

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
̃

(

𝒆
𝒆𝑑

)

, with 𝒆𝑑 = 𝒇 𝑑 , (63)

(

𝒇 𝜕
𝒆𝜕

)

=̃𝜕𝛺

(

𝒆|d𝛺
𝒆𝑑 ||d𝛺

)

, (64)

here 𝜕𝑡𝒙(𝜻 , 𝑡) ∈  and 𝑆 > 0. ̃ is an extended formally skew-
ymmetric differential operator, 𝒇 𝜕 and 𝒆𝜕 are the boundary flow and
ffort port variables, ̃𝜕𝛺 is an operator dependent on the unitary
ector 𝒏 outward to 𝜕𝛺, that describes the normal and tangential
rojections on 𝜕𝛺, induced by ̃ , of the co-energy variables 𝒆 ∶= 𝛿𝒙
nd dissipative effort 𝒆𝑑 , such that,

̇ = ∫𝜕𝛺
𝒇 𝜕 ⋅ 𝒆𝜕 d𝛾 − ∫𝛺

𝒇 𝑑 ⋅ 𝒆𝑑 d𝛺, (65)

here ∫𝜕𝛺 𝒇 𝜕 ⋅𝒆𝜕 d𝛾 describes the power supplied to the system through
he boundaries and ∫𝛺 𝒇 𝑑 ⋅ 𝒆𝑑 d𝛺 the power dissipated into heat by
he internal phenomena (such as friction or viscosity). As discussed
n Section 2.2, the formulation (63) is very convenient for numerical
pproximations [91], since the extended operator ̃ is linear. However,
he resolution of the system dynamics is implicit since the dissipative

ort introduce an algebraic constraint.

http://www.zetacomp.com
https://nextcloud.isae.fr/index.php/s/4TrMBSZa86cL6w2
https://nextcloud.isae.fr/index.php/s/4TrMBSZa86cL6w2
https://nextcloud.isae.fr/index.php/s/4TrMBSZa86cL6w2
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Fig. 5. Lid-driven cavity problem at Reynolds 100 (𝜇 = 1.𝑒−2) at times 𝑡 = 0.1, 0.5, 2, 4, 8, and 10 s. The color represents the effort variable 𝑒𝑐 = 𝜇𝜔, while the solid black lines are
streamlines, to compare with the white streamlines from [58].
In the case of the dissipative SWE example, the formulation (63) is
of the form

⎛

⎜

⎜

⎝

𝜕𝑡𝑞
𝜕𝑡𝛼
𝑓𝑑

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 −𝜕𝜁 0
−𝜕𝜁 0 1
0 −1 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑒𝑞
𝑒𝛼
𝑒𝑑

⎞

⎟

⎟

⎠

, (66)

with 𝑒𝑑 = 𝑆𝑓𝑑 and with power balance given by

̇ = −∫[0,𝐿]
𝑆𝑓𝑑

2d 𝜁 + 𝒆𝑇𝜕 𝒇 𝜕 = −∫[0,𝐿]
𝑆𝑒𝛼

2d 𝜁 + 𝒆𝑇𝜕 𝒇 𝜕 , (67)

where  = [0 1]⊤ and 𝑆 = 𝑆(𝑞, 𝛼) ≥ 0 is a nonlinear function of the
energy variables 𝑞 and 𝛼.

Regarding the general formulation (63), if  = 0, then the boundary
controlled system is energy preserving or reversible. If  ≠ 0 the
system is dissipative, meaning that energy is being transformed into
heat by some dissipative phenomena, such as mechanical friction.
Note that these implicit formulations have been recently extended to
14 
pH systems formulations defined on Lagrange submanifolds, to cope
with a larger class of systems involving an implicit definition of the
energy [136,137].

An alternative approach consists in representing explicitly the ther-
mal domain in the system formulation using the entropy density vari-
able 𝑠 and the total energy [132], preferably to the mechanical, elec-
trical or magnetic energies. In this case, the total energy of the system
can be split as the sum of the mechanical, electrical or magnetic energy
(or the sum of them) and the internal energy ∫[0,𝐿] 𝑒(𝑠)d 𝜁 :

𝐻(𝒙, 𝑠) = (𝒙) + ∫[0,𝐿]
𝑒(𝑠)d 𝜁,

where 𝑠 is the entropy per unit length. From the first law, in the absence
of exchange of energy with the surroundings, i.e. 𝒆𝜕𝒇 𝜕 = 0, the total
energy is preserved, implying:

𝐻̇ = ̇ + 𝑒̇(𝑠)d 𝜁 = 0,
∫[0,𝐿]
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Fig. 6. Lid-driven cavity problem at Reynolds 400 (𝜇 = 2.5𝑒−3) at times 𝑡 = 0.1, 1, 3, 7, 12, and 18 s. The color represents the effort variable 𝑒𝑐 = 𝜇𝜔, while the solid black lines are
streamlines, to compare with the white streamlines from [58].
= ∫[0,𝐿]
(−𝑓𝑑 𝑒𝑑 + 𝜕𝑠𝑒 𝜕𝑡𝑠) d 𝜁 = 0,

= ∫[0,𝐿]

(

−𝛿𝒙
(

𝑆∗
)

𝛿𝒙 + 𝜕𝑠𝑒 𝜕𝑡𝑠
)

d 𝜁 = 0.

Noticing that 𝛿𝒙 = 𝛿𝒙𝐻 and recalling from Gibbs’ fundamental
relation that the temperature is a function of the entropy, in this case
𝑇 = 𝜕𝑠𝑒, the internal entropy creation density, 𝜎, of the system is
explicitly written as:

𝜕𝑡𝑠 =
1
𝑇
𝛿𝒙𝐻

𝑇 (

𝑆∗
)

𝛿𝒙𝐻 = 𝜎 ≥ 0,

in accordance with the second law of Thermodynamics. The resulting
system is then:
[

𝜕𝑡𝒙
𝜕𝑡𝑠

]

=

[

 − (𝑆∗) 𝛿𝒙
1
𝑇

1
𝑇 𝛿𝒙𝐻

⊤ (𝑆∗)∗ 0

]

[

𝛿𝒙𝐻
𝑇

]

, (68)

which corresponds to a quasi pH system [116], since it resembles a pH
system, but its structure matrix operator is a function of the gradient of
the energy. The formulation (68) allows to explicitly solve the dynamic
15 
equations of the system. However, the symplectic structure of the
pH system, given by the Poisson tensor associated with the structure
matrix, is now destroyed, and the structure matrix is no longer linear;
hence the numerical schemes discussed in previous sections need to be
rethought. In order to illustrate this new formulation with a concrete
example, consider again the dissipative 1D SWE of Section 2.3.1. Its
quasi pH system formulation is:

⎛

⎜

⎜

⎝

𝜕𝑡𝑞
𝜕𝑡𝛼
𝜕𝑡𝑠

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

0 −𝜕𝜁 0
−𝜕𝜁 0 − 𝑆

𝑇 𝑒𝛼
0 𝑆

𝑇 𝑒𝛼 0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑒𝑞
𝑒𝛼
𝑇

⎞

⎟

⎟

⎠

. (69)

The formulation (69) allows to explicitly characterize the irreversible
dynamic of SWE. Indeed, the last coordinate gives the precise expres-
sion of the internal entropy creation. For instance, when considering
the Darcy–Weisbach water-bed friction model 𝑆 = 𝑓𝐷𝑊 𝑏|𝛼|

8𝑞 , with 𝑓𝐷𝑊
the empirical friction coefficient, the internal entropy creation is:

𝜕𝑡𝑠 =
𝑆 𝑒𝛼

2 = 1 𝑓𝐷𝑊 𝑏|𝛼|
(

𝑞𝛼
)2

≥ 0.

𝑇 𝑇 8𝑞 𝜌
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Fig. 7. Lid-driven cavity problem at Reynolds 1000 (𝜇 = 1.𝑒−3) at times 𝑡 = 0.1, 1, 5, 10, 18, and 35 s. The color represents the effort variable 𝑒𝑐 = 𝜇𝜔, while the solid black lines
are streamlines, to compare with the white streamlines from [58].
4.2. Irreversible port-Hamiltonian systems

IpH systems were defined [116] as an extension of pH systems for
the purpose of representing not only the energy balance but also the
entropy balance, essential in thermodynamics, as a structural property
of a system. The extension of this framework to infinite-dimensional
systems defined on 1D spatial domains with first order differential
operators was proposed in [113] for a class of diffusion processes
and generalized for a large class of thermodynamic systems in [115].
The main feature of the IpH systems formulation is that it precisely
parametrizes the operators of (68) in terms of the thermodynamic
properties of a system such that, similar to pH systems, the structure
matrices of the system have a clear physical interpretation.

We shall define the following pseudo-brackets9 for any two func-
tionals 𝐻1 and 𝐻2 of and for any matrix differential operator  as:

9 the bracket is called a pseudo-bracket in the sense that the Jacobi-identity
is not automatically satisfied, see e.g. [134,135] for more details.
16 
{

𝐻1||𝐻2
}

=
[

𝛿𝒙𝐻1
𝛿𝑠𝐻1

]

⋅
[

0 
−∗ 0

] [

𝛿𝒙𝐻2
𝛿𝑠𝐻2

]

,
{

𝐻1|𝐻2
}

= 𝛿𝑠𝐻
⊤
1
(

𝜕𝜁𝛿𝑠𝐻2
)

,
(70)

where ∗ denotes the formal adjoint operator of . An IpH system
undergoing 𝑚 irreversible processes on a 1D spatial domain is defined
by a total energy and total entropy functional, respectively 𝐻 and 𝑆,
a pair of matrices 𝑃0 = −𝑃⊤0 ∈ R𝑛×𝑛, 𝑃1 = 𝑃⊤1 ∈ R𝑛×𝑛, 𝐺0 ∈ R𝑛×𝑚,
𝐺1 ∈ R𝑛×𝑚 with 𝑚 ≤ 𝑛 and the strictly positive real-valued functions
𝛾𝑘,𝑖

(

𝒙, 𝜁 , 𝛿𝒙𝐻
)

𝑘 = 0, 1; 𝑖 ∈ {1, … 𝑚}, 𝛾𝑠
(

𝒙, 𝜁 , 𝛿𝒙𝐻
)

> 0 and the PDE:
[

𝜕𝑡𝒙
𝜕𝑡𝑠

]

=
[

 
∗ 𝐫𝐬𝜕𝜁 + 𝜕𝜁

(

𝐫𝐬⋅
)

] [

𝛿𝒙𝐻
𝛿𝑠𝐻

]

,

where:

 = 𝑃0 + 𝑃1𝜕𝜁 ,  = 𝐺0𝐑𝟎 + 𝜕𝜁
(

𝐺1𝐑1⋅
)

, ∗ = −𝐑⊤𝐺⊤0 + 𝐑⊤1𝐺
⊤
1 𝜕𝜁 ,

with vector-valued functions 𝐑𝑙
(

𝒙, 𝛿𝒙𝐻
)

∈ R𝑚×1, 𝑙 = 0, 1, defined by:

𝑅 = 𝛾
(

𝒙, 𝜁 , 𝛿 𝐻
) {

𝑆|𝐺 (∶, 𝑖)|𝐻
}

,
0,𝑖 0,𝑖 𝒙 0
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𝑅1,𝑖 = 𝛾1,𝑖
(

𝒙, 𝜁 , 𝛿𝒙𝐻
) {

𝑆|𝐺1(∶, 𝑖)𝜕𝜁 |𝐻
}

,

and:

𝑟𝑠 = 𝛾𝑠
(

𝒙, 𝜁 , 𝛿𝒙𝐻
)

{𝑆|𝐻} ,

where the notation 𝐺(∶, 𝑖) indicates the 𝑖th column of the matrix 𝐺. Here
the operator  corresponds to the reversible coupling phenomena as it

appears in the example of the 1D SWE 𝑃0 = 0 and: 𝑃1 =
[

0 −1
−1 0

]

.

The operator  corresponds to the irreversible coupling phenomena.

In the example of the dissipative 1D SWE, 𝐺0 = 0 and: 𝐺1 =
[

0
1

]

which

indicates that the irreversible phenomenon associated with the friction
of the fluid, couples the momentum and the entropy balance equations.
The functions 𝛾𝑘,𝑖 and 𝛾𝑠 define the constitutive relations of the irre-
versible phenomena and the functions

{

𝑆|𝐺0(∶, 𝑖)|𝐻
}

,
{

𝑆|𝐺1(∶, 𝑖)𝜕𝜁 |𝐻
}

and {𝑆|𝐻} correspond to their driving forces. In the example of the
dissipative 1D SWE,

{

𝑆|𝐺1(∶, 𝑖)𝜕𝜁 |𝐻
}

= 𝑒𝛼 = 𝑞𝛼
𝜌 is indeed the driving

orce of the friction and 𝛾1,1 = 𝑆
𝑇 with 𝑇 = 𝛿𝑠𝐻 is indeed a strictly

positive function containing the friction coefficient and defining the
constitutive relation of the friction model.

The previous definition is completed with port variables which
enable to write the interaction of the system with its environment or
other physical systems, in the manner as for dissipative pH systems
as presented in Section 2.2. To this end, a Boundary Controlled IpH
systems (BC-IPHS) is an infinite-dimensional IpH systems augmented
with the boundary port variables:

𝑣(𝑡) = 𝑊𝐵

[

𝑒(𝐿, 𝑡)
𝑒(0, 𝑡)

]

, 𝑦(𝑡) = 𝑊𝐶

[

𝑒(𝐿, 𝑡)
𝑒(0, 𝑡)

]

, (71)

s linear functions of the modified effort variable:

(𝑡, 𝑧) =
[

𝛿𝒙𝐻
𝐑 𝛿𝑠𝐻

]

, (72)

ith 𝐑 =
[

1 𝐑𝟏 𝐫𝐬
]⊤ and:

𝑊𝐵 =
[ 1
√

2

(

𝛯2 + 𝛯1𝑃𝑒𝑝
)

𝑀𝑝
1
√

2

(

𝛯2 − 𝛯1𝑃𝑒𝑝
)

𝑀𝑝
]

,

𝐶 =
[ 1
√

2

(

𝛯1 + 𝛯2𝑃𝑒𝑝
)

𝑀𝑝
1
√

2

(

𝛯1 − 𝛯2𝑃𝑒𝑝
)

𝑀𝑝
]

,

here 𝑀𝑝 =
(

𝑀⊤𝑀
)−1𝑀⊤, 𝑃𝑒𝑝 = 𝑀⊤𝑃𝑒𝑀 and 𝑀 ∈ R(𝑛+𝑚+2)×𝑘 is

panning the columns of 𝑃𝑒 ∈ R𝑛+𝑚+2 of rank 𝑘, defined by:

𝑒 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1 0 𝐺1 0
0 0 0 𝑔𝑠
𝐺⊤1 0 0 0
0 𝑔𝑠 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (73)

nd where 𝛯1 and 𝛯2 in R𝑘×𝑘 satisfy 𝛯⊤2 𝛯1 + 𝛯⊤1 𝛯2 = 0 and 𝛯⊤2 𝛯2 +
⊤
1 𝛯1 = 𝐼 . Recalling the dissipative 1D SWE, its BC-IPHS formulation

s obtained by completing the model with the boundary port variables:

(𝑡) =

[

−𝑒𝑞(𝐿, 𝑡) +
𝑆
𝑇 𝑒𝛼(𝐿, 𝑡)

𝑒𝑞(0, 𝑡) −
𝑆
𝑇 𝑒𝛼(0, 𝑡)

]

=
⎡

⎢

⎢

⎣

−
(

𝛼2

2𝜌 + 𝜌𝑔
𝑏 𝑞

)

(𝐿, 𝑡) + 𝑆
𝑇
𝑞𝛼
𝜌 (𝐿, 𝑡)

(

𝛼2

2𝜌 + 𝜌𝑔
𝑏 𝑞

)

(0, 𝑡) − 𝑆
𝑇
𝑞𝛼
𝜌 (0, 𝑡)

⎤

⎥

⎥

⎦

,

𝑦(𝑡) =
[

𝑒𝛼(𝐿, 𝑡)
𝑒𝛼(0, 𝑡)

]

=

[ 𝑞𝛼
𝜌 (𝐿, 𝑡)
𝑞𝛼
𝜌 (0, 𝑡)

]

.

s for the reversible case, the boundary inputs and outputs correspond,
espectively, to the pressure and the velocity evaluated at the boundary
oints 0 and 𝐿. Note however that this time the pressure is the sum of
he static and hydrodynamic pressures. If there is no dissipation in the
ystem, 𝑆 = 0, then the boundary inputs and outputs are exactly the
ame as for the reversible case.

BC-IPHS encode the first and second laws of Thermodynamics, i.e.,
the conservation of the total energy and the irreversible production of

entropy, as stated in the following lemmas [114,115]. t

17 
Lemma (First Law Of Thermodynamics). The total energy balance is:

𝐻̇ = 𝑦(𝑡)⊤𝑣(𝑡),

hich leads, when the input is set to zero, to 𝐻̇ = 0 in accordance with
the first law of Thermodynamics.

Lemma (Second Law Of Thermodynamics). The total entropy balance is
given by:

𝑆̇ = ∫[0,𝐿]
𝜎𝑡d 𝜁 − 𝑦⊤𝑆𝑣𝑠,

where 𝑦𝑠 and 𝑣𝑠 are entropy conjugated input/output and 𝜎𝑡 is the
total internal entropy production. This leads, when the input is set
to zero, to 𝑆̇ = ∫[0,𝐿] 𝜎𝑡d 𝜁 ≥ 0 in accordance with the second law of

hermodynamics.

.3. Multidimensional fluids and relation with metriplectic systems

The infinite-dimensional IpH systems formulation has to date been
eveloped for systems defined on 1D spatial domains. In [96] the pH
ystems framework was applied to model 3D compressible fluids, both
sentropic and non-isentropic. For isentropic fluids, a dissipative pH
ystem model that accounts for the conversion of kinetic energy into
eat due to viscous friction was proposed, incorporating dissipative
erms linked to the flow’s vorticity and compressibility. In scenarios
nvolving fluid mixtures with multiple chemical reactions under non-
sentropic conditions, a quasi pH systems formulation was employed to
apture the dynamics and thermodynamic behavior of the fluid. This
pproach involves defining specific operators and their formal adjoints
o characterize the various physical phenomena, including boundary
onditions related to the diffusion flux of matter. These results extended
revious pH systems formulations for non-isentropic 1D fluids [4,98]
o 2D and 3D spatial domains, marking initial steps towards a general
pH systems formulation for complex fluids and much in line with other
eometrically consistent thermodynamic formulations [25–27].

Recently, in [95] these developments were further generalized and
ormalized to establish a comprehensive 1, 2, and 3D IpH systems
ormulation for compressible fluids. This involves precise definition
f operators that determine the IpH systems structure and boundary
ariables, ensuring compliance with the first and the second law of
hermodynamics. The thermodynamic formulation of fluids necessarily

eads to the definition of metriplectic dynamics [100] or similarly the
ENERIC framework [62,108]. This formulation is a comprehensive ap-
roach in thermodynamics that aims at describing both equilibrium and
on-equilibrium systems. At its core it was proposed for closed systems
nd consists of a reversible part that is governed by a Poisson bracket,
nd an irreversible part governed by a dissipation bracket. These two
arts are connected via energy and co-energy variables that describe
he system. The reversible part captures the conservative dynamics
ypically associated with Hamiltonian mechanics, while the irreversible
art accounts for dissipative phenomena, such as heat flow and viscous
amping. By combining these two aspects, GENERIC provides a unified
escription of the dynamics of complex systems, encompassing both
eversible and irreversible processes, and can be applied to a wide
ange of physical situations, from fluid dynamics to chemical reac-
ions. There have been several studies in the last decades extending
ENERIC to open systems by establishing the link of the formalism
ith other geometric approaches, such as the Matrix Model [45,74] and
etworked controlled systems defined by Dirac structures [75]. More
ecently, the link with dissipative pH systems have been established
n [86,102] when considering the Exergy of a thermodynamic system as
he Hamiltonian function. Regarding numerical discretization schemes,
ecent works have tackled the structure-preserving discretization in
pace and time of metriplectic systems [78,107,122].

These results, which relate the different Hamiltonian-based formula-

ions are promising since they establish bridges between the approaches
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in terms of fundamental thermodynamic principles, which are expected
to help in the developments and the extension of powerful proven
numerical schemes such as PFEM for quasi pH systems and IpH systems
formulations of thermodynamic systems.

Conclusion and perspectives

In conclusion, this paper has provided an extensive survey and anal-
ysis of port-Hamiltonian formulations for the modeling and numerical
simulation of open-fluid systems.

The focal point of our discussion has been on the application of
port-Hamiltonian formulations to the shallow water equations and the
incompressible Navier–Stokes equations in 2D. Starting from the con-
tinuous formulation with non-quadratic Hamiltonian, the application
of a structure-preserving method needed to be adapted with care, and
was not straightforward contrarily to the linear quadratic features of
structural mechanics: either a polynomial nonlinearity or a differential
linearity in the constitutive relation have been successfully tackled.
Through the presentation of numerical simulation results for these
specific cases, we have demonstrated the effectiveness of the framework
in capturing the essential dynamics of fluid systems.

Beyond these specific applications, our work has highlighted the
broader implications of port-Hamiltonian formulations. Notably, it
points towards promising research directions in the realm of
thermodynamically-consistent modeling, structure-preserving numeri-
cal methods and also boundary control design for fluids. This, in turn,
sets the stage for the simulation of complex fluid systems in interaction
with their environment.

Addressing advanced constitutive laws, particularly for non-
Newtonian fluids, stands as a significant challenge and an avenue
for future investigation. Additionally, the intricate dynamics of fluid–
structure interaction presents complexities, such as the interplay be-
tween Lagrangian and Eulerian coordinates and the temporal evolution
of the boundary between the fluid and the structure. Tackling these
issues opens new frontiers for research, promising advances in our
understanding and simulation capabilities for fluid systems.
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Appendix A. Some useful definitions

Definition 3 (Formal Adjoint). Given a differential operator  ∶ 𝐷() ⊂
 →  , where  and  are two Hilbert spaces (of functions), the formal
adjoint ∗ of  is defined as:

∫𝛺
𝜑 ⋅ 𝜓 d𝛺 =∶ ∫𝛺

𝜑 ⋅∗𝜓 d𝛺, ∀𝜑, 𝜓 ∈ ∞
𝑐 (𝛺),

where ∞
𝑐 (𝛺) is the space of compactly-supported infinitely differen-

tiable functions.

Definition 4 (Formal Skew-Symmetry). A differential operator  ∶
𝐷( ) ⊂  →  is formally skew-symmetric if:

∫𝛺
𝜑 ⋅ 𝜓 d𝛺 =∶ −∫𝛺

𝜑 ⋅ 𝜓 d𝛺, ∀𝜑, 𝜓 ∈ ∞
𝑐 (𝛺).

efinition 5 (Dirac Structure). Given a Hilbert space  , called the effort
pace, and its topological dual10  ∶=  ′, called the flow space, we
efine the Bond space  ∶=  × endowed with the bilinear symmetric
roduct:
⟨(

𝑓 1

𝑒1

)

,
(

𝑓 2

𝑒2

)⟩⟩


∶=

⟨

𝑓 1, 𝑒2
⟩

 , +
⟨

𝑓 2, 𝑒1
⟩

 , ,

here ⟨⋅, ⋅⟩ , represents the duality bracket. A (Stokes-)Dirac structure
s a subspace  ⊂  which is maximal isotropic in , i.e. it satisfies:
⊤ = ,

here ⊤ is the orthogonal companion of  in  with respect to the
ond product ⟨⟨⋅, ⋅⟩⟩.

emark 17. An important result in finite dimension is the kernel
epresentation of a Dirac structure [133, § 5.1] which states that a Dirac
tructure always admits two matrices 𝐸 and 𝐹 of appropriate dimension
uch that:

=
{(

𝑓
𝑒

)

∈  ∣ 𝐹𝑓 + 𝐸𝑒 = 0
}

.

fter discretization, see Section 3, we are essentially concerned with the
ase 𝐹⊤ = 𝐹 > 0 and 𝐸⊤ = −𝐸 in the sequel. In that case, 𝐸 is often
enoted 𝐽 and is call the structure matrix. We abuse the language and
ill talk about structure operator in the infinite-dimensional case.

emark 18. In infinite dimensions, a Dirac structure is rather called a
tokes–Dirac structure, in order to emphasize that its structure operator
s formally skew-symmetric thanks to the Stokes’s divergence theorem.

10 In finite dimension, the definition is often written in the other way:
 ∶=  ′.
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Remark 19. Rigorously, the Bond product makes use of the duality
bracket between  and  . In this work, we will always assume a
strong regularity (i.e. at least 𝐶1 in space and time) for the solutions
to a pH system. In that case, this duality bracket reduces to a more
convenient 𝐿2-inner product over the spatial domain 𝛺. Moreover, the
boundary traces of such solutions are then sufficiently regular to allow
also the identification of the duality bracket at the boundary of 𝛺 by
the 𝐿2-inner product at the boundary.

Appendix B. Proof of some theorems

B.1. Proof of Theorem 2

Along the trajectories of system (31), one has:

̇ = ∫𝛺
𝜕𝑡𝒖 ⋅ 𝛿𝒖d𝛺,

= ∫𝛺
𝜕𝑡𝒖 ⋅ (𝜌0𝒖)d𝛺,

= ∫𝛺
𝜌0𝜕𝑡𝒖 ⋅ 𝒖d𝛺,

= ∫𝛺

(

𝐺(𝝎)𝒖 ⋅ 𝒖 − 𝐜𝐮𝐫𝐥(𝒆𝑐 ) ⋅ 𝒖 + 𝐠𝐫𝐚𝐝(𝑒𝑑 ) ⋅ 𝒖
)

d𝛺,

= ∫𝛺
𝐺(𝝎)𝒖 ⋅ 𝒖

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=0

d𝛺 − ∫𝛺
𝒆𝑐 ⋅ 𝐜𝐮𝐫𝐥(𝒖)d𝛺 − ∫𝜕𝛺

𝒆𝑐 ⋅ (𝒖 ∧ 𝒏) d 𝛾

−∫𝛺
𝑒𝑑 div(𝒖)
⏟⏟⏟

=0

d𝛺 + ∫𝜕𝛺
𝑒𝑑 𝒖 ⋅ 𝒏d 𝛾,

= −∫𝛺
𝒆𝑐 ⋅ 𝒇 𝑐d𝛺 − ∫𝜕𝛺

𝒆𝑐 ⋅ (𝒖 ∧ 𝒏) d 𝛾 + ∫𝜕𝛺
𝑒𝑑 𝒖 ⋅ 𝒏d 𝛾,

= −∫𝛺
𝒆𝑐 ⋅ 𝒇 𝑐d𝛺 + ∫𝜕𝛺

(

𝑒𝑑 𝒖 ⋅ 𝒏 − 𝒆𝑐 ⋅ (𝒖 ∧ 𝒏)
)

d 𝛾,

= −∫𝛺
𝜇𝑐 ‖𝝎‖2 d𝛺

+ ∫𝜕𝛺
((

𝑃 + 1
2𝜌0 ‖𝒖‖

2
)

𝒖 ⋅ 𝒏 − 𝜇𝑐 𝝎 ⋅ (𝒖 ∧ 𝒏)
)

d 𝛾.

B.2. Proof of Theorem 6

Along the trajectories of system (36), one has:

̇ = ∫𝛺
𝜌0 𝜕𝑡𝜔𝛿

𝜌0
𝜔 d𝛺,

= ∫𝛺
𝜌0 𝜕𝑡𝜔𝜓d𝛺,

= ∫𝛺

(

𝐽𝜔𝜓 − curl2𝐷𝐠𝐫𝐚𝐝⟂(𝑒𝑐 )
)

𝜓d𝛺,

= ∫𝛺
curl2𝐷

(

𝐺(𝜔) 𝐠𝐫𝐚𝐝⟂(𝜓)
)

𝜓d𝛺 − ∫𝛺
curl2𝐷𝐠𝐫𝐚𝐝⟂(𝑒𝑐 )𝜓d𝛺,

= ∫𝛺
𝐺(𝜔) 𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝐠𝐫𝐚𝐝⟂(𝜓)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

d𝛺 + ∫𝜕𝛺
𝛩𝐺(𝜔)
⏟⏟⏟
=𝜔𝐼2

𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝒏𝜓d 𝛾

−∫𝛺
𝐠𝐫𝐚𝐝⟂(𝑒𝑐 ) ⋅ 𝐠𝐫𝐚𝐝⟂(𝜓)d𝛺 − ∫𝜕𝛺

𝛩𝐠𝐫𝐚𝐝⟂(𝑒𝑐 ) ⋅ 𝒏𝜓d 𝛾,

= ∫𝜕𝛺
𝜔𝜓 𝐠𝐫𝐚𝐝⟂(𝜓) ⋅ 𝒏d 𝛾 − ∫𝛺

𝑒𝑐
⏟⏟⏟
=𝜇𝑐 𝜔

curl2𝐷𝐠𝐫𝐚𝐝⟂(𝜓)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝜔

d𝛺

+∫𝜕𝛺
𝛩𝐠𝐫𝐚𝐝⟂(𝜓)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=−𝐠𝐫𝐚𝐝(𝜓)

⋅𝒏 𝑒𝑐d 𝛾 − ∫𝜕𝛺
𝐠𝐫𝐚𝐝⟂(𝑒𝑐 )
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=−𝐠𝐫𝐚𝐝(𝜇𝑐 𝜔)

⋅𝒏𝜓d 𝛾,

hence the result.

B.3. Proof of Theorem 8

First, note that, using the symmetry of the matrices 𝑄𝜶[ℎ(𝑡)] and
ℎ appearing in the definition of the discrete Hamiltonian 𝑑 given

in (43):
d 𝑑 (ℎ(𝑡), 𝛼(𝑡)) = 𝛼(𝑡)⊤𝑄 [ℎ(𝑡)] d 𝛼(𝑡) + ℎ(𝑡)⊤𝑄 d ℎ(𝑡)

d𝑡 𝜶 d𝑡 ℎ d𝑡

19 
+ 1
2
𝛼(𝑡)⊤ d

d𝑡
𝑄𝜶[ℎ(𝑡)] 𝛼(𝑡). (74)

n the other hand, multiplying (41) by
(

𝑒ℎ(𝑡)⊤ 𝑒𝛼(𝑡)⊤ 𝑒𝜕(𝑡)⊤
)⊤

by the
left leads to:

𝑒ℎ(𝑡)⊤𝑀ℎ
d
d𝑡
ℎ(𝑡) + 𝑒𝛼(𝑡)⊤𝑀𝛼

d
d𝑡
𝛼(𝑡) − 𝑒𝜕(𝑡)⊤𝑀𝜕 𝑓𝜕(𝑡)

=𝑒ℎ(𝑡)⊤𝐷𝑒𝛼(𝑡) + 𝑒ℎ(𝑡)⊤ 𝐵 𝑒𝜕(𝑡) − 𝑒𝛼(𝑡)⊤𝐷⊤ 𝑒ℎ(𝑡) − 𝑒𝜕(𝑡)⊤ 𝐵⊤ 𝑒ℎ(𝑡),

which simplifies into:

𝑒ℎ(𝑡)⊤𝑀ℎ
d
d𝑡
ℎ(𝑡) + 𝑒𝛼(𝑡)⊤𝑀𝛼

d
d𝑡
𝛼(𝑡) = 𝑒𝜕(𝑡)⊤𝑀𝜕 𝑓𝜕(𝑡).

Now, since the mass matrices are symmetric, one can make use of (42)
to get:
(

𝑄ℎ ℎ(𝑡) +𝑁[𝛼(𝑡)] 𝛼(𝑡)
)⊤ d

d𝑡
ℎ(𝑡) +

(

𝑄𝜶[ℎ(𝑡)] 𝛼(𝑡)
)⊤ d

d𝑡
𝛼(𝑡)

= 𝑒𝜕(𝑡)⊤𝑀𝜕 𝑓𝜕(𝑡),

r, after rearranging the terms and taking advantage of the symmetry
f the 𝑄 matrices:

𝛼(𝑡)⊤𝑁[𝛼(𝑡)]⊤ d
d𝑡
ℎ(𝑡) + ℎ(𝑡)⊤𝑄ℎ

d
d𝑡
ℎ(𝑡)

+𝛼(𝑡)⊤𝑄𝜶[ℎ(𝑡)]
d
d𝑡
𝛼(𝑡) = 𝑒𝜕(𝑡)⊤𝑀𝜕 𝑓𝜕(𝑡).

ombining the latter with (74) gives:
d
d𝑡
𝑑 (ℎ(𝑡), 𝛼(𝑡)) = 𝑒𝜕(𝑡)⊤𝑀𝜕 𝑓𝜕(𝑡)

+ 1
2
𝛼(𝑡)⊤ d

d𝑡
𝑄𝜶[ℎ(𝑡)] 𝛼(𝑡) − 𝛼(𝑡)⊤𝑁[𝛼(𝑡)]⊤ d

d𝑡
ℎ(𝑡).

nce again, the fact that the Hamiltonian is polynomial is crucial
compare the following with the equality in Remark 12), since it leads
traightforwardly to:
1
2
𝛼(𝑡)⊤ d

d𝑡
𝑄𝜶[ℎ(𝑡)] 𝛼(𝑡) = 𝛼(𝑡)⊤𝑁[𝛼(𝑡)]⊤ d

d𝑡
ℎ(𝑡),

hence, to the result.

B.4. Proof of Theorem 10

Let us multiply (60) by
(

𝜓⊤ 𝑒𝑐⊤ 𝑢𝑛⊤ 𝑢𝜏⊤ 𝑢̇𝜏⊤ 𝑦𝑐⊤
)⊤

by the left. Then:

𝜓⊤𝑀𝜓 𝜓̇+𝑒𝑐⊤𝑀𝑐 𝑒𝑐−𝑢𝑛⊤𝑀𝜕 𝑦𝑛−𝑢𝜏⊤𝑀𝜕 𝑦𝜏 − 𝑢̇𝜏⊤𝑀𝜕 𝑦d𝑡−𝑦𝑐⊤𝑀𝜕 𝑢𝑐 = 0.

After rearrangement, it reads:

𝜓⊤𝑀𝜓 𝜓̇ − 𝑢̇𝜏⊤𝑀𝜕 𝑦d𝑡 = −𝑒𝑐⊤𝑀𝑐 𝑒𝑐 + 𝑢𝑛⊤𝑀𝜕 𝑦𝑛 + 𝑢𝜏⊤𝑀𝜕 𝑦𝜏 + 𝑦𝑐⊤𝑀𝜕 𝑢𝑐 .

Now, with the discrete Hamiltonian 𝑑 , given in (61), let us show
hat d

d𝑡
𝑑 (𝜔) = 𝜓⊤𝑀𝜓 𝜓̇ − 𝑢̇𝜏⊤𝑀𝜕 𝑦d𝑡. As in the continuous case, the

difficulty relies on the fact that 𝑑 is defined as a function of 𝜔, hence:

d
d𝑡
𝑑 (𝜔) = ∇𝜔𝑑 (𝜔) ⋅ 𝜔̇,

and one requires to compute the gradient of the Hamiltonian with
respect to the energy variable 𝜔. Let us compute it in the distributional
sense, following [106] at the continuous level, as in Proposition 4.

Let 𝑤 ∈ R𝑁𝑐 be such that 𝑤𝑑 (𝜻 , 𝑡) =
∑𝑁𝑐
𝑘=1𝑤

𝑘 𝛷𝑘(𝜻) is compactly
supported and in the range of curl2𝐷, i.e., there exists 𝜼𝑑 ∈

(

𝐿2(𝛺)
)2

compactly supported and satisfying curl2𝐷𝜼𝑑 = 𝑤𝑑 . Then, for all 𝜀 > 0:

𝑑 (𝜔 + 𝜀𝑤
)

−𝑑 (𝜔
)

𝜀
= 1

2𝜀 ∫𝛺
𝜌0

‖

‖

‖

𝒖𝑑 + 𝜀𝜼𝑑‖‖
‖

2
d𝛺

− 1
2𝜀 ∫𝛺 𝜌0

‖

‖

𝒖𝑑‖
‖

2 d𝛺,

= ∫𝛺
𝜌0 𝒖𝑑 ⋅ 𝜼𝑑d𝛺 + 𝑂(𝜀).

sing 𝒖𝑑 = 𝐠𝐫𝐚𝐝⟂
(

𝜓𝑑
)

and applying the integration by part (33) leads
o:

𝜔𝑑 (𝜔) ⋅𝑤 = 𝜌0 𝜓
𝑑𝑤𝑑d𝛺,
∫𝛺
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from which we recover that 𝜌0𝜓 is indeed the co-energy variable at the
iscrete level, as expected. Now:

∇𝜔𝑑 (𝜔) ⋅ 𝜔̇ = ∫𝛺
𝜌0 𝜓

𝑑𝜕𝑡𝜔
𝑑d𝛺,

= −∫𝛺
𝜌0 𝜓

𝑑𝜕𝑡
(

𝛥𝜓𝑑
)

d𝛺,

= −∫𝛺
𝜌0 𝜓

𝑑𝛥
(

𝜕𝑡𝜓
𝑑) d𝛺,

= −∫𝛺
𝜌0 𝜓

𝑑div𝐠𝐫𝐚𝐝
(

𝜕𝑡𝜓
𝑑) d𝛺,

= ∫𝛺
𝜌0 𝐠𝐫𝐚𝐝

(

𝜓𝑑
)

⋅ 𝐠𝐫𝐚𝐝
(

𝜕𝑡𝜓
𝑑) d𝛺

−∫𝜕𝛺
𝜌0 𝜓

𝑑 𝐠𝐫𝐚𝐝
(

𝜕𝑡𝜓
𝑑) ⋅ 𝒏d 𝛾,

= ∫𝛺
𝜌0 𝐠𝐫𝐚𝐝

(

𝜓𝑑
)

⋅ 𝐠𝐫𝐚𝐝
(

𝜕𝑡𝜓
𝑑) d𝛺 − ∫𝜕𝛺

𝜌0 𝜓
𝑑 𝜕𝑡𝑢𝜏d 𝛾,

= 𝜓⊤ 𝑀𝜓 𝜓̇ − 𝜓⊤ 𝐵⊤d𝑡 𝑢̇𝜏 ,

hence the result, since 𝐵d𝑡 𝜓 =𝑀𝜕 𝑦d𝑡, and 𝑀𝜕 is symmetric.
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