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Abstract

We consider the design of structure-preserving discretization methods for the
solution of systems of boundary controlled Partial Differential Equations (PDEs)
thanks to the port-Hamiltonian formalism. We first provide a novel general
structure of infinite-dimensional port-Hamiltonian systems (pHs) for which
the Partitioned Finite Element Method (PFEM) straightforwardly applies.
The proposed strategy is applied to abstract multidimensional linear hyper-
bolic and parabolic systems of PDEs. Then we show that instructional model
problems based on the wave equation, Mindlin equation and heat equation fit
within this unified framework. Secondly, we introduce the ongoing project
SCRIMP (Simulation and Control of Interactions in Multi-Physics) developed
for the numerical simulation of infinite-dimensional pHs. SCRIMP notably re-
lies on the FEniCS open-source computing platform for the finite element
spatial discretization. Finally, we illustrate how to solve the considered model
problems within this framework by carefully explaining the methodology. As
additional support, companion interactive Jupyter notebooks are available.

Keywords

Port-Hamiltonian Systems, Partial Differential Equations, Boundary Control,
Structure-Preserving Discretization, Finite Element Method

1. Introduction

The efficient numerical simulation of complex multiphysics systems is ubiquit-

ous in Computational Science and Engineering. Although a wide range of me-
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thods exists to tackle specific problems, they often lack versatility and adaptabil-
ity, especially when the modelling is of increasing complexity as in real-world
applications.

Infinite-dimensional port-Hamiltonian systems (pHs) have been first intro-
duced in [1] using the language of differential geometry. They provide a power-
ful tool to model complex multiphysics open systems (whether or not being li-
near) for control purpose. A wide range of physical systems has been written
within this formalism, see e.g. [2] [3] [4]. This twenty-year-old framework [5]
enjoys nice properties, such as the relevant physical meaning of the variables, a
useful underlying linear structure (namely Stokes-Dirac structure) which en-
codes the power balance satisfied by the Hamiltonian (often chosen as energy),
and last but not least: the interconnection of multiple pHs remains a pHs. This
allows “modular” modelling of complex multiphysics systems.

Since then, many researchers have developed numerical methods to discretize
these systems in a structure-preserving manner, hence keeping the advantages of
the infinite-dimensional pHs. Such methods aim at constructing approximate fi-
nite-dimensional pHs at the discrete level. Our aim is to show the versatility of
PFEM thanks to a new unified framework and to introduce the ongoing project
SCRIMP together with companion Jupyter notebooks [6]. Each particular example
discussed here has been treated previously [7] [8] [9] [10]. Here, the existence of
an underlying common structure for many pHs is highlighted. Obtaining such a
general scheme for infinite-dimensional pHs is of major importance for control
purposes [11], and for coupling atomic elements into a more complex system with
the guarantee of well-preserved energy exchanges between subsystems [12].

The first proposed structure-preserving scheme for pHs dates back to [13], where
the authors proposed a mixed finite element spatial discretization for hyperbolic
systems of conservation laws. Pseudo-spectral methods relying on higher-order
global polynomial approximations were studied in [14]. Unfortunately, this me-
thod seems to be limited to the one-dimensional case. A finite difference method
with staggered grids was developed in [15] for two-dimensional domains, but
complex geometries are then difficult to tackle. Weak formulations leading to
Galerkin numerical approximations began to be explored in the past few years.
In [16] the prototypical example of hyperbolic systems of two conservation laws
has been discretized by a weak formulation. However, the construction of the
necessary power-preserving mappings is not straightforward on arbitrary mesh-
es. All these methods require ad hoc implementations and are usually restricted
to particular cases of pHs. Furthermore, since they do not rely on well-established
and versatile numerical libraries, using such techniques remains confined within
a small community of experts. We refer the reader for a more complete overview
of structure-preserving discretization for pHs to [5] [17] and the references there-
in.

Thanks to [8] it has become clear that there exists a deep relation between

structure-preserving discretization of pHs and Mixed Finite Element Method
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(MFEM). Indeed velocity-stress formulations for the wave dynamics [18] and
elastodynamics problems are of Hamiltonian type and their mixed discretization
preserves this structure for closed systems. This leads to the intuition that the
MFEM may be used to discretize the underlying geometric structure of pHs in a
unified way, even for open systems, translating the infinite-dimensional Stokes-
Dirac structure into a finite Dirac structure. A first successful application has al-
ready been achieved in [19] for discretizing the 1-D Navier-Stokes equations for
reactive flows formulated in a port-Hamiltonian formulation. The discretization
strategy relies on the partitioned structure of the problem and for this reason,
goes under the name of Partitioned Finite Element Method (PFEM). This me-
thod proves nice convergence properties, see e.g. [20] for a recent proof on the
wave equation, that does not require the fulfilment of the usual inf-sup condi-
tion for MFEM, generalizing the results cited in ([21], Remark 6).

It has to be pointed out that the core idea of PFEM, i.e. performing integration
by parts on a partition of the weak formulation of the system of equations, has
already been proposed for closed hyperbolic systems in [21]. Therein, the for-
mulations are called either primal-dual or dual-primal, depending on the chosen
partition of the system.

The major difference between MFEM and PFEM relies on the choice of the
test functions in the weak formulation, hence on the finite element form func-
tions. Indeed, in PFEM, they never carry homogeneous boundary conditions. In
e.g. ([22], Section 7.1), it is shown that for a Dirichlet control, test functions are
taken in the kernel of the Dirichlet trace. As already mentioned, in [21], the
proposed primal-dual and dual-primal discretizations are then suitable for the
structure-preserving discretization of closed systems. Nevertheless, by keeping
these homogeneous conditions in the test functions, not only the application of
Dirichlet control is difficult, but the definition of the Neumann observation, ne-
cessary for the discrete power balance, would be more complex. PFEM aims at
easing the mimicking of the continuous power balance at the discrete level, by
relaxing the test functions used in [21]. To the best of our knowledge, this relax-
ation has not been investigated yet in the case of boundary controlled wave-like
systems, and this probably comes from the fact that MFEM has been first devel-
oped for elliptic systems. Indeed, in this case, such a boundary condition is man-
datory for well-posedness (especially to obtain the ellipticity in the kernel condi-
tion ([22], Eq. (5.1.7)), while PFEM is made for evolution systems, and more es-
pecially for pHs.

In our opinion, the driving forces of PFEM are threefold: first, PFEM takes
collocated boundary controls and observations into account in a simple manner;
secondly, PFEM is structure-preserving, meaning in particular that the discrete
power balance perfectly mimics the continuous one; thirdly, the implementation
of PFEM only relies on existing finite element libraries, such as FEniCS [23], se-
lected in the ongoing project SCRIMP for its robustness and efficiency. Last but

not least, the pHs point of view allows us to separate axioms of physics (such as
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conservation laws) from constitutive laws and equations of state (such as Hooke’s
law and ideal gas law). PFEM is based on this separation, providing the possibil-
ity to tackle parabolic or nonlinear systems, at the price of solving a finite-di-
mensional port-Hamiltonian Differential Algebraic Equation (pHDAE). In the
particular case of linear hyperbolic PDE, as shown in Section 2, the constitutive
laws can be easily (i.e. without matrix inversions) taken into account in order to
recover an Ordinary Differential Equation (ODE).

PFEM could also be named e.g. extended MFEM or relaxed MFEM. Since on-
ly evolution systems are considered (not necessarily of hyperbolic type, see e.g.
Section 3.4), relaxed conditions for the selection of the test functions hold, hence
for the finite elements as well. We choose to follow the terminology introduced
in [8] and widely used since then. Furthermore, it emphasizes the pH formula-
tion of the initial system to discretize.

Main contributions

We first aim at presenting the strategy of the structure-preserving discretiza-
tion PFEM, in a new unified abstract framework, allowing for an easy applica-
tion to a wide class of boundary controlled partial differential equations. Then,
in order to show the versatility of our approach, we successively apply PFEM to
the boundary controlled wave equation, the boundary controlled Mindlin plate
model, and the boundary controlled heat equation with a thermodynamically
well-founded Hamiltonian (namely the internal energy, instead of the quadratic
functional commonly used). Taking advantage of the strong underlying struc-
ture, we finally describe a unified object-oriented implementation of these mod-
els via PFEM. Companion interactive Jupyter notebooks [6] are discussed to il-
lustrate our methodology. For the purpose of this manuscript, smooth functions
are selected for the physical parameters of the problem under considerations.
Nothing prevents from choosing less regular coefficients. This will of course af-
fect the global convergence of the underlying finite elements [20].

Structure of the manuscript

The manuscript is organized as follows. In Section 2 the abstract pHs frame-
work is introduced, with a particular focus on both hyperbolic and parabolic li-
near systems of partial differential equations. In Section 3 the general struc-
ture-preserving discretization is presented, and then specialized on the two cases
previously mentioned. In Section 4 the ongoing environment SCRIMP is de-
scribed in detail. In Section 5 the three companion interactive Jupyter notebooks
[6] are thoroughly explained. Conclusions and perspectives are finally drawn in

Section 6.

2. Definition of the General Framework

In this section, we introduce an abstract class of pHs and their underlying geometric
structure: the Dirac structure for the finite-dimensional case and the Stokes-Dirac
structure for the infinite-dimensional case. For the infinite-dimensional case it is

shown how hyperbolic and parabolic systems easily fit into this framework.
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2.1. Finite Dimensional Port-Hamiltonian Systems

State representation
Let us begin with a classical definition of a pHs in finite dimension. Consider
the time-invariant dynamical system [24]:
dx
—=(J(x)=R(x))VH (x)+B(x)u,
(309~ R(X)VH (x)+B(x) .
y=B(x)' VH(x),

where H (X)Z X ~R" > R, the Hamiltonian, is a real-valued function of the
vector of energy variables X, bounded from below. Matrix-valued functions
J(x) (the structure operator) and R(x) (the dissipative or resistive operator)
are skew-symmetric and symmetric positive semi-definite respectively. The con-
trol ueR"™ is applied thanks to the matrix-valued control function B(x) of
size NXM. Variable y e R™ is the power conjugated output to the input.

Such a system is called a port-Hamiltonian system, as it arises from the Ha-
miltonian modelling of a physical system and it interacts with the environment
via the input U and the output y, included in the formulation. The vector
VH (x) is made of the co-energy variables.

Due to the structural properties of J(x) and R(X), the port-Hamiltonian
system enjoys the nice following power balance:

dd_T:_(VH (x))T R(X)VH (x)+u"y<u"y, (2)
meaning that R(X) accounts for dissipation, and that the input-output prod-
uct corresponds to the power supplied to (or taken from) the system, through
the control U.

Flow-effort representation

Consider two finite-dimensional vector spaces E = F =~ R". The elements of
F are called flows, while the elements of E are called efforts. Those are port va-
riables and their combination gives the power flowing inside the system. The
space B:=F xE is called the bond space of power variables. Therefore, identi-
fying Eas the dual of £ the power is defined as (e,f) =e(f).

Definition 1 ([25], Def. 1.1.1) Given the finite-dimensional space F and its
dual E with respect to the inner product (-,-)_ :FxF —R, consider the sym-

metric bilinear form:
<<(f1,el),(f2,e2 )>> =(e.,f,)+(e,.f,), where (f,e)eB,i=12

A Dirac structure on B:=FxE is a subspace D c B, which is maximally
isotropic under <<, )) . Equivalently, a Dirac structure on B:=F xE is a sub-
space D < B which equals its orthogonal companion with respect to <<, >> ,
ie. D =DM, where:

D" = {(f.e)< BI(((f.¢).(F.€))) =0.v(F.&) € DJ.

The connection between the concept of Dirac structure and pHs in its canon-
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ical form (1) is achieved by considering the following ports:

e the storage ports (f, e, )= (Z—)t(, VH (X)j e R"xR", made of the storage flow

f, (time-derivative of the energy variables) and storage effort e, (the
co-energy variables);

o the resistive (or dissipative) ports (fR,eR ) e R*xR*, made of the resistive
(or dissipative) flow T, and resisitive (or dissipative) effort e ;

e the interconnection ports (fu,eu):= (—y,u)eR”‘ xR"™, made of the inter-
connection flow T, and interconnection effort e, .

Assuming that the matrix R(x) has constant rank, from classical matrix
factorizations there exist matrices G (not necessarily square, of size kxn)
and K symmetric positive semi-definite of size kxk such that R=G"KG.
These notations at hand, the pHs (1) rewrites:

L)) | 300 —6(x)" B(x)| e (x)
fz (X) [=] G(x) 0 0 [leg(x)], (3)
fu (X) | —B(X)T 0 0 | &, (X)

Je

together with the (dissipative or resistive) constitutive relation:
ex (X) = K (), () @
It is clear that the extended structure operator J, appearing in (3) is
skew-symmetric of size (n+k+m)x(n+k+m). Its graph is a Dirac structure

with respect to the Euclidean inner product, as a kernel representation, see [24].

Hence, it comes:
(&, (%), F, (X)) +(8r (%), Fr (X)) i +(e0 ()., (X)), = 0.
Noting that dd_T = <ex (x),f, (X)>R" (by definition of the storage port) leads

to:

aH

O e (0 (X)) ~ (e (). (X))

and thanks to the symmetry of R, (4) gives:
8 (0. K ()i () 0 e (905, (X))

Finally, from (3) and the definition of the storage and interconnection ports,
the power balance (2) is recovered.

The relation between (1) and (3)-(4) can be understood as follows: the power
balance (2) is encoded in the Dirac structure (obtained from the extended struc-
ture operator J,) together with the resistive constitutive relation.

Remark 1. The canonical Euclidean inner product has been used here, but
other inner products are allowed to take into account mass matrices (symmetric
positive definite) on the left-hand side of (1), (3), and (4). This is crucial after the

spatial discretization procedure. This corresponds to a kernel representation of
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Dirac structure [24].

System 1 is a pHs in canonical form. Recently, finite-dimensional differential
algebraic port-Hamiltonian systems (pHDAE) have been introduced both for li-
near [26] and nonlinear systems [27]. This enriched description shares not only
all the crucial features of ordinary pHs, but also easily accounts for algebraic

constraints, time-dependent transformations and explicit dependence on time in
the Hamiltonian. The application of the proposed discretization method natu-

rally leads to pHDAEs. Indeed, a constitutive relation between f, :=Z—)t( and

e, =VH(x) is needed to be well-defined. But PFEM takes into account con-
stitutive relations apart from (3) as constraints. However, as shown later in Sec-
tions 3.2 and 3.3, the method simplifies in the case, for instance, of linear
hyperbolic systems.

2.2. Infinite-Dimensional Port-Hamiltonian Systems

In this section an infinite-dimensional generalization of pHs is presented. For
sake of readability, the (Stokes-) Dirac structure is first defined, and secondly,
infinite-dimensional pHs are then described in both hyperbolic and parabolic
cases. A more general framework can be designed, but this goes beyond the aim
of this present work.

Structure operator

As to avoid functional difficulties, the analogue of the extended structure op-
erator will not be written as in (3). More precisely, the control operator will not
be included in an extended structure unbounded operator, but given apart. The
Stokes-Dirac will be then obtained thanks to a structure operator related to the
boundary control operator through an abstract Green formula. However, like in
finite dimension, the aim is to establish a link between flow and effort variables.
Most importantly, the underlying Stokes-Dirac structure must encode the power
balance of the dynamical system under study.

Consider a Lipschitz domain Qc R, d e {1,2,3}, and the relation:

f - L eH,
IR e N e ®
f, L 0 |\& e, eH ™",

H® :{e, e P (QA)| Le, € L (Q,B)},

with:

H tfe, e L (QB)|-Le, e L (QA)}.

By L2 (Q, X) we denote the space of square integrable X -valued functions.
Symbol A,B denote either the space of scalars R, vectors R®, symmetric
tensors ngxnf =S or a Cartesian product of those, depending on the particular
example. The operator £:H* — L (Q,IB%) is a generic differential, and there-
fore linear but unbounded, operator. The notation £ :H™* — L2 (Q,A) de-

notes the formal adjoint of £, defined by the relation:
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(Le,, eZ)LZ(Q,]B) = <el, ﬁ*e2>LZ(Q,A) , € eCy(QA) e, eCy(QB). (6)

Of course, for (5) to be well-defined, constitutive relations are needed. Only
physical laws will be taken into account when constructing the above relation on
concrete examples. As pointed out in the introduction, PFEM aims at both pre-
serving this relation and discretizing constitutive laws to close the system.

Remark 2. One can be confused by the lack of evolution in time in (5). How-
ever, this emphasizes an important paradigm in the proposed point of view: this
relation translates the time-independent geometric structure of the pHs as an
equation with differential operator (ill-posed on its own), while constitutive re-
lations will bring back the time dependency of the problem. In particular, some
flows must be the time derivative of the energy variables.

Throughout the paper, <'*'>x denotes the inner product of the Hilbert space
X. Definition (6) is analogous to Definition 5.80 in [28]. In Section 3.2, the oper-
ator L is the gradient, denoted by grad, and its formal adjoint is minus the di-
vergence, denoted by -div, from the so-called Green’s formula (integration by
parts). In Section 3.3, the operator £ contains both grad and Grad. This latter
corresponds to the symmetric part of the gradient and represents the deforma-

tion tensor in continuum mechanics:
. 1 o d
Grad(e).—E(Ve+VTe), eeC (R )

The formal adjoint of Grad is minus the tensor divergence -Div. For a tensor
field E:Q— M:=R"?, with components & , the divergence is a vector, de-
fined columnwise as:

Div(E):= (i 0,8 j
i-1 je1ond

Finally, in Section 3.4, £ is made of the gradient and the identity operator.

Stokes-Dirac structure

Definition 1 still remains valid in infinite dimension. Nevertheless, as stated

above, the structure operator in (5) is not extended to include the control operator.

Hence an additional assumption has to be made for {2 _5} to define a

Dirac structure in relation with a pHs coming from boundary control of partial
differential equations. In other words, a Stokes-Dirac structure requires the spe-
cification of boundary variables in order to express a general power conservation
property for open physical systems. This assumption is based on the so-called
Stokes’ theorem (also known as the divergence theorem, Gauss’s theorem or Os-
trogradsky’s theorem) and its corollaries, as the Green’s formula.

Assumption 1 (Abstract Green’s formula) The operator L is assumed to

satisty the abstract Green's formula:

(Eel,ez)Lz(Q‘B) —<el,[e2>L2(QyA) =(Tpe,. T e, >v,1,,(v,3)' Ve eH e, eH™, (7)

where the right-hand side is the duality bracket at the boundary, on a well-suited
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boundary functional space V, for some trace operators I'j,I"; . From now on,
this duality bracket will be denoted by <~, '>aQ
Remark 3. This abstract formula is well-known in the boundary control sys-

with a slight abuse of notation.

tems theory, seee.g. ([29], Chapter 10).

Remark 4. In practice, Equation (7) dictates the causalities, i.e. the possible
choices for the boundary control U, and the boundary observation Y, , via the
equality (Foel,F 18, >ag = (ua, Y, >aQ (with a slight abuse of notation for the
right-hand side to make sense). Of course, the admissible causalities are also re-
lated to the well-posedness of the system under study, and in particular to the
definitions of the boundary functional spaces.

For sake of simplicity, a focus on the two following causalities will be made.
Let the boundary variables associated to system (5) be defined by:

e,=T.e,e(V,), f =-Tepe eV, (8)
or the other way:

’

e,=Te eV, f,=-Te,e(V,). 9)

o

In light of (7), systems:

(2 S0 G2 SR o
G T GG 2 ) e

define Stokes-Dirac structures with respect to the bilinear pairing:
(0012 72 elebuet ) (12, 17, 17,el e e )
- < i, el2>L2(Q,A) +< 2, eZZ>LZ(Q,]B) +< ) ei>L2(Q,A)
+< f22’e§>|_2(g,ms) +< fel’e§>an +< fﬁz’eé>an

Obviously, for systems (10) and (11) to be well-defined, constitutive relations

and:

are needed.

In the remaining part of this section, only (10) will be treated in details. The
other canonical causality (11), figuring in Section 3.4, straightforwardly follows
with the same strategy.

Hyperbolic systems

In the hyperbolic case, both flows represent the dynamics of the independent
energy variables a;,a,. The Hamiltonian is a generic functional of these va-
riables H =H (a;,a,). The co-energy variables are by definition the variational

derivatives (see e.g. [1]) of H with respect to the energy variables:

fi=0,, &:=0,H, f,=0a, e,:=75,H. (12)

Then system (10) possesses the equivalent state representation:
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atal _ o _‘C* 5"1 H ua _ 0 FL 5"1 H (13)
o) (£ 0 |\6,H) \v.) [T, 0](S,H)
It holds u, =¢,, y, =—T,. The power balance is naturally embedded in the

Stokes-Dirac structure defined by (10):
d

EH(%%):W@%%@- (1)

Linear hyperbolic systems

The system is linear when the Hamiltonian has the form:
1 1
H (al’ @, ) = E(al’ Qlal)Lz(Q,A) +E<a2 ! QZaZ)LZ(Q,]B) !

where O, : L2 (Q,A) — 2 (Q,A) , 9 L2 (Q,IB%) — 2 (Q,IBB) are positive sym-
metric operators, bounded from below and above:
ml, <9 <M, ml; <9, <M,l,
m >0,m, >0,M, >0,M, >0,
with 1, and I the identity operators in L*(Q,A) and L*(Q,B) respec-

tively. In this case, the co-energy variables are given by:

e,=6,H=Qa, e:=6,H=0a, (15)

Since Q,,Q, are positive and bounded from below and above, it is possible to

invert them to obtain:
a =9 e, =Me, a,=09,'e, = M,e,, (16)

giving rise to the co-energy formulation. The Hamiltonian is rewritten as:
1 1
H (el’ &, ) = E(el’ Mel>L2(Q,A) +E<e2 ! MZeZ)LZ(Q,]B) 17)

and a linear hyperbolic pHs (10) can be expressed as:

G LR G ST e

In this particular case, the constitutive relations needed for system (10) to be
well-defined are given by (15), and then directly included in (18). In Sections 3.2
and 3.3, it will be shown that PFEM leads directly to a finite-dimensional pHs of
the form (1) with R(x)=0. This simplification considerably facilitates the so-
lution in time, as (1) is an Ordinary Differential Equation (ODE). Indeed, some
dissipation phenomena will induce a differential-algebraic structure on the prob-
lem, for example dissipative effects due to an unbounded (e.g. elliptic) operator
(see Remark 5).

Parabolic systems

In this case, the first flow f, still represents a dynamics 0,a, of the energy
variable @,. The Hamiltonian then reads H =H(q,), and its variational de-
rivative gives the co-energy variable e =5, H .

The second flow f, represents an extra flow related to the effort variable e,
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appearing in the dynamics of the energy variable ¢,. The relation is given im-
plicitly by a mapping G as G(f,,e,)=0. Then, pHs (10) of parabolic type is
expressed as:

(o ST GBI stea-o oo

In Section 3.4, an example of a parabolic-type pHs (11) is studied. It will be
shown that the PFEM structure-preserving discretization of such a system natu-
rally leads to a finite-dimensional pHDAE. Again, the power balance is naturally
embedded in the Stokes-Dirac structure defined by (10):

d

EH(al):_<f2’e2>|_2(g)+<y6’u8>69' (20)

In practice, this becomes explicit with the constitutive relation G( f,,e,)=0
as it will be seen in Section 3.4 (and more generally in [9] [10]). Note that this
latter relation has to be accurately discretized to ensure that the discretized pow-
er balance mimics the continuous one.

Remark 5. By adding resistive port(s), dissipation(s) can easily be taken into
account (both internal or at the boundary), as done in the finite-dimensional
case via R(X) playing the role of a output feedback gain matrix. In this case,
the system becomes a parabolic system, the dissipative constitutive relation being
represented by G . See [30] [31] for a detailed discussion about structure-pre-

serving discretization of dissipative systems.

3. The Partitioned Finite Element Method (PFEM)

We are now in a position to introduce a general methodology to discretize infi-
nite-dimensional pHs in a structure-preserving manner. The main contribution
in this section is the application of PFEM to a general abstract class of pHs, un-
ifying the previously published results. This generality is notably of particular
interest for the development of a well-structured software for the numerical si-
mulations of physics-based models. The power balances (14), (20) are deeply
linked to a linear underlying Stokes-Dirac. The main idea of PFEM is to mimic
this structure, in order to obtain a discretized copy of these power balances as
(2). This systematically translates the Stokes-Dirac structure into a finite-di-
mensional Dirac structure. The compatible discretization, with respect to this
Dirac structure, of the constitutive relations allows to mimic the continuous
power-balance. This method goes under the name Partitioned Finite Element
Method (PFEM), and was originally presented in [8]. The procedure is a natural
extension of MFEM to pHs and boils down to these three simple steps:

1) System (5) is written in weak form;

2) The integration by parts (7) is carried out on a partition of the system (5) to
make the appropriate boundary control appear;

3) A Galerkin method is employed to obtain a finite-dimensional system. For

the approximation basis, the finite element method is used here but spectral
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methods can be chosen as well.

This strategy of structured discretization in order to mimic the continuous
power balance at the discrete level has been addressed for closed abstract linear
hyperbolic systems in [21]. This pioneering work already proposed the key point
of PFEM: the integration by parts on a partition of the weak formulation of the
system. The author called the obtained systems primal-dual or dual-primal for-
mulation, depending on which line is integrated by parts. In the port-Hamiltonian
formalism, systems are opened with control and observation. It appears that [21]
admits PFEM as a generalization for structure-preserving space discretization.
The choice of a control in the pHs community is called a causality, and prim-
al-dual or dual-primal correspond in this work to the canonical causalities (10)

and (11) respectively.

3.1. General Strategy

Consider smooth test functions v, and v, and the weak form of (5):

(i, f1>L2(Q,A) :<V1’_£*e2>L2(QA)'
<V2’ f2>L2(Q,]B) = <V2”Cel>|-2(9‘]3)'

Next the integration by parts is performed either on the first or on the second

21)

line (the system is partitioned), depending on the causality.
Integration by parts of the term <V1, L e2>L2(Q A
In this case case, using (7), it is obtained:

—<V1'592>L2(Q,A) =~(LV1.8,) 20z +(Tov, T 8,) .

The boundary variable e, :=TI" e, in (10) explicitly appears. Then the equa-
tion defining the corresponding f, :=I'je, is put into weak form to obtain the

final system for all smooth test functions v;, v,,and V,:
(v f1>L2(Q,A) = _<£V1’62>L2(Q,]B) +{ToV1.€5) g
<V2’ f2>L2(Q,]B) = <V2’£e1>L2(Q,JB) ' (22)
(Vo f ) == (Vo Ty )
Now, a Galerkin discretization is introduced. Test, energy and co-energy

functions with the same subscript are discretized using the same basis, for all
t>0:

G0 ~TE (LX) =30l (X)), vxen

St~ (LX) =X p () T(D), VxeQ, 23)

N

O,(t,s)~ ¢ (t,s) = wl (s) CL(t), VseoQ,

)

where [J stands for v £ and e and ¢ eH®, ¢;EL2(Q,IB3) , and
wiel’(aQR").
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Remark 6. In general, a discretization in the same basis of either (f,,e,) and
(f,.e,) or (f.f,) and (e,e,) (as done in [16]) must be performed. The for-
mer is our choice since it directly leads to square mass matrices, while the latter
may be more appropriate when dealing for instance with Maxwell s equations
for electromagnetics, see [32] and references therein for details on the difficulties
that may then occur.

Then plugging the approximations into (22), it is computed:

M, 0 0 |f 0 -D; B, |e
0 M, 0 |f,|=|D, 0 0 |le, | (24)
0 0 M,|f, -BT 0 0 (le,

where vectors f,, f,, e, e,, f,,and e, are given by the column-wise con-
catenation of the respective degrees of freedom of f*, !, e, e, f°,

and e] , and where the matrices are defined as follows:
[ |
Ml - <¢l’¢l >L2(Q,A) !
mn _ m _n
M," = <§02 1P >L2(Q,]B) '

ME = (wws).,.

D =(07'.L£01) 2 s

| | "’ (25)
BY = (Topl k) .
where 1<i,j<N,;, 1<mn<N,,and 1<,k <N,. System (24) is a kernel re-
presentation of a Dirac structure as in (3) (see Remark 1).

Remark 7. Note that matrices D, and B, are not square.

The discrete Hamiltonian is naturally defined as the continuous one evaluated
in the discrete energy variables. As done in Section 2, it is easier to distinguish
the linear hyperbolic from the parabolic case.

Hyperbolic case

In this setting, the flows f;, i=1,2, are given by the time derivative of the
energy variables ¢;. Hence, the discretization of these energy variables is given
by:

a (t,x)=a' (0, x)+j; (s, x)ds, i=1,2.

The discrete Hamiltonian is then defined by H’(a,,a,)= H(ald,ag) ,
where o, and o, are the column-wise concatenation of the time varying
coefficients of @' and @ in their respective basis.

Definition 2. The discretization of the constitutive relations is said to be

compatible if and only if

d
VHO - v, H _[ My 0l
Vasz O MZ eZ l

Proposition 1. If the discretisation of the constitutive relations is compatible,

the discrete power balance reads at the discrete level
d

_Hdz_ ’HTM’}f'J!
dt (eo) 0'0

which perfectly mimics the continuous identity.
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Proof 1. A straightforward computation gives:

d T, T,
aHd =(V,H') @ +(V,,HY) &,
:(Mlel)T f1+(Mzez)T f,
:(el)T Mf, +(e, )T M,f,

:_(ea)T Mafav

where the symmetry of the mass matrices and the Dirac structure have been
used.

Remark 8. In the special case of linear hyperbolic systems, it has been seen
that the co-energy formulation allows to take the constitutive relations into ac-
count directly in the differential equations. Applying PFEM to (18) then leads to
an ODE, and the constitutive relations are then automatically discretized in a
compatible manner.

Parabolic case

In this setting, only the flow f, is the time derivative of the energy variable
a,. This energy variable is discretized as in the hyperbolic case. The discrete
Hamiltonian is then defined by H®(a,):=H (ald ) .

Definition 3. The discretization of the constitutive relation is said to be com-
patible ifand only it VH® =M.e, .

Proposition 2. If the discretisation of the constitutive relations is compatible,

the discrete power balance reads at the discrete level

d d T T

—H" =—¢,M,f, —e,M_f,,
dt 2 2'2 0 2°0
which perfectly mimics the continuous identity.

Proof 2. The proof can be derived similarly as in the hyperbolic case.

Remark 9. Of course, an accurate discretization of the implicit constitutive
relation G( f,,e,)=0 is also required to conclude. This will be illustrated in
Section 3.4.

Integration by parts of the term (v,, Le,) . @)
Using (7), it comes:

(v,, Eel>L2(Q‘B) = <£*v2 , e1>L2(M) +(T v, T8, )., -

Now the boundary variable e, :=T"je, explicitly appears, ie. the causality
considered in (11). The weak formulation then reads:

(Vl' f1>|_2(Q,A) = _<vl’£*e2>|_2(9,A) !
<V2' f2>L2(£2,]B) - <£V2’el>L2(Q,A) _<FLV2'ea >aQ ’ 26
<Va! fa >aQ = <V0 ! FieZ >aQ :

Plugging the approximations (23) into (26), this time with @] € L*(Q,4),
@, eH™" ,and y!el? (GQ, Rm) , gives the following kernel representation of a

finite-dimensional Dirac structure:
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M, 0 07f 0 D, 0ffe
0 M, 0 |f,|= —DTL* 0 Bylle, | (27)
0 0 M;Jif 0 -B; 0 |\&
where the matrices D . and B, are defined by:
im i m mk _ m k
D', = <¢’1 —L o, >L2(Q,A) » By = <FJ_¢2 W >an : (28)

The power balances proven above still hold true with this causality, where the
role played by e, and f, have been switched.

In the sequel, this methodology is applied to the wave equation, the Min-
dlin-Reissner plate model and the heat equation. These models have been chosen
to demonstrate the versatility of our methodology. The wave equation is the
prototype of linear hyperbolic systems, and the first example treated by PFEM
[8]. The Mindlin model combines wave dynamics and plane elastodynamics, and
requires the introduction of tensor-valued variables. Finally, the heat equation is
the prototype of parabolic systems, and leads to a pHs with intrinsic algebraic

constraint, namely, to a pHDAE.

3.2. The Wave Equation

The wave equation is a well-known model, used as the first example of linear
hyperbolic systems in many lecture notes and books. This work is no exception
to the rule. However, to account for more realistic physics, let us consider the
heterogeneous and anisotropic multidimensional wave equation. The equation
reads (see [33]):

2

paat\zlv:dlv(Tgrad(W))r (X,t)GQX[O’tend]r QCRN’ (29)

where p is the mass density (bounded from above and below), T is the
tensorial Young modulus (symmetric and positive definite) and wis the deflec-

tion from the equilibrium.

Let us denote a = p@ the linear momentum and e, :=grad(w) the
ot

strain, as energy variables. Hence the Hamiltonian is given as the total energy

(summing kinetic and potential energies) by:
2

1. |a
H :E.[g{?p+aq ‘(Taq )}dQ, (30)

The co-energy variables are by definition the variational derivatives of A with

respect to the energy variables, i.e.:

[04
e, =5, H :7":Wt, &, =3, H="Ta, =T grad(w), (31)

the velocity and stress. With these notations, Equation (29) rewrites:

afay| | 0 div|fe, (32)
otle, ) |grad 0 |le, )’
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together with the constitutive relations given in (31).

Let us denote:

e =6, &=, M=p M=T"7
L=grad, T, =y, =y,-n, Ty=7,
where y, is the Dirichlet trace operator. Then the Hamiltonian (30) rewrites as
(17). The wave equation (29) with Neumann boundary control u, =y, (eq) is
given by (18).
The application of PFEM directly gives:

|:Mp 0 :|i[el]:|: 0 _D;rad:|(elj+|:Bij|ua
0 M_.ldtle,) |Dyy 0 |l&, 0

M.y, =Bl o](?j,

2

(33)

where:

M) = (0Pl )y My =(o 'T71¢£>L2(0R”) '

L2(Q,R)

are the discretizations of the operators M, and M, respectively.

3.3. The Mindlin Plate Model

The Mindlin model is a generalization to the 2D case of the Timoshenko beam

model and is expressed by a system of two coupled PDEs (see [34]):
2

pb W _div(g)+ f, (xt)eQx[0t,], QcR?
ot
b* 66 G
p .
——-=q+Div(M)+t,
2 o | (M)
where p is the mass density, b the plate thickness, w the vertical displacement,
0= (Hx 0, )T collects the deflection of the cross section along axes x and y re-
spectively. The fields f,r represent distributed forces and torques. Variables
M,q represent the momenta tensor and the shear stress. Hooke’s law relates
those to the curvature tensor and shear deformation vector:
M:=D,KeS, K:=Grad(8)eS,
q=D.y, y =grad(w)-8.
. EYsth
P2(1+v)

ulus, v is the Poisson modulus, K, is the shear correction factor. Tensor

is the shear rigidity coefficient, where E, is the Young mod-

D, is the bending stiffness:
E, b

D, ()=—"—<|(1-v)(:)+vTr(:)|. (35)
0= a0 T ]
An appropriate selection of the energy variables is the following [7] [35]:
3
a, = phow, a, :=%6[0, A =K, a =y (36)
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The Hamiltonian A (total energy) is expressed in terms of energy variables as:

1 1, 12 2 i 2
H :EJ-Q{E“WJ’_E"“H" +AK (DbA/()+ DS ay" }Q, (37)
where A:B denotes the tensor contraction. The co-energy variables are de-
fined as follows:
e, =0, H=0w, e,==6, H=00,

(38)
E, =0, H=M, e, ::5(1,"' =q.

System (34) is then expressed in port-Hamiltonian form as [7] (forces and
torques have been omitted for simplicity):
a, 0 0 0 divife,
i a,g _ O 0 DlV |2><2 9 . (39)
ot| A, 0 Grad O 0 .

a grad —-1,, O 0 »

14

® M o o

By applying the divergence theorem, the energy rate is expressed as the duality
product of the boundary variables:

dH
T <ataW’eW>LZ(Q,JR) +<alaﬁ ' eH)LZ(Q,IRZ)

dt
+<81Arc* EK>L2(Q,§) +<ata7’e7>|_2(Q,R2) '
:<7Oew'yley>69 +<7099'7LEK>09
= <Ya,1v ua,1>(79 +<y6.2’ U 2 >GQ '

(40)

where:
U = 7.6, Yo1 = YoCu>

Uo =7, B Yoo =708

The traces yu=u|,,7,U=U-n|, correspond to the Dirichlet trace for
R? vectors and to the normal trace for R**® tensors. The mass operators are

given by:

pb 0 D71 0
My o) Mz{(l)) Dl}' “y
12

S

The £, I'y,and I', operators are:

0 Grad 0 0
L= el r,=|"° , T, = T (42)
grad _szz 0 Yo VL 0

Introducing the approximations for the test and co-energy variables:

Ny L Ng A
Ay =2 000 Ay =2 44,
i=1 i1
N N (43)
— T Al _ Al
AK—Z(DKAK, Ay—_ ¢7Ar’
i=1 i=1
where A= {V,e} , and for the boundary controls:
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2 i i 2 i i
0., = O, O, = O,
5.1 Z:l:‘//o,l b1 Mo Z:l:'/’a,z 5,2 (44)
D:{V,u,y}, v, €R, v, e R?,
PFEM can be applied to obtain:
Malte,Y T o 0o o -DI. e
Dia MIB & = 0 0 _D(TBrad _Dg €y
g MDEI élr - 0 DGrad 0 0 eK
MD;1 é}/ Dgrad DO 0 O e}/
B,, O
0 B u
+ Lo e (45)
0 0 U,
0 0
eW
Diag M | You _ BI,W 0 0 0}e
M., [\ Yo 0 BI,@ 0 0f e
e

4

The notation Diag denotes a block diagonal matrix. The mass matrices

M, M, ,M¢ M are computed as:

Mgh = <¢vivvph¢v£>u(n) ' M;g1 - <(D"p D >L2(Q'R52Vx"2‘) '

ph?

M mn __ m | n rs r -1 4s (46)
lg _<¢K ' 9¢K >L2(Q,1R2) ' MDS'I = <¢/ ’Ds ¢7 >L2(Q,]R2) '
where |, je {1, NW}, m,n e {1, Na}, p,ge {1, NK}, r,se {1, Ny} . Matrices
Dyradr Dgrads Dy assume the form:
Dyl = (4, grad¢v£>Lz(g,Rz) : )
D(;n == ¢yr '¢0n 2(e m2) " (47)
D2, :<CI>,f,Grad¢9”>L2(Q’R§yx%), (0.R?)
Matrices B,,,B,,M,;,M,, are computed as:
i i o _(yf o
BY, = (ndovly),, Mo (v ayl’V’avl>L2(aQ,Rm) ' fge{l N}, )
BT = <70¢9mv§//g,2>m , My = <'//(!3,2"//(;(,2>L2(EQ'Rm) , Lke {1’ Nf”?}
The discrete Hamiltonian is then computed as:
1 1r 1r 1
H, = EeWMpheW +EegM,0e6 +EeKMDD,1eK +§e7MD;1e7' (49)
From system (45) the discrete energy rate is readily obtained:
dH
dtd = YouMo sy +Y2 .M, U . (50)

The discrete energy rate then mimics its infinite-dimensional counterpart.
Remark 10. Equivalently a purely mixed formulation can be obtained by in-
tegrating by parts the third and fourth lines of (39). In this case, the system of
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equations gathers together a plane elasticity problem [36] and a wave equation in
mixed form. Conforming finite elements for the plane elasticity system on sim-
plicial meshes have been constructed in [37]. The simpler PEERS elements based
on a weak symmetry formulation have been proposed in [38). The PEERS ele-
ments have been used in [39] to construct a stable locking-free mixed formula-

tion for the static Mindlin problem.

3.4. The Heat Equation

The heat equation is the simplest example of parabolic system. Instead of re-
writing the well-known PDE as a pHs, a direct pHs modelling is presented, as
done in [9] [10]. The model is constructed in order to keep apart thermody-
namical principles from equations of state. Indeed, the pHs formalism allows to
modify the latter, by keeping the structure of the former.

Let QcR" be a bounded open connected set. Assume that this domain
models a rigid body: its volume does not change over time and no chemical
reaction is to be found. Let us denote: p the mass density, u the internal ener-

gy density, J, the heat flux, 7 the local temperature, /£ :=_|_l the reciprocal

temperature, s the entropy density, Jg = /fJ, the entropy flux, C, := (3—#]
v
the isochoric heat capacity.

The first law of thermodynamic reads:
ou .
paz—dlv(\]o). (51)

Under the hypothesis of an inert rigid solid, Gibbs formula reads du =Tds,
giving:
u o -
ot ot
Defining o :=grad(/)J,, and seeing u as a function of the entropy density s,
Gibbs formula (52) gives:
péz—div(\]s)ﬁ-a. (53)
ot
Then o is the irreversible entropy production.
In this work, the following constitutive equations of state will be assumed:
e The rigid body is at room temperature: the Dulong-Petit model is supposed
to be satisfied, Z.e. u=C,T , with time-invariant C,;
e The thermal conduction is given by Fourier’s law, with a symmetric positive
tensor A: J, =-Agrad (T).

Thanks to (51) and the equations of state, we easily recover the classical PDE

for the temperature 7 pC, % = div(lgrad (T )) .

1
The “I*-energy” (Ll pC\,TZdQ)2 is commonly used as Hamiltonian for the
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heat equation. However, it lacks of a thermodynamical meaning. The internal
energy would be more accurate for this physical problem, even though it will rise
some difficulties. Nevertheless, the pHs formalism allows dealing with it, and
PFEM proves to be powerful enough to discretize the system in a structure-pre-
serving manner even for this choice of Hamiltonian.

Let the internal energy be seen as a functional of the local entropy as energy

variable: ¢, = ps, then:
H = J.qu(as)dQ.

The co-energy variable is given by e, =5, H _dpu =T, the local tempera-

dps
ture. Denoting € := Jg, one can introduce a new flow variable f; such that:
oa

6ts | 0 div|fe, (e
f “|-grad 0 |[le;) (0)
S

Obviously, fs =—grad(e,). In order to get a formally skew-symmetric oper-

ator, let us also introduce an entropyport (f,,e_),suchthat e, =—o . Then:

Oay.
ot 0 —div -1|fe
fo |=|—grad 0 O || e | (54)
f, 1 0 0]le,

Remark 11. As surprising as it can be, in this setting, Fourier s law appears to
be stated in a nonlinear way: e, —Afy =0. This comes from the necessity to
express the constitutive relations in function of the flows and efforts appearing
in the equation defining the Stokes-Dirac structure.

Remark 12. Two variables have been added to obtain (54), but only one equa-
tion naturally appears. f_=e,. Thus, another equation is needed to close the
system: G( f,,e,)=0. Here, it is given by the definition of the irreversible en-
tropy production o = grad (S )JQ , rewritten in the flows and efforts variables.
This leads to the nonlinear constitutive relation: fies+f e =0.

1
Remark 13. Usually the system energy is taken to be (JQ pC\,Tde)2 , that

gives rise to the well-known linear diffusive system. At first glance, our approach
may be surprising since it leads to a lossless nonlinear differential-algebraic sys-
tem. There is indeed a major advantage in doing so, in view of the modelling and
discretization of complex systems by interconnection of several pHs. For in-
stance, if one wants to interconnect both thermal and mechanical processes, for
the energy exchanges to be consistent, physics must be coherent. When dissipa-
tion occurs, through e.g. friction or viscosity, the kinetic energy is converted into
internal energy. Hence, for a physically meaningful system, the internal energy is
indeed the one to consider.

Let us define:
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oa f e
f = 6;, fzzz[fj, e =€, ezzz[ej,

—grad
£::[ 1 j Io=(-y, 0), Ty=7.

and:

Then, the heat Equation (54) with boundary control e, :=u, =Tse, =, (e,)
and boundary observation f,:=-y, =T e, =y, (&) rewrites under the form
(11). Thus PFEM will be applied with an integration by parts on the second line

in this strategy, leading to (27), which rewrites with the current variables:

Ms %Qs 0 D—div _Ma 0 €,
M -DT, 0 0 B,lle
Dlag S fS — —div 0 S , (55)
M, f M, 0 0 0 |e,
M, _; 0 -B, 0 0 |lu,
where:
ij._ i i K. kol
My = <¢1 ' @; >|_2(aQ,R) ) Mg = <¢’s 1 Ps >L2(Q’RN) )
ki /[ k T km._ k ..m
M, = <¢a,¢o>Lz(QYRN), By" = —(I' .0t v >Lz(anR),

k 0
with @) = [(IZ)SJ if 1<k <Ng,and @i :z((pst ] if Ng+1<k<Ng+N,.
To be compatible, the discretizations of the constitutive relations are given as
follows:
¢ Dulong-Petit model reads: M, o, =M
Mng = <¢1I’pcv¢1J>L2 oRr)’
 Following Remark 11, Fourier’s law reads: Af; =M, e5 with

oc, 85> with

A= <¢’é ’A¢Sj >L2(Q,]RN) and M:’Js = <¢I5 ’e5¢5j >L2(Q,JRN) ;

e The constitutive law coming from the introduction of the irreversible entro-

py production, as explained in Remark 12, is taken into account by:
(eS )T MSfS +(ecr )T Mcrfn =0. (56)

Remark 14. In Fourier's law, the mass matrix M, depends on the co-energy
variable e, . This will rise difficulties for the numerical solution in time.

To conclude, the structure-preserving property can be appreciated in the fol-
lowing result.

Proposition 3. Let H"(a,)=H (a

d

oy Is the discretization of the energy variable in the basis @, . It holds.

d

s ) be the discrete Hamiltonian, where

d a7
—HY=u'M.y,,
dt c UyU

that is the first law of thermodynamics at the discrete level.
Proof 3. Thanks to the compatible discretization of the Dulong-Petit model,
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Proposition 2 gives:

%H ¢ =—e]M,f, —eM.f,.
By definition of f,, e,, M,, e,,and f, one computes:
%Hd =—e;M,f, —eIM.f,

T
) |[Mg 0 |(f .
=— u-M.y.,
(egj |: O MD_ fO_ + o E}y('?
:ungy['aa

thanks to the constitutive relation (56) coming from the irreversible entropy
production.

Remark 15. Fourier' s law does not contribute to the power balance of the in-
ternal energy. Nevertheless, such a constitutive relation is needed for the prob-
lem to be well-defined.

Remark 16. The methodology detailed so far is certainly not limited to the
previous three examples. Indeed higher-order differential [40], curl operator for
Maxwell's equations [32], nonlinear system [41], and different Hamiltonian
choices can be handled as well. For instance, in the case of the heat equation, the
entropy or the classical I’-norm of the temperature can be alternatively consi-
dered as Hamiltonian functional [9] [10]. In addition, mixed boundary condi-
tions can be incorporated either by introducing Lagrange multipliers or by em-
ploying a virtual domain decomposition method [42]. As already mentioned,
dissipation (both in the domain and on the boundary) can also be considered in
this strategy [30] [31]. Hence a very wide class of (nonlinear) multiphysics sys-
tems can be discretized in a structure-preserving manner (with well-represented
exchanges of energy between the subsystems).

In the next section we present an ongoing project which has been initiated to
prove the efficiency of the PFEM methodology, leveraging well-established and
robust software tools for the finite element discretization of partial differential

equations and time integration.

4. SCRIMP: Simulation and Control of
Interactions in Multi-Physics

In this section the main features related to the numerical simulation of pHs in
the framework of the ongoing project named SCRIMP (Simulation and Control
of Interactions in Multi-Physics) are detailed. The aim is to provide a flexible
prototype Python code for the numerical simulation of pHs both for research
and educational purposes. In addition to numerical experiments proposed later
in Section 5, the reader is referred to interactive companion Jupyter notebooks
[6] to learn how to numerically solve the model problems introduced in Section
3 with SCRIMP. In the following, the key ideas behind SCRIMP are mentioned

and then a specific emphasis on both space and time discretizations is given.
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4.1. Key Ideas Behind SCRIMP

In short, the key ideas related to the design of SCRIMP are provided:

e The Python dynamic programming language has been selected due to its ex-
pressiveness and the availability of high-level interfaces to scientific compu-
ting software libraries [43];

e SCRIMP assumes to rely on open-source, external software for the finite-
dimensional discretization of partial differential equations;

e SCRIMP encapsulates the finite-dimensional objects related to the finite ele-
ment discretization in space (e.g. matrices) to deduce the resulting linear or
nonlinear pHs in a generic pHODE/pHDAE form as proposed in [26];

¢ For multiphysics problems, this design offers the advantage that discretiza-
tion in space may be handled by different software components depending
on the discipline or on the modelling. The modularity and the object-oriented
nature of Python thus offer the flexibility to easily combine the different pHs
to deduce the global interconnected system. This is much in line with the ma-
thematical theory of pHs [24]. Furthermore we note that interconnections of
different systems (with e.g. the transformer or gyrator transformations [24])
can be easily incorporated.

The design of SCRIMP is based on procedural and object-oriented paradigms
and thus follows the standard ideas governing most of the numerical PDE soft-
ware. Whereas a detailed exposition of the design patterns of SCRIMP and its
performance will be published elsewhere, concrete illustrations of most of these
key ideas can be found in the companion Jupyter notebooks [6]. The description
of the current numerical methods related to space and time discretizations availa-
ble in SCRIMP is given.

4.2. Semi-Discretization in Space

As outlined in Section 3, PFEM relies on an abstract variational formulation writ-
ten in appropriate finite element spaces.

To perform the semi-discretization in space, we rely on FEniCS [23], an
open-source C++ scientific software library that provides a high-level Python
interface. The FEniCS Project is mainly based on a collection of software com-
ponents targeting the automated solution of partial differential equations via the
finite element method. Its core components notably include the Unified Form
Language (UFL) [44], the FEniCS Form Compiler (FFC) [45] and the finite ele-
ment library DOLFIN [46], which contains various types of conforming finite
element methods, e.g., nodal Lagrangian finite elements for grad-conforming
approximations or non non-nodal finite elements (e.g., Raviart-Thomas spaces
for div-conforming approximations) as well. These families of finite elements are
notably required to tackle the discretization in space of our core problems.

A key point to facilitate the generic implementation of PFEM is the use of
UFL. UFL is indeed an expressive domain-specific language for abstractly repre-

senting (finite element) variational formulations of differential equations. In par-
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ticular, this language defines a syntax for the integration of variational forms
over various domains. This simply leads to an expressive implementation that is
close to the abstract mathematical formulations presented in Section 3. The
FEniCS Form Compiler FFC then generates specialized C++ code from the
symbolic UFL representation of variational forms and finite element spaces. The
combination of these core elements makes FEniCS a versatile and efficient soft-
ware for the finite element approximation of partial differential equations as out-
lined in [47]. Additionally, FEniCS also provides an interface for state-of-the-art
linear solvers and preconditioners from freely available third-party libraries such
as PETSc [48]. This last feature may be especially useful to handle the numerical

simulation of large-scale pHs.

4.3. Time Integration Methods

As outlined in Section 3, the semi-discretization in space of the resulting pHs
leads to systems of either ordinary differential equations (ODE) or differential al-
gebraic equations (DAE). Hence reliable and accurate time integration methods
must be provided.

To offer a large panel of numerical methods, a high-level interface to well-esta-
blished time integration libraries is provided in SCRIMP. Concerning the numeri-
cal solution of ODEs, we provide light interfaces to the Assimulo library [49] and
to the SciPy time integration method scipy.integrate.solve_ivp' that both include
standard multistep and one-step methods for stiff and non-stiff ordinary diffe-
rential equations given in explicit form y'=f(t,y) with y(t,)=y, where
t, and Yy, denote the initial time and initial condition, respectively. This for-
mulation requires the solution of linear systems of equations involving sparse fi-
nite element mass matrices. State-of-the-art sparse direct solvers based on Gaus-
sian factorization are used for that purpose. Through Assimulo, the popular
CVODE? solver from Sundials [50] is also accessible. For nonstiff problems,
CVODE relies on the Adams-Moulton formulas, with the order varying between
1 and 12. For stiff problems, CVODE includes schemes based on Backward Dif-
ferentiation Formulas (BDFs) with order varying between 1 and 5. In addition,
we also propose standalone implementations of symplectic time integration me-
thods such as the second order accurate Stormer-Verlet method.

The interface to Assimulo also allows one to handle the numerical solution of
linear DAEs through the use of the Sundials IDA solver’. IDA is a package for
the solution of differential algebraic equation systems written in the form
F(t,y,y')=0 with y(t))=y,. The integration method in IDA is based on va-
riable-order, variable-coefficient BDF in fixed-leading-coefficient form, where
the method order varies between 1 and 5. We note that setting the initial condi-

tions properly is of utmost importance for a DAE solver. To do so, we rely on

Thttps://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.
solve_ivp

*https://computing.llnl.gov/sites/default/files/cv_guide-5.7.0.pdf
Shttps://computing.llnl.gov/projects/sundials/ida
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the IDA_YA_YDP_INIT method to find consistent initial conditions for the
time integration. We refer the reader to ([50], Section 2.3] for additional details
on IDA. As standalone methods, we have considered the second-order accurate
Stormer-Verlet and fourth-order accurate Runge-Kutta (RK4) methods for the
solution of linear DAEs.

To the best of our knowledge, open-source libraries for the solution of gen-
eral nonlinear differential algebraic equations with high-level Python interfac-
es are not yet available. Hence a simple forward in time integration method for
the solution of the nonlinear pHDAE related to the energy formulation of the
heat equation problem has been provided; see [51] for illustrations and discus-
sion. As a future direction, we plan to investigate the potential of the PETSc’s
time stepping library TS [52] to be able to tackle the solution of large-scale
pHDAE systems.

4.4. Model Reduction of Port-Hamiltonian Systems

Structure-preserving model reduction is of significant importance for stability
analysis, optimization or control of problems related to pHs. Hence structure-
preserving model reduction algorithms have been implemented in SCRIMP. In
particular, the structure-preserving model reduction algorithm (Algorithm 1)
proposed in [53] has been selected in the pHODE case. We refer the reader to
[6] for an illustration, where the model reduction of the pHs related to the wave
equation problem is considered. While for linear pHDAE systems consolidated
methodologies have been proposed (see, e.g., [54]), structure-preserving model
reduction for general nonlinear differential algebraic systems remains to be ex-
plored, to the best of our knowledge. This is a significant research direction to be

considered within SCRIMP in a near future.

5. Numerical Simulations

In this section, PFEM is applied to the pHs presented in Section 3. We specifi-
cally learn how to define and solve those problems with SCRIMP. These tutorials
introduce the methodology step-by-step and are supposed to be self-contained
and independent from the others. We refer the reader to the companion Jupyter

notebooks [6] for additional information.

5.1. Anisotropic Heterogeneous Wave Equation

We first recall the continuous problem related to the anisotropic heterogeneous
wave equation, enriched with internal and boundary damping, and tackle the
semi-discretization in space of the port-Hamiltonian system through the PFEM
methodology. This discretization leads to a pHODE formulation as explained in
Section 3.2. After time discretization, we perform a numerical simulation to ob-

tain an approximation of the space-time solution.

5.1.1. Problem Statement

We consider the two-dimensional heterogeneous anisotropic wave equation
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with impedance boundary condition defined for all (t>0) as:

2

p(x)%w(t, x)—div(7 (x)-gradw(t,x)) = —&(x)ow(t,x), xeQ,

Z(x)(7T (x)-gradw(t,x))-n+a,w(t,x)=0, xedQ,
w(0,x)=w,(x), xeQt=0
ow(0,x)=w (x), xeQt=0,

with QcR? an open bounded spatial domain with Lipschitz-continuous
boundary 9Q. We consider here a rectangular shaped domain for Q. w(t, x)
denotes the deflection from the equilibrium position at point X € QQ and time £
peC” (Q) (positive and bounded from below) denotes the mass density,
T eC” (Q)ZX2 (symmetric and coercive) the Young’s elasticity modulus, & a
positive viscous damping parameter and Z () is the positive impedance func-

tion defined on 0Q, respectively.

5.1.2. Setup
We initialize here the Python object related to the Wave_2D class of SCRIMP.
This object will be used throughout this section.

W = SCRIMP.Wave_2D()

5.1.3. Constants

We define the constants related to the rectangular domain €. The coordinates
of the bottom left ( X,, Y, ) and top right (X ,y, ) corners of the rectangle are re-
quired.

x0, xL, y0O, yL = 0., 2., 0., 1.
We then define the time interval related to the time discretization. t;,t; de-
note the initial and final time instants respectively.
ti, tf = 0., 5.
We specify that we choose the Assimulo external library to be used later for
the time integration of the resulting ODE and provide the value of the time step.

This should be considered as a reference value since adaptative methods in time

can be used later.

dt =1.e-3
ode_library 'ODE: Assimulo’

5.1.4. FEniCS Expressions Definition

For the finite element discretization of the pHs, the FEniCS library is used in the
Wave_2D class of SCRIMP. Hence to properly use FEniCS expression definition,
we provide the definition of the different variables in C++ code given in strings.
We first specify the mass density as a function depending on the space coordi-

nates. Hence in this expression, X[O] corresponds to the first spatial variable
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and x[1] to the second one, respectively.

Rho = 'x[0]*x[0] * (2.-x[0])+ 1'

We specify the Young’s elasticity modulus tensor. Three components are only

required due to the symmetry property of this tensor.

T = 'x[0]*x[0]+1"'
T12 = 'x[1]"
T22 = 'x[0]+2'

We finally set the impedance function Z defined on the boundary of the do-
main. Here a constant value is used on 0Q2. We also provide the viscous damp-
ing parameter (eps).

ZE = O
eps = '256 * x[0] * (xL-x[0]) * x[1] * (yL-x[1])'

Finally we specify the initial conditions of the problem related to the energy

variables and to the deflection.

Aq_0_1= '0'
Aq_0_2= '0'
Ap.O = '0'
Wo ="'0

5.1.5. Problem at the Continuous Level

We are now able to completely define the problem at the continuous level. We
start by specifying that the computational domain Q is of rectangular shape.
To do so, we provide the coordinates of the bottom left and top right corners to
the Wave_2D object.

W.Set_Rectangular_Domain(x0, xL, yO, yL);
Remark 17. General Gmsh meshes can be imported by the user. However, for
the time being, the library does not allow the treatment of mixed boundary con-

ditions on generic meshes.

We provide next the time integration interval.
W.Set_Initial_Final_Time(ti, tf);
We then provide the physical parameters related to the wave equation: the

mass density, the Young’s elasticity modulus tensor and the impendance func-

tion, respectively.
W.Set_Physical_Parameters(Rho, T11, T12, T22);
We then specify the complete modelling for the damping and thus provide

information related to the impedance function and viscous damping parameter,

respectively.

W.Set_Damping(damp=['impedance', 'fluid'], Z=Z, eps=eps);
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The user has to provide the temporal and spatial parts of the boundary control
function (Ub_tm0 and Ub_sp0, respectively).

W.Set_Boundary_Control (Ub_tmO=lambda t: mnp.sin( 2 * 2%pi/tf,
—*t) * 25 , Ub_spO='x[0] * x[1] * (1-x[1]1)');

Finally we provide the initial conditions for the ODE.

W.Set_Initial_Data(Aq_0_1='0', Aq_0_2='0', Ap_0='0"',,
SW_0="0");

5.1.6. Problem at the Discrete Level in Space and Time
We start by selecting the computational mesh which is generated with Gmsh*
and saved as a.xml file. Here the parameter r/n_num corresponds to a mesh re-

finement parameter.

W.Set_Gmsh_Mesh('rectangle.xml', rfn_num=2);

To perform the discretization in space, we must first specify the conforming
finite element approximation spaces to be used (see [20]). Concerning the ener-
gy variables associated with the strain, we select the Raviart-Thomas finite ele-
ment family known as RT, consisting of vector functions with a continuous
normal component across the interfaces between the elements of a mesh. For the
energy variables associated with the linear momentum and the boundary va-
riables, we choose the classical B, finite element approximation. The given com-
bination of parameters rt_order=0, p_order=1, b_order=1 corresponds to the
RT,RP, family.

W.Set_Finite_Element_Spaces(family_q='RT', family_p='P',.,
~family_b='P',rq=0, rp=1, rb=1);

We then perform the semi-discretization in space of the weak formulation
with PFEM. At the end of this stage, the complete formulation of the pHODE is
obtained. The different matrices related to the pHODE system are constructed in
the Assembly method of the Wave_2D class of SCRIMP and are directly accessi-
ble through the object of the Wave_2D class. The finite element assembly relies
on the variational formulation of PFEM and exploits the level of abstraction
provided by the UFL used in FEniCS, leading to a code that is close to the ma-
thematical formulation. The divergence based formulation is selected leading to
a pHODE system. In other words, the integration by parts will be performed on
the second line of (32).

W.Assembly (formulation='Div');

To perform the time integration of the pHODE, we first need to interpolate
both the control function on the boundary and the initial data on the appropri-

ate finite element spaces.

W.Project_Boundary_Control()
W.Project_Initial_Data();

4

https://gmsh.info/
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Then we specify the parameters related to the time discretization.

W.Set_Time_Setting(dt);

5.1.7. Numerical Approximation of the Space-Time Solution

We are now able to perform the time integration of the resulting pHODE system
and deduce the behaviour of both the energy variables and the Hamiltonian with
respect to the time and space variables, respectively. Detailed information from

the Assimulo library is included after time integration.
A, Hamiltonian = W.Time_Integration(ode_library)

ODE Integration using assimulo built-in functions:
Final Run Statistics: ---

Number of steps : 614
Number of function evaluations : 800
Number of Jacobian vector evaluations : 2977
Number of function eval. due to Jacobian eval. : O
Number of error test failures : 0
Number of nonlinear iterations : 797
Number of nonlinear convergence failures : 561

Solver options:

Solver : CVode

Linear multistep method : BDF

Nonlinear solver : Newton

Linear solver type : SPGMR

Maximal order 0 3

Tolerances (absolute) : 1le-05
Tolerances (relative) : 1le-05
Simulation interval : 0.0 - 5.0 seconds.

Elapsed simulation time: 0.9727537930002654 seconds.

5.1.8. Post-Processing
We represent the two-dimensional mesh with corresponding degrees of freedom

for each variable in Figure 1.

W.notebook = True
W.Plot_Mesh_with_DOFs()

We plot the Hamiltonian function versus time in Figure 2. Here tspan
represents the collection of discrete times due to the possibly adaptative time

procedure used in the time integration library.
W.Plot_Hamiltonian(W.tspan,Hamiltonian, marker='o')
The behaviour of the deflection is graphically represented at a given time.
Here we simply plot the deflection at the final time of the simulation in Figure 3.

W.Plot_3D(W.Get_Deflection(A), tf, 'Deflection at,
—t="+str(tf))

The related Jupyter notebook [6] further illustrates how to obtain a structure-
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Mesh with associated DOFs, Nqg =552, Np =201, N; =48, Nv=201
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Figure 1. Two-dimensional triangular mesh with corresponding degrees of freedom for
each variable for the anisotropic wave problem with damping.
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Figure 2. Hamiltonian function versus time for the anisotropic, heterogeneous and
boundary controlled wave problem with damping.

preserving reduced model of this port-Hamiltonian system. After application of
the model reduction algorithm proposed in [53], a pHODE of reduced size has
to be integrated to obtain an approximate solution of the wave propagation
problem. This is further illustrated on the simple application detailed in this sec-
tion. In addition, a supplementary notebook illustrates the numerical simulation
of the wave equation problem, when mixed boundary conditions (ie. Dirichlet
and Neumann conditions) on the boundary control function are imposed by

Lagrange multipliers [42].
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Figure 3. Deflection at the final time for the anisotropic, heterogeneous and boundary

controlled wave problem with damping.

5.2. The Mindlin Plate Problem

We first recall the considered continuous problem related to the Mindlin plate
and tackle the semi-discretization in space of the pHs by PFEM. After transfor-
mation and time discretization, we perform a numerical simulation to obtain an
approximation of the space-time solution. As in Section 5.1, the procedure is
described step-by-step and detailed explanations and numerical illustrations are

provided.

5.2.1. Problem Statement
Consider the Mindlin plate problem defined forall t>0 as:

pbaw=div(q), xeQ={0,L}x{oL,},

/1—28“9 =q+Div(M)
with initial conditions:
w(0,x)=0, 0(0,x)=0, xeQt=0, (58)
ow(0,x)=w (x), 8,6(0,x)=0, xeQ,t=0,
and boundary conditions:
w|FD =Up (), 0|FD =0, I, ={x=0}, 59)
g-n, =uy(t), M-n =0, FNz{x:Lx,y:O,y:Ly}.
DOI: 10.4236/jamp.2021.96088 1308 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2021.96088

A. Brugnoli et al.

Mixed boundary conditions are considered in this example. The subsets I",, Iy
represent the subsets of the boundary where Neumann and Dirichlet conditions
hold respectively. The Dirichlet conditions are enforced using Lagrange multip-
liers. The PFEM discretization then leads to a pHDAE, as explained in [42] for
the wave equation. The following expressions have been considered for the ini-

tial and boundary conditions:

W, =Xy, Up= 0.01[cos{2ntlJ_1],
f

. (60)
. X —lOt—
u, =10°sin ZnL— 1-exp ' |

5.2.2. Setup
We initialize here the Python object related to the Mindlin class of SCRIMP.
This object will be used throughout this section.

Min = SCRIMP.Mindlin()

5.2.3. Constants

We define the constants related to the rectangular domain . The coordinates
of the bottom left (Xo,yo) =(0,0) and the top right (XL, yL):(LX, Ly) cor-
ners of the rectangle are required.

x0, xL, y0O, yL = 0., 2., 0., 1.
As in the previous example, the time interval related to the time discretization
is defined as follows:
ti, tf =0., 0.01
A Runge-Kutta method for the time integration of the system is prescribed.

This method is conditionally stable, so the time-step has to be set accurately to

avoid numerical instabilities.

dt
dae_library

1.e-6
'DAE:RK4_Augmented'

5.2.4. FEniCS Expressions Definition
The FEniCS library is also used in the Mindlin class of SCRIMP. The coefficients
related to the physical parameters of the isotropic plate can be provided as either

real numbers or FEniCS expressions.

E = 7x10%*10
rho = 2700
nu = 0.3
h =0.1
k = 5/6

Similarly the initial vertical condition w, can be defined as a string. It

DOI: 10.4236/jamp.2021.96088

1309 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2021.96088

A. Brugnoli et al.

represents a C++ code that will be compiled by the Dolfin library of FEniCS.

ew_0 = 'x[0]*x[1]"

This means that the initial velocity satisfies w, = Xy. Note that the initial con-
dition has to be compatible with the boundary conditions. The other initial con-

ditions will be set to zero.

5.2.5. Problem at the Continuous Level

We are now able to completely define the problem at the continuous level. We
start by specifying that the computational domain Q is of rectangular shape.
To define Q, we provide the coordinates of the bottom left and top right cor-
ners to the Mindlin object.

Min.Set_Rectangular_Domain(x0, xL, yO, yL);

The time integration interval is then given.

Min.Set_Initial_Final_Time(ti, tf);

The physical parameters related to the Mindlin plate are set.

Min.Set_Physical_Parameters(rho, h, E, nu, k,
—init_by_value=True);

Finally the initial conditions in terms of co-energy variables are also set.

Min.Set_Initial_Data(W_0='0', Thi_0='0', Th2_0='0"',\
ew_0O=ew_0, ethl_0='0', eth2_0='0"',\
Ekap11_0='0', Ekap12_0='0',
~Ekap22_0='0",\
egaml_0='0', egam2_0='0"');

5.2.6. Problem at the Discrete Level in Space and Time
We start by selecting the computational mesh which is generated with FEniCS
inner mesh utilities. The first parameter corresponds to a mesh refinement pa-

rameter.

Min.Generate_Mesh(10, structured_mesh=True);

To perform the discretization in space, the conforming finite element ap-
proximation spaces to be used has to be specified. The finite element for the li-
near and angular velocity are Lagrange polynomials of order r. The momenta
tensor and shear stress are chosen as Discontinuous Galerkin elements of order
r—1 [35]. This choice of finite elements is similar to the one proposed in [55],
but a simplicial mesh is used instead of a quadrilateral one. By default, the
boundary variables are approximated as Lagrange polynomials of order 1. This
can be easily changed through the option family_b for the family, and rb for the

degree.

Min.Set_Finite_Elements_Spaces(r=1);

DOI: 10.4236/jamp.2021.96088

1310 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2021.96088

A. Brugnoli et al.

We then perform the semi-discretization in space of the weak formulation
with PFEM. At the end of this stage, the complete formulation of the pHDAE is
obtained. The different matrices related to the pHDAE system are constructed in
the Assembly_Mixed_BC method of the Mindlin class of SCRIMP and are direct-
ly accessible through the object of the Mindlin class. The subsets named G1, G2,
G3, G4, denote the left, bottom, right and top sides of the rectangle, respectively.

In SCRIMP the boundary control U, is assumed to take the form:

Ub_tmO(t) * Ub_spb(x) + Ub_tm1(t) + Ub_spl(x)

Its derivative U, isexpressed as:

Ub_tm0_dir(t) * Ub_spO(x) + Ub_tml_dir(t)

To integrate in time we need to provide the derivative of the boundary condi-
tion. This information is provided by the variables Ub_tm0_dir, Ub_tm1_dir,
respectively. This is needed to reduce the resulting DAE of index 2 to index 1.

Min.Set_Mixed_Boundaries(Dir=['G1'], Nor=['G2', 'G3', 'G4'])
Min.Assembly_Mixed_BC()
Min.Set_Mixed_BC_Normal (Ub_tmO=lambda t: np.array([(1 - np.
—exp(-t/tf) ),0,01) ,\
Ub_sp0=("'100000*sin (2*pi/xL*x[0]) ",
<'0.', '0."))
amp = 0.01
omega = 2*pi/tf
Min.Set_Mixed_BC_Dirichlet (Ub_tmO=lambda t : np.
—array ([-amp*omega*np.sin(omega*t),0,0]), Ub_spO=('1."', '0.
<','0.'),\
Ub_tmO_dir=lambda t : np.
—array ([-amp*omega**2*np.cos (omegax*t) ,0,0])) ;

To perform the time integration of the pHDAE, we first need to interpolate
the boundary control function and the initial data on the appropriate finite ele-
ment spaces.

Min.Project_Boundary_Control ()
Min.Project_Initial_Data();

Finally the specification of the parameters related to the time discretization is

made.

Min.Set_Time_Setting(dt);

5.2.7. Numerical Approximation of the Space-Time Solution

For the numerical approximation of the solution of the pHDAE system, the al-
gebraic condition is differentiated. The integrator ‘DAE:RK4_Augmented’ takes
as input a pHDAE. Then, it exploits a projection method to express the Lagrange
multiplier in terms of the unknown [56], thus reducing the original DAE system
into a purely ODE one. This allows employing standard ODE solvers for the
time integration, as discussed in Section 5.2.3.

A, Hamiltonian = Min.Time_Integration(dae_library)
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5.2.8. Post-Processing

Post-processing is performed similarly as in Section 5.1.8. Hence we omit the
related Python lines of code for sake of brevity. In Figure 4 the evolution of the
Hamiltonian function is shown versus time. We note that the Dirichlet condi-
tion causes an increase in energy. In Figure 5 snapshots of the vertical deflection
at different instants are shown. We remark that the Neumann boundary condi-

tion causes the plate to bend asymmetrically.

5.3. Anisotropic Heterogeneous Heat Equation

This third tutorial aims at illustrating PFEM to discretize the pHs presented in
Section 3.4, modelling the heat equation. We specifically learn how to define and
solve this problem with SCRIMP. We first define the continuous problem by
using a specific class of SCRIMP related to the heat equation in two dimensions.
Then we tackle the discretization in space of the pHs through PFEM. The discre-
tization of the energy formulation leads to a nonlinear pHDAE formulation. After
time discretization, we perform a numerical simulation to obtain an approxima-

tion of the space-time solution. Finally a simple post-processing is provided.

5.3.1. Problem Statement
We consider the two-dimensional heterogeneous anisotropic heat equation de-
fined forall t>0 as

p(x)C, (x)%T (t,x)=div(4(x)-gradT (t,x)), xeQ,
T(t,x)=v,(t,x), xeoQ,
T(0,x)=Ty(x), xeQt=0

Hamiltonian

17500 +

15000

12500 {

lan

10000

Hamilton

7500 1

5000 A

2500 1

0.000 0.002 0.004 0.006 0.008 0.010
Time (s)

Figure 4. Hamiltonian versus time for the Mindlin plate problem.

DOI: 10.4236/jamp.2021.96088

1312 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2021.96088

A. Brugnoli et al.

Deflection at t=0.0025 Deflection at t=0.005

Deflection at t=0.0075 Deflection at t=0.01

() (d)

Figure 5. Snapshots of the vertical deflection of the Mindlin plate at different instants. (a)
0.35 Deflection wat t=t,/4; (b) 0.35 Deflection wat t=t, /2; (c) 0.35 Deflection w at

t=3t, /45 (d) 0.35 Deflection wat t=t, .

with Q  R® an open bounded spatial domain with Lipschitz-continuous boun-
dary 6Q. v,(t,x) represents the boundary control function on the tempera-
ture (the notation u is kept for the internal energy density). T(t,x) denotes the
temperature at point XeQ and time & peC” (Q) (positive and bounded
from below) denotes the mass density, 4eC” (Q)ZX2 (symmetric and coercive)
the thermal conductivity. In the following Q is assumed to be of rectangular

shape.

5.3.2. Port-Hamiltonian Formulation

We refer to [9] [10] for the modeling and discretization of various port-Hamiltonian
formulations of this problem. The authors consider quadratic Lyapunov functional,
entropy or internal energy as Hamiltonian, respectively. We will consider the PFEM
discretization of the internal energy functional formulation as proposed in Section
3.4, which will lead to a nonlinear pHDAE. Our goal in this tutorial is to show how
a pHDAE system can be formulated and solved with SCRIMP.

5.3.3. Setup
We initialize here the Python object related to the energy formulation of the
Heat_2D class of SCRIMP, that is assumed to be imported. This object will be
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used throughout this tutorial.

H = Energy()

Energy corresponds to a class inherited from the Heat_2D base class. This
base class contains implementations of the Lyapunov and entropy formulations

as well.

5.3.4. Constants
The same lines of code as for the Wave_2D and Mindlin classes are used to de-

fine the constants related to the rectangular mesh.

x0, xL, yO, yL = 0., 2., 0., 1.

The time interval related to the time discretization is specified similarly.

ti, tf = 0., 5.

We provide the time step for the time discretization of the pHDAE as well.

dt = 1.e-3

5.3.5. FEniCS Expressions Definition
Using FEniCS expressions, the physical parameters related to our model prob-

lem are defined.

rho = 'x[0]*(xL-x[0]) + x[1]*(yL-x[1]) + 2'
Lambdall = '5. + x[0]*x[1]'

Lambda12 = '(x[0]-x[1])*(x[0]-x[1])"

Lambda22 = '3.+x[1]1/(x[0]+1)"'

Ccv = '3."

The initial conditions of the problem related to the temperature and to the
flow and effort variables are then given. The temperature follows a Gaussian be-

haviour for which we specify related parameters.

ampl, sX, sY, X0, YO = 1000, xL/6, yL/6, xL/2, yL/2
au_0 = '3000'
eu_0 = ' ampl * exp(- pow( (x[0]-X0)/sX, 2) - pow( (x[1]-Y0)/

—sY, 2) ) + 1000'

The spatial part of the boundary control function is defined next.

Ub_sp0 = '"'
( abs(x[0]) <= DOLFIN_EPS ? 1. * (yL-x[1])*x[1]
+ ( abs(x[1]) <= DOLFIN_EPS ? 1. * (xL-x[0])*x[0]

+ ( abs(xL - x[0]) <= DOLFIN_EPS 7 -15. *_
< (yL-x[11)*x[1] : 0 )

+ ( abs(yL - x[1]) <= DOLFIN_EPS 7 1.
< (xL-x[0])*x[0] : 0 )

Finally we define the time-dependent part of the boundary control as a pure

Python function. The whole boundary control function is then given as the
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product of the two quantities (Ub_sp0 and Ub_tmO0, respectively).

def Ub_tmO(t):
if t<=2:
return 500 * sin(2 * pi * t)
else: return O

5.3.6. Problem at the Continuous Level

We are now able to completely define the problem at the continuous level.
H.Set_Rectangular_Domain(x0, xL, yO, yL);
H.Set_Initial_Final_Time(initial_time=ti, final_time=tf);

H.Set_Physical_Parameters(rho=rho, Lambdall=Lambdall,
—,Lambdal2=Lambdal2, Lambda22=Lambda22, CV=CV);

5.3.7. Problem at the Discrete Level in Space and Time
The structure-preserving discretization of the infinite-dimensional pHs with
PFEM is described in detail in [10]. This leads to the pHDAE given in (55). The
definition of the system at the discrete level follows the same steps as for the two
previous examples.
H.Set_Gmsh_Mesh(xmlfile='rectangle.xml', rfn_num=1);
H.Set_Finite_Element_Spaces(family_q='RT', family_p='P',
—family_b='P',rq=0, rp=1, rb=1);
H.Assembly () ;

To perform the time integration of the pHDAE, we first need to set and in-
terpolate the initial data and the boundary control function on the appropriate
finite element spaces. Then, the time step is specified.

H.Set_Initial_Data(au_0=au_0, eu_0O=eu_0, ampl=ampl, sX=sX,
—sY=sY, X0=X0, Y0=Y0);

H.Project_Initial_Data();

H.Set_Boundary_Control (Ub_tmO=Ub_tm0, Ub_sp0=Ub_spO0,,
—Ub_tmi=lambda t :0, Ub_sp1='1000");

H.Project_Boundary_Control();

H.Set_Time_Setting(dt);

5.3.8. Numerical Approximation of the Space-Time Solution
Now we perform the time integration of the resulting pHDAE system and de-
duce the behaviour of the energy variables, the Hamiltonian with respect to the
time and space variables, respectively. For the time discretization, we employ a
fully explicit scheme, presented in [51] (Algorithm 2 of Section 4.4) as a first at-
tempt.

H.Set_Formulation('div')

alpha_s, fS, fsig, es, eS, esig, Hamiltonian = H.
—Integration_DAE(Q);

5.3.9. Post-Processing
As an illustration, we plot the Hamiltonian function ( Ze. the internal energy) ver-
sus time. The Hamiltonian function is constant after 2 seconds, when the boun-

dary control is switched off, as expected by the first law of thermodynamics.
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Figure 6. Hamiltonian (internal energy) versus time for the heat equation.

6. Conclusions and Perspectives

We have provided a general structure for the theoretical and numerical solution
of infinite-dimensional port-Hamiltonian systems. This structure is particularly
appealing since PFEM straightforwardly applies. Concerning the numerical so-
lution, PFEM offers the advantage to leverage robust software components for
the discretization of boundary controlled PDEs and time integration.

We have applied this strategy to abstract multidimensional linear hyperbolic
and parabolic boundary controlled systems. We have notably shown that model
problems based on the wave equation, Mindlin equation and heat equation fit within
this unified theoretical framework. Numerical simulations of infinite-dimensional
pHs have been performed with the ongoing software project SCRIMP that has
been briefly introduced. Finally, we have illustrated how to solve three case stu-
dies within this framework by carefully explaining the methodology, and have
provided companion interactive Jupyter notebooks.

Besides the generalization of the classes related to the heat and wave equation
to the three-dimensional case, we plan to propose in SCRIMP more advanced
model problems based on the two-dimensional Shallow Water Equation (SWE)
[57] [41], the Kirchhoff model for thin plates [40] and Maxwell’s equations [32].
Furthermore, we will investigate both time integration methods that allow struc-
ture-preserving time discretization [58] of finite-dimensional pHs and more ac-
curate time integrators for nonlinear pHDAE. In addition, we plan to enrich the
panel of structure-preserving model reduction algorithms to facilitate the simu-

lation of large-scale port-Hamiltonian systems. This is an essential prerequisite
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before first attempts related to control design. Further developments foresee the
comparisons with well-established algorithms for multi-physics problems lead-

ing to coupled systems of PDEs.
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