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Abstract We consider the problem of recovering the initial data (or initial state) of
infinite-dimensional linear systems with unitary semigroups. It is well-known that this
inverse problem is well posed if the system is exactly observable, but this assump-
tion may be very restrictive in some applications. In this paper we are interested in
systems which are not exactly observable, and in particular, where we cannot expect
a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in
(Automatica 46:1616-1625, 2010) and prove that it always converges towards the
observable part of the initial state. We give necessary and sufficient condition to have
an exponential rate of convergence. Numerical simulations are presented to illustrate
the theoretical results.

Keywords Linear systems - Inverse problems - Controllability - Observability -
Feedback control

1 Introduction

1.1 Motivation

In many areas of science, we need to recover the initial (or final) data of a physical
system from partial observation over some finite time interval. In oceanography and
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436 G. Haine

meteorology, where this problem is known as data assimilation, we can mention the
works of Auroux and Blum [1-3], Gejadze et al. [19,27], Shutyaev and Gejadze [34],
Teng et al. [38] and the monograph of Blum et al. [7] concerning the numerical aspects.
This problem also arises in medical imaging, for instance in thermoacoustic tomog-
raphy. There, the problem is to recover the initial data of a wave type equation from
surface measurements (see Gebauer and Scherzer [18] and the survey of Kuchment
and Kunyansky [26]).

In the last decade, new algorithms based on time reversal (see Fink [15,16]) have
been proposed for this problem. We can mention, for instance, the Back and Forth
Nudging proposed by Auroux and Blum [1], the Time Reversal Focusing by Phung
and Zhang [31], the algorithm proposed by Ito et al. [24] and finally, the one we will
consider in this paper, the forward—backward observers-based algorithm proposed by
Ramdani et al. [32] (which is a generalization of the one in [31]). In this paper, we
study the convergence of the reconstruction algorithm of [32] for systems with skew-
adjoint generator, when the inverse problem is ill-posed, that is to say when either the
observability or the estimatability assumption fails.

To make this statement precise, let us begin with some notation and definitions. Let
X be a Hilbert space and A a skew-adjoint operator on X. We are interested in the
reconstruction of the initial data zg of

z(t) = Az(t)
[z(()):zgeX. Vit>0, (1.
Such equations are often used to model vibrating systems (acoustic or elastic waves)
or quantum systems (Schrodinger equations).

By Stone’s Theorem (see for instance Tucsnak and Weiss [39]), A is the infinitesimal
generator of a unitary Co-group S on X, and in particular, ||z(¢)|| = ||zo|| forall ¢ > 0.
Let Y be another Hilbert space. We suppose that we have access to z through
the operator C : D(A) — Y, during a time interval [0, 7], T > 0, leading to the

measurement
y()=Cz() Vtel0,r]. (1.2)

We call C the observation operator of the system. The observation is said to be bounded
if C is a bounded operator (i.e. C € L(X, Y)), and unbounded otherwise. In the latter
case, we still assume that C is bounded with respect to the graph norm of A on D(A).

For systems described by evolution partial differential equations (i.e. when A is
a differential operator in the space variables on a domain §2), bounded observation
generally corresponds to measurement on a subdomain @ C §2, while unbounded
observation in most cases corresponds to measurement on the boundary of £2.

If we denote ¥, the operator which associates the output function y|[o, ;] to an initial
data zo € D(A), the inverse problem is well posed when ¥; is left-invertible, with
bounded left-inverse. This is equivalent to ¥; being bounded from below

Fkr >0, |¥rzoll = kellzoll YV zo € D(A). (1.3)

The pair (A, C) is said to be exactly observable in time T when (1.3) holds.
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Recovering the observable part of the initial data 437

Now, we present the algorithm proposed by Ramdani et al. [32]. For simplicity,
we consider the particular case where A is skew-adjoint and C € L(X, Y), the pair
(A, C) being exactly observable in time T > 0. Let T be the exponentially stable
Co-semigroup generated by AT = A — yC*C, while T~ is generated by A~ =
—A — yC*C, for some y > 0 (see Liu [28]). For all n € N*, we define the following
systems

i) = ATZH (@) +yCry(t) Vitelo, 1],

7)) =z €X, (1.4)
77 (0) =2z,_,(0) Vn>2,

[z;(t) =—A"z,;(t) —yC*y(t) VYtel0,1], 0s)
z, (1) =z () Vn>l.

The forward error e, (t) = z;7 (1) — z(¢) satisfies

éF(t) = (A—yC*C)ef (1) Vi elo, 1],
ef () =z —z20 €X,

ef(0)=e, (0 Yan>2,

and the backward error e, (t) = z,, (t) — z(t)

é,(t)=(A+yC*Cle, (t) VYtel0, 1],
e;(r):e;j(r) Vn>1.

So, we have
|22 © = z0] = e @[ = [(T7TF)" ey O < [T7TH|" 25 — 20 - (1.6)

According to Ito et al. [24, Lemma 2.2], if (A, C) is exactly observable in time t,
we have || T; TF HE(X) =a < 1 and thus

Iz, (0) — zoll < a"llzf —zol —> 0.
n—0oo

In the case of exactly observable systems, we call the systems (1.4)—(1.5) forward
and backward observers as it is a generalization to infinite-dimensional systems of the
so-called Luenberger’s observers [29], well-known in control theory. Observers for
infinite-dimensional systems are an active topic of research, for both linear or non-
linear systems, and among the large literature, we can cite for instance: Chapelle et al.
[9], Krstic et al. [25], Moireau et al. [30], Smyshlyaev and Krstic [35], and Couchouron
and Ligarius [10]. For pioneering work, we refer to Baras and Bensoussan [4] and
Bensoussan [6].
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In the paper of Ramdani et al. [32], they consider a wide class of infinite-dimensional
systems (allowing even an observation operator that is not admissible). They suppose
that the system is estimatable and backward estimatable (roughly speaking, the system
can be forward and backward stabilized with a feedback operator called a stabilizing
output injection operator). However, they show in Proposition 3.3 that this implies
that the system is exactly observable, or in other words, that (1.3) is satisfied (for some
sufficiently large time 7). In this paper, we are dealing with the initial data recovery
of some well posed linear systems which are not supposed to be exactly observable,
using the same algorithm.

By a well posed linear system we mean a linear time-invariant system X such that
on any finite time interval [0, ¢], the operator X; from the initial state zg and the input
function u to the final state z(¢) and the output function y is bounded. In other words,
X is a family of bounded operators such that

AN B R
Y1[0,1] ul[o,1

Under some assumptions on the system X', we propose to investigate the above algo-
rithm in the framework of well posed linear systems (allowing admissible observation
operators) to recover the observable part of zg from y|[o ;7. The results on well posed
linear systems used in this work will be recalled in Sect. 2. For more details, we refer
the reader, for instance, to the work of Salamon et al. [33,36,37,40—42] and the survey
of Weiss et al. [45].

The paper is organized as follows. In Sect. 2 we give some background on well
posed linear systems, including the construction of the dual system and the known
results on colocated feedback. In Sect. 3, we begin with the definition of two sys-
tems, X and X, corresponding to the forward (1.4) and backward (1.5) observers,
respectively. We then work on the properties of the operator T T, called the forward—
backward operator, which appears naturally. The properties of this operator, given in
Proposition 3.9, are needed to prove the main result of this paper. Finally, we prove
the main result of this work, Theorem 1.1, which shows that the algorithm leads to
the reconstruction of the observable part of the initial state. In Sect. 4, we apply our
theoretical result to an N-dimensional (N > 2) wave equation, with Dirichlet control
and colocated observation on a part of the boundary.

1.2 Main results

T
v F
some assumptions (namely A* = —A and B = C*), we will construct two other well
posed linear systems X and X, corresponding to (1.4) and (1.5), respectively. All
the needed terminology and results on well posed linear systems are recalled in Sect. 2.
Let us begin with the definition of the time-reflection operator. Let W be a Hilbert
space. For all T > 0, we define the linear operator S, : L%OC([O, 00), W) —
L3, .(0, 00), W) by

From a well posed linear system X~ = ¢ i| , defined in Definition 2.1 and verifying
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Recovering the observable part of the initial data 439

= [10 0 G2

To state our main result, we need the operator (Df defined in Theorem 2.13. In the

following theorem, we only need that dﬁf = ¥ 4., so that Vops = Ran 45;1 can be
understood as (Ker ¥;)*. From that, the link with the known results in the case of
exact observability (1.3) is obvious.

Theorem 1.1 Let X and Y be Hilbert spaces. Assume that X' is a well posed linear
system with input and output space Y and state space X determined by the operators
(A, B, C) and the transfer function G, such that A* = —A and B = C*. Using
Theorems 2.13 and 2.17, let us denote by X% (resp. X~ ) the closed-loop system of X
(resp. X¢) with output feedback operator y I, where y € (0, k), for some k € (0, o0]
(explicitly given in Remark 2.18).

Let zo € X and denote u, 7 and y the input, trajectory and output of X, respectively,

with initial state zo. Let T > 0, za' € X and denote, for alln > 1, z;lIr and z,; the
respective trajectories of X7 and X~ with respective inputs v¥ = yy + u and

v~ =y d; y+ d; u, and initial states
7O =z5 €X, 770 =2,,0), n=2, z;(O) =2z (), n=1.

Furthermore, we denote by I1 the orthogonal projector from X onto Vops = Ran @4,
then the following statements hold true:

1. Wehaveforallz(),zg eX
[ =11) (2, ©) = z0) | = |/ =1D) (zg —z0)| Vn=1.

2. The sequence (||17 (z; ) — Zo) ”)nzl is strictly decreasing and satisfies
|77 (2, 0) = 20) | —3, 0.

3. The rate of convergence is exponential, i.e. there exists a constant « € (0, 1),
independent of zg and zaL , such that

|17 (27 0) = z0) | < o™ | 1T (=0 —z0)| Vn =1,

if and only if Ran ®¢ is closed in X.

Theorem 1.1 allows us to approximate the projection of zo on Vops by the projection
of z,, (0). However, in practice, it is difficult to characterize Vops and thus the projector
I1. The following corollary shows that if the (arbitrary) initial guess zar belongs to
Vous (for example, one can take z(‘)Ir = 0), then all successive approximations z,, (0)
belong to Vops, so that we do not need to know I7 anymore.
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440 G. Haine

Corollary 1.2 Under the assumptions of Theorem 1.1, if zar € Vous, then

|2 ©) = MTzo] — .

Furthermore, the decay rate is exponential if and only if Ran q)f is closed in X.

We will prove this corollary in Sect. 3.4.

2 Background on well posed linear systems

In this section, we recall some definitions used in the framework of well posed linear
systems, also called abstract linear systems. All this material can be found, for instance,
in [33,36,37,40-42,45].

2.1 Definitions and associated operators A, B and C

We first define the t-concatenation. For any t > 0 and any Z, Hilbert space, we define
for all u, v in L2([0, 00), Z) the following binary operator

_u@) Vtel0r),
(worv) (1) = lv(t—r) Vi>r.
Definition 2.1 (Well posed linear system) Let X, U and Y be Hilbert spaces. We
denote by U = L%([0, 00), U) and Y = L2([0, 0), Y). A well posed linear system
on (U, X, ) is a family of bounded operators X = (X};);5¢ from X x U to X x ),

where X, = [g/i ];’ ], satisfying:

— T = (Ty):>0 is a Cp-semigroup on X,
— @ = (P;);>0 is a family of bounded linear operators from ¢/ to X such that

Dy (o v) =T Pru+Pv Yu,veld, t,t >0,

¥ = (¥;);>0 is a family of bounded linear operators from X to ) such that
Uz =Yz0. YTz VzeX, 1,1 >0,

and ¥, = 0,
— F = (Fy);>0 is a family of bounded linear operators from ¢/ to ) such that

Feii (worv) = Fru) or (W Pru+Fv) Yu,veld, 1,1 =0,

and Fp = 0.

We call U the input space of X', X the state space of X', and Y the output space of
X' The operator @ is called an input map, ¥; an output map and [F; an input—output
map.
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Recovering the observable part of the initial data 441

Denoting by P, the projection of L%([0, 00), Z) on L2([0, 7), Z) (by truncation),
one can easily show that &P, = &,, F.P, = F,;, P,¥; = ¥; and P;F.P; =
P,F, =F, forall0 <t <.

To be able to define the output y of the system X' from its operators, we first need
to define

YUy = lim ¥; € L(X, Veoe),
T—00
and

Foo = lim F; € LWUpocs Veoe),
T—>00
where Uy, and Vg, are the Fréchet spaces defined by Upye = L%O ([0, 00), U) and
Yioc = L%oc([o, 00), Y) with the seminorms being the norms of P,u, where t > 0.
Then, one can easily show that

U, =P ¥y, Fr=PFe.

We call ¥, an extended output map of X', and Fo, an extended input—output map of
X,

Definition 2.2 Letzg € X and u € Uy, the state trajectory z and the output function
y of X corresponding to the initial state zo and the input function u are defined by

z(t) = Tizo+ P Vit >0,

z @ _ 20
et

Let A be the infinitesimal generator of T, and wq(T) its growth bound. We denote
by X the domain D(A) endowed with the graph norm, denoting by || - |1, and X_1 the
closure of X with the norm ||z||_; = ||(BI — A)~'z|| (for some arbitrary B € p(A),
the resolvent set of A). It is well-known (see for instance Tucsnak and Weiss [39]) that
these spaces are Hilbert spaces and that

2.1)

One can easily see that

Xi1CcXCX_q,

each inclusion being dense and with continuous embedding.
For any Hilbert space W, any interval J and any w € R, we denote by

L2(J, W) = e, L*(J, W),

where (e,v)(t) = e® v(t), with the norm |eyv|; 2 = ||v] 2.
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442 G. Haine

Proposition 2.3 There exists a unique operator B € L(U, X_1), called the control
operator of X, such that for any initial state zo € X and any input function u € Upy,,
the state trajectory 7 defined in (2.1) is the unique strong solution in X_1 of

2(t) = Az(t) + Bu(t) YVt >0,
z(0) = zp.

Moreover, we know that z € C([0,00),X) N HKIOC([O, o0), X_1), and if u €
qu([O, o0), U) withw > wy(T), then z also belongs to Lz)([O, o0), X) and its Laplace
transform is

2s) = (s — A)~'[z0 + Bii(s)] Vs € C,.
We can also prove that
Voo € L(X, L2([0, 0), Y)),
and
Foo € L (Li([O, 00), U). L2([0, 00), Y)) :

This enables us to represent y via its Laplace transform.

Proposition 2.4 There exist an analytic L(U, Y )-valued function G on C, (1), called
the transfer function of X, and a unique operator C € L(X1, Y), called the observation
operator of X, with the following properties:
— For every zo € X andu € LLZU([O, 00), U) with w > wo(T), the corresponding
output function y = Wsozo + Foou belongs to Lg)([O, 0), Y) and its Laplace
transform is

() = C(sI — A) " '20 + G(s)ii(s) Vs € C,. (2.2)
— G satisfies for all o, B € Cpy (T

G(a%g(ﬁ) = —C(al — A)~'(BI - A)7'B, @3

or equivalently G' (o) = —C(al — A)"%B.
— G is bounded on C,, for every @ > wo(T).

Note that according to the second statement, G is determined by A, B and C up to an
additive constant.
For any C € L(X1, Y), we define its A-extension C 4 by

Cazo = kli)n;o CA(M — A) 1.

We denote D(C 4) its domain, consisting of all zp € X for which the above limit
exists. Then we have the following result (see Theorem 3.2 of [33] and [36])
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Recovering the observable part of the initial data 443

Proposition 2.5 With the previous notation, if u € Uy, and zo € X, then for almost
everyt >0

¥(0) = Ca [2(0) = (BI = A7 Bu) | + GBu(®) ¥ B € oy,
Furthermore, ifu € Hol,eoc([o’ 00), U),

¥(0) = CaTizo+C [ @ = (B = )7 Bu@®) |+ GBu() V¥ € Coyery. 2:4)

Curtain and Weiss [12] have given necessary and sufficient conditions for a triple
of operators (A, B, C) to be well posed (i.e. to be associated with a well posed lin-
ear system X). We need the definition of admissibility for control and observation
operators before stating the theorem.

Definition 2.6 Let X, U and Y be Hilbert spaces. Let A be the generator of a Co-
semigroup T on X, B € L(U, X_1) a control operator and C € L(X, Y) an obser-
vation operator.

— B is an admissible control operator for T if and only if for some (and hence any)
T > 0, the operator @, defined by

T
Du = /Tt,sBu(S)dS Y u € Upe,
0

has its range in X.
— C is an admissible observation operator for T if and only if for some (and hence
any) t > 0, the operator ¥ defined by

CTizo Vtel0,r]

(WTZO)(Z):[O Vt>f VZOGXI,

has a continuous extension to X.

Remark 2.7 1t is clear that C is an admissible observation operator for T if and only
if C* is an admissible control operator for T*.

Theorem 2.8 (Generating triple, Theorem 5.1 0f [11]) Let X, U and Y be three Hilbert
spaces.

A triple of operators (A, B, C) is well posed (i.e. associated with a well posed linear
system X)) if:

1. A is the generator of a Cp-semigroup T on X,

2. B € L(U, X_) is an admissible control operator for T,

3. C € L(Xy,7Y) is an admissible observation operator for T,

4. thereis an @ € R such that some (and hence any) solution G : p(A) — L(U,Y)
of the equation (2.3) is bounded on C,, (i.e. G is proper).
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Conversely, if X is a well posed linear system, with associated triple of operators
(A, B, C) and the transfer function G, then the four previous conditions are satisfied.

2.2 Optimizability, estimatability, controllability and observability
It is well-known that for any Cy-semigroup T, we have the following property:
Vo > wo(T), IMy, > 1: [Tizoll < Mwe” |lz0ll ¥ 20 € X.

If we have wo(T) < O, then there is @ < 0 satisfying this inequality and the Cp-
semigroup will decay exponentially in time. This justifies the following definition.

Definition 2.9 A well posed linear system X' is exponentially stable if and only if
wo(T) < 0.

Let us recall some definitions, which can be found in Weiss and Rebarber [44].

Definition 2.10 Let X, U and Y be Hilbert spaces. Let A be the generator of a Co-
semigroup T on X, B € L(U, X_1) an admissible control operator for T and C €
L(X1,Y) an admissible observation operator for T.

— The pair (A, B) is optimizable if for every zo € X, there exists a u € U such that
z € L%([0, o0), X), where

t
2(t) = Tyzo + / T, Bu(s)ds.
0

— The pair (A, C) is estimatable if (A*, C*) is optimizable.

A well posed linear system X is said to be optimizable if its corresponding pair (A, B)
is optimizable, and estimatable when its corresponding pair (A, C) is estimatable.

Definition 2.11 Let X, U and Y be Hilbert spaces. Let A be the generator of a Co-
semigroup T on X, B € L(U, X_1) an admissible control operator for T and C €
L(X1,Y) an admissible observation operator for T.

— The pair (A, B) is exactly controllable in time T > 0 if Ran®, = X. It is
approximately controllable in time t > 0 if Ran ®; = X.

— The pair (A, C) is exactly observable in time T > 0 if there exists a constant
k; > 0 such that

[Wrzoll = kellzoll V20 € X.

It is approximately observable in time T > 0 if Ker ¥; = {0}.

Remark 2.12 The pair (A, C) is exactly observable (approximately observable) if and
only if (A*, C*) is exactly controllable (approximately controllable).
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Recovering the observable part of the initial data 445

2.3 The dual system

We introduce now the dual system of a well posed linear system.

Theorem 2.13 (Theorem 4 of [45] ) Let X = I:E g :| be a well posed linear system

with input space U, state space X and output space Y. Define £ = (Z'td)po by
T¢ @ 10 [T w10
d _ ror | t
i _[w,d ]F;l}_[OHt oFFF |04, | 2.5)
T¢ @4
Then, ¥4 = |: wd Fd i| is a well posed linear system with input space Y, state space

X and output space U. In particular, wo(T) = wo(T?). The linear system X9 is called
the dual system of X.

Proposition 2.14 (Proposition 4 of [45]) If A, B and C are respectively the semigroup
generator, control operator and observation operator of the well posed linear system
X with growth bound wo(T), then the corresponding operators for £ are A*, C*
and B*. The transfer functions are related by

GY(s) = G*() Vs € Couyr)-

2.4 Feedback law

The results of this subsection allow us to construct the forward and backward observers
in the framework of well posed linear systems.

Definition 2.15 Let X' be a well posed linear system with input space U, state space
X, output space Y and transfer function G. An operator K € L(Y, U) is called an
admissible feedback operator for X if I — GK has a well posed inverse on some right
half-plane (equivalently, if / — K'G has a well posed inverse).

Theorem 2.16 (Theorem 6.1 of [41]) If K is an admissible feedback operator for
a well posed linear system X, the closed-loop system XX, ie. X with the output
feedback u = Ky 4 v (v is the new control), is well posed. Furthermore, we have

x 007k ox[00O
b —2_2[0[( D e (2.6)

Under some assumptions, Curtain and Weiss [12, Theorem 5.8] proved that the
colocated feedback law exponentially stabilizes the well posed linear system. This
generalizes, in some sense, the known results when A is skew-adjoint and C is bounded
(see Liu [28]). We give a simpler version of this result, in our particular case.
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Theorem 2.17 Suppose that X' is a well posed linear system such that A is skew-
adjoint, U = Y and B = C*. Then, there exists a k > 0 (possibly k = +00) such
that for all y € (0, k), the feedback law —yy + v (v is the new control) leads to a
closed-loop system XV which is well posed.

Moreover, if X is optimizable and estimatable, then the closed-loop system XV is
exponentially stable.

Remark 2.18 The value of « is explicitly given in [12, Theorem 5.8]. We have x =
|E*|~!, where E is the positive part of the self-adjoint operator

1
E=-3 [G*() + G ] +rc I+ AR —AT'C* Yas>0. (27
Furthermore, if 0 € p(A), then

E = —% [G*(0) + G(O)].

3 Algorithm of reconstruction

T @ |. . o
v |82 well posed linear system with input
space U, state space X, output space Y, determined by the operators (A, B, C) and
the transfer function G, such that

From now on, we suppose that ¥ =

1. A is skew-adjoint,
2. U=Yand B =C*.

Note that from Stone’s Theorem, A is the generator of a unitary Co-group, which will
be denoted by S. In the sequel, we suppose without loss of generality that the control
u of X satisfies u = 0.

3.1 The forward and backward observers

Let us begin with a forward observer X of X (corresponding to (1.4)). With the
above assumptions, we apply Theorem 2.17 to define the closed-loop system X+ for
some y € (0, k).

In the first section of this paper, we have seen that the forward error e™ () =
ZT(t) — z(¢) satisfies éT = (A — yC*C) e by simple algebraic computations. Here,
A — yC*C has no more meaning, since C is unbounded. Therefore, we use directly
the definitions of the trajectories z and z T to show that et () = T ¢(0).

+ B+
We denote by |:$+ §+ ] the operators of XT. Then from (2.6) with K = —y1,
we have

T zg = Sizg — vy @¥, zf =Sizd — v @ Wzl Yz € X. (3.1)
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Let us denote by z and z, respectively by z* and zar , the trajectory and initial state of
X, respectively X . We add the control v = yy to XF, where y is the output function
of the initial system X'. Note that y = W,z¢ since we suppose that u = 0 (see (2.1)
in Definition 2.2). We have

2t)=Siz0, T =Tzl +y®y Yzo,20 € X.

From the above equalities and ®;"y = &, "P,y = &, P,Wyz0 = @, ¥,z0, we can
rewrite

2H(t) =Sz — vy @ W (zf —20) Vz0.2 € X.

Then, we call X+ a forward observer of X, since under some additional assumptions,
zT(t) = z(t) as t — oo. Indeed, et (r) = z1(¢) — z(¢) satisfies

e (1) =S (zg —20) — v P W (25 —20) =T, (z5 —20) Vz0.25 €X,

and following Theorem 2.17, T™ is exponentially stable if (and only if) X is optimiz-
able and estimatable.

Now, the idea is to go back in time, starting from z7 = sza“ for a fixed finite
time v > 0. Thus, we have to define a backward observer X'~ of X' (corresponding to

d d
(1.5)). We first define X4 = [Ed ;d :|, the dual system of X, using Theorem 2.13.
From Proposition 2.14, the Co-semigroup generator of ¥ is A* = —A, and then

the Co-semigroup of X4 is S™! = (S_,),~(. From our assumptions, the control and
observation operators of X¢ are the same as those of X.

Before the definition of X', we give the following lemma, immediate from (2.7),
which shows that the same parameter y can be used for both X+ and X .

Lemma 3.1 Let X be a well posed linear system verifying the assumptions of the

beginning of this section, and X9 its dual system. Denote k and k¢ the maximal

bound for y in Theorem 2.17, for ¥ and X9, respectively. Then k = «“.

From now on, we take the same parameter y € (0, «) for both ¥ *and ¥
We define by X'~ the closed-loop system of X, for some y € (0, k). We denote

by |:;1E/ ];?: ] the operators of X' ~. Then from (2.6) with K = —y I, we have

T, z; =S_iz; — y(btdllfl_zt_ =S_;z; — y(Dt_lI/tdzr_ Vz; € X. (3.2)

Denote by z™ the trajectory of X'~ with the control v = y fI; y. We know that @ 51,
y=&, f; ¥z and it is easy to see that I, ¥; = lI/TdST, for all T > 0. Then, we get

77(1) =S_czp —y P ¥ (27 — Si20) -
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Setting e~ (1) = (5I;z7) () — z(1), we obtain
e (0)=z"(v)—20
= S—IZ; - Vé;wrd (Z; - S'L'ZO) —S_:S:20
=S¢ (z7 —Sr20) —y @7 ¥ (27 — Sez0)
=T; (z; —z2(1)).
And since z; =z (r) = T{ z{, we finally obtain
e (0) = T TY (z¢ — 20) -

If X is optimizable and estimatable, then there exists a ¢ > 0 such that
IT; T lzx) < 1 (since TT and T~ are then exponentially stable). In other words,
7z~ (0) is a better approximation of zo than z(‘; . The iteration of this process gives a
method to reconstruct zo with exponential decay of the error, as after » iterations we
have

leg O < [T T |z ) llzg —20] ¥neN.

3.2 Relation between X+ and X~

In this subsection we prove the following theorem, which will be useful in many
computations.

Theorem 3.2 With the assumptions given at the beginning of this section, we have
(=) =3~
The proof of this result is based on the following equalities.

Lemma 3.3 With the assumptions and notation of Theorem 3.2, we have

I+ yFo) "o = A, (I + y A, F )7 A, 9, (3.3)

Fo (I +yF)™' =F s, (I + y A, F 8,) "' A, (3.4)
Proof Remark that from (2.6),
(I +yFo) (I —yFi) =1= (I —yF}) U +yF),

showing that (7 + yF,)~! =1 — yFt.
On the other hand, we easily obtain that
(I =y Ffsle) (4 + y S Fesl) = 1+ y 8o (Fr —Ff — yFiF,) S,

=0 from (2.6)
= (I + yS.F. 5, (I -y FF 8L .
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In other words, (1 + ySI,IFTSI,)_l =1- nyIF;"SIT; hence, we have to prove that
equality (3.3) reduces to

(I —yFH) ¥, =4, (I — y5I,F} ;) 51, 9.
But

e (1 — y S Ff8) 1 W = P, — yP.F P Y,
=¥, —yF ¥, = (I —yF}) w,.

Similarly, equality (3.4) reduces to
Fr (I — yFf) =F. S, (1 — y S Ff8le) 5e,
and

F. 8, (I — ysI.F8;) e = F. P, — yF.P.F/P;
=F; — )/IF,F? =TF; (I — yIF;") .

Proof (Proof of Theorem 3.2) We have to show that

TH'=1;. (o)) =07, (¥)' =u

T 9
Let us begin with (dﬁ‘)d = @~ . Using 5% = 4, (2.5), (2.6) and (3.3), we have
(@) = (¥)" 5
T = T
= (1+yF!) "' P,
b,
Similarly, we obtain (W;‘)d = W . Then, using (3.2), we have (Tj)d = (T+)* =
S_; —y®;wd =T;.
It remains to show that (Fj‘)d = F7. Again, from 5% = 4., (2.5), (2.6) and (3.4),
we have
d
(FH)" =4, (F])" A
= S5, (I + y S, Fesl,) " S s,
=F7.

O
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3.3 The forward—backward operator
We now study in the general case the forward—backward operator T; T, for a fixed
7, with y € (0, x). In other words, we suppose neither that X' is optimizable and

estimatable, nor that t is large enough to ensure that | T; T || cx) < 1.
Let us introduce the following orthogonal decomposition of an element z of X.

Lemma 3.4 With the previous notation and definitions, we have
X = Ker ¥; @ Ran @¢.
Proof This follows immediately from the decomposition X = Ker ¥; & (Ker W,)J‘ =
Ker ¥, @ Ran ¥ and from ®¢ = ¥* 4, (see Eq. (2.5)), since, obviously, Ran ¥ =
Ran [W}4;]. o
In the sequel of the paper, we denote by Vops = Ran @f and Vunobs = Ker ¥,

which correspond respectively to the observable part and to the unobservable part of
an element of X.

Proposition 3.5 We have
(T7TT) Vobs C Vobss  (T7TF) Vunobs € Vunobs-
Proof From (3.1) and (3.2), we have
T, TS =1 —yS_, &, ¥} —yo - wis, + y2o vio wt (3.5)
First, note that from (2.5)

S_ @, = ¢4, = UIP,.

Second, simple computations give lI/Td S; = 4; ¥; and Theorem 3.2 shows that =
(2 )* Finally, from (2.6), we see that

W= +yFo) ' ¥,
and then (3.5) becomes

ToTE =1 — y W (I +yF) " W — W (14 yF) ' 5,0,
2 (14 yF)) 7 S wldd, (1 +yFo) ' v,

Thus, by Lemma 3.4
(T; Tfz,0)=(z,0) =0, (T;Tf0,2)=1(0,2)=0 Vze Vops, 6 € Vunobs.

and then (T; T;) Vobs C Vobs and (T T7) Vunobs C Vnobs- O
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Remark 3.6 We point out the fact that || T; T z|| = ||z|| for all z € Viynobs-
We immediately obtain the following result

Corollary 3.7 Let I1 be the orthogonal projector from X onto Vops, then
T, T T =0T, T}.

Proposition 3.8 Denote by L = (T;TY) lvoy,, € L(Vobs). Then L is a positive self-
adjoint operator on Vops.

Proof From Theorem 3.2, we have for all z;,z2 € X
(Tr T 21, 22) = (T 21, T 22).
Then 5
(T;Tfz,2)=||Tfz|” VzeX. (3.6)

Thus T; T is positive self-adjoint on X, and a fortiori L is positive self-adjoint on
Vobs (by Proposition 3.5). O

Proposition 3.9 Let L be as in Proposition 3.8. Then the following statements hold:

1. Forall z € Vops\{0}, we have ||Lz|| < |zl
2. We have the following characterization

ILIl(vopy) <1 <= Vobs = Ran @4 = Ran @?.

We need two lemmas to prove this proposition.
T

Lemma 3.10 Let ¥ = [q/ g ] be a well posed linear system satisfying the assump-
tions of the beginning of this section. We have for all u € Uy,

(4‘);“(15, —Fr — ]FT) u(t) =2Eu(t) forae. t <€ (0,1),
where E is the self-adjoint operator defined by (2.7).

Td  @d

Proof Let ¥4 = |:q/d Fd

] be the dual system of X'. We first remark that

Q0 —FF =, wilo, — A, F4,.
Let u be a control belonging to
He = {w € H,.([0,00), Y) | w(0) = w(z) = 0},
and z the trajectory of X' with null initial state and control . Then, z satisfies

z2(t) = Az(t) + C*u(t) Yt e]0,1],
z(0) =0,

and the output of ¥ is given by y = y|{0,z1(t) = (Fru) (¢).
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Now, we consider z7(t) = 8; z(t) = z(t — ). Then, z¢(¢) is the trajectory of xd
with control v = — fI; u and initial state ®;u

() = —AZ4(t) — C*Su(t) Yt el0,1],
74(0) = ®,u.

The output of X9 is then y¢ = w4 ®.u — F¢ 5, u.
Now, we have that

nyd -y = H‘Ewtd¢tu - HrFi{Hfu —Fru.

Since u € H,, we have in particular that  and fI; u belong to Hol, toc([0,00), Y) and
from (2.4), with 8 = A > 0, we have for almost every ¢ € (0, t)

Ayl (1) — y(t) = A, CLS_ ®ru + 51,C [@tdu + 00+ A)7! C*Hru(t)]

_C [(b,u — (= A)! C*u(t)] —(G*() + GOulD).
But C‘[i‘ is an extension of C, thus we can rewrite the above equality

Syl (1) — y(6) = C4 [ 2 (O + AT+ A) ' C*sL2u(r)
— 2D+ 01 —A)IC* U]~ (G* W +G()u(r) forae. 1€(0,7),

Since z%(¢) = $; z(r) and H% u(t) = u(t) on (0, 7), this becomes

ey () — y() = C4[ I + A7 + (L — A7V ]CHur)
—(G*(A\) +GW)u(t) forae. t € (0, 1),

Now, using (A1 — A"l = —(=xI + A)"! for all » > 0 and the resolvent identity,
we get

Ao yd(r) — y(r) = 2.C4 (A + AL (M — A7 CHur)
—(G*(A\) + GW)u(t) forae. t € (0, 1),

But (A + A)~' (A — A)~! C* € L(Y, X1), and thus we can replace Cf‘ by C in the
above equality, and (2.7) gives the result

Ay (1) — y(t) = 2Eu(t) forae. t € (0, 1),

We conclude by the density of H; in Uy O

Finally, we recall how to characterize the closure of the range of a bounded linear
operator. We give this lemma without proof (see for instance Brézis [8, Chapter 2]).
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Lemma 3.11 A bounded linearoperatorT € L(Z1, Z3), where Z| and Z, are Hilbert
spaces, has a closed range if and only if there exists a constant k > 0 such that

IT*fIl = kI = P)fIl ¥ f € Za, (3.7
where P is the orthogonal projector on Ker T*.
We are now able to prove Proposition 3.9.

Proof (Proof of Proposition 3.9) The two points of Proposition 3.9 are consequences
of the following relation

1Tz = llzl* — 2y 19, zl|® + 2y (EW 2, w,Tz) VzeX, (3.8)

where E is the self-adjoint operator of Remark 2.18.
Let us begin with the proof of (3.8).

ITFz)? = [1Sez — y @ ¥, 2|
= [ISezl? — y(®iSrz, ¥ Fz) — y (W z, DISc2) + v2 | P, 2|2

From ||S;z|| = |1zll, ®}S; = ¥; and ¥; = (I + yF;) ¥, we obtain

1T 2112 =zl =T +yF) ¥z, W ) — Wz, U +yFr) Wro)+y2| @ ¥ 2|2
= llzl> =2y 1 z)> + v 2 (@} P — Fr — F¥) Wz, W z).

We use now Lemma 3.10 to get (3.8).
We denote E the positive part of E, then

ITF2lI1* = llzll> = 2y 19, 2)1* + 2y (EW; 2, ¥.2)
< llzl* = 2y 1% 2ll® 4+ 22 LT 19,22
——

:K*I

< lzl> =2y (1 — ye=Y) o 2|2

where « is the maximum bound for y, given in Remark 2.18. In particular we have
1 — yx~! > 0. From this, if z € Vops\{0}, thus ||',V,+z||2 > 0, and therefore

ILz)|?> = (Lz, Lz)

L(L)}z, (L)} z>

IT3 (L2 2

1LY 2l? =2y (1 =y ) 19 (L)? 2
<(Lz,z)

< |IT 2|12

<lzl* =2y (1 =y~ 1) ¥ z)?

< llzll2.

A IA

Thus, the first point is shown.
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For the second point, we use the fact (from ¥, = (I + yF;) ¥, and ¥;" =

(I — yIF;F) Y) that there exist two constants m, M > 0 such that
m|| ¥zl < ¥ 2] < M||¥2z|V z € X,

together with Lemma 3.11 to get that

Ran @9 = Vops <= inf  |¥z] >0 & inf ¥ z|| > 0.

2€Vops, zlI=1 z2€Vos, lzllI=1

Since L is self-adjoint and positive, we have

L1l (vors) = sup  (Lz,z)
z€Vors, l1zll=1 5
= sup TSz

z€Vops, lzll=1
1 -2y (1—)//(‘1) inf |wrz].

z&€Vops, llzll=1

IA

So that from (3.9)
Ran @ = Vobs = 1Ll c(ves) < 1-
Conversely, from (3.8), we get

T2l = l1zl? — 2y (I — yE) ¥ 2, w1 2),

and since
ITFzI < lzI* ¥ z € Vons\{0},
we see that
(I —yE)Wiz,wrz) >0 Vze Von\{0}.
Thus,

0<(UI—-yE)Wz, wfz) < Il —yEIl ¥ zI%

which shows that

inf  [¥fzl=0 = inf (I -yE)¥iz, ¥ z)=0

z€Vops, lzll=1 2€Vops, zlI=1

and then, if Ran Q§f is not closed in X, from (3.9) and the above relation

I L1 2 (Vors) = sup ITFzlI?
z€Vops, lzll=1
=1-2y inf (I —yE)¥ z, ¥ z)

z&€Vops, llzll=1
=1.
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So that

Ran @¢ # Vobs == L1l £(vgs = 1.
or in other words

L £(voy) < 1 = Ran ®¢ = Vops,

and Proposition 3.9 is proved. O

3.4 Proofs of the main results

Proof (Proofof Theorem 1.1)Let 7, z:{ € X.FromLemma 3.4, we can write uniquely
z0 = IIzog+ (I — IT) zp and za' = 17z(‘)F + (I — 1) zar. We will successively prove
assertions 1., 3. and 2., in this order.

With the notation of Propositions 3.5, 3.8 shows that the error (1.6) can be rewritten
forall n € N as

(T TH)" (zg —z20) = L"M (zf —z0) + (T; T;)" (I = 1) (z§ —z0) . (3.12)

1. First, we prove that the first term of the right-hand side of (3.12) has no contribution.
From Remark 3.6, we know that

IT; Tzl = lizll ¥ z € Vunobs-
Using Proposition 3.5, we iterate and obtain
(T, TH)" z|| = llzll ¥neN,ze Vunobs.
Finally, from Corollary 3.7, we get

(TeTE)" (I = 1) (25 — 20) = (I = 1) (T, T)" (2§ — 20)
= (I — ) (z, (0) — z0),

and the first part of the theorem is proved.

3. Letz € Vobs = Ran q§rd . From the second statement in Proposition 3.9, Ran @td =
Ran q)f if and only if ||L|l z¢v,,,) < 1. Then, if Ran CDf is closed in X, we have
foralln e N

|L"z]| < &™llzll ¥z € Vobs,
with @ = [|L| £y, < 1. Conversely, if the above relation holds for all n € N,

then || Ll £(vq,) < @ < 1 (taking n = 1), and the last statement in Proposition 3.9
shows that Ran 45;1 is closed in X. The last part of the theorem is then proved.
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2. We suppose now that Ran cbf is not closed in X. We know from Proposition 3.8
that L is self-adjoint, positive, and so is L" for all n € N. In particular, for all
n € N, we have |[L"]| £(vp) = ||L||’L’:(V0bs) = 1. Iterating n € N times (3.10), we

obtain

" k—1 k—1
L'z, 2)=llz|? =2 <1— BywtL's ,lp*L%) V 2 € Vobe,
(L2, 2)=llz] yé( yEWSL T L) Y 2 E Vo
and then L"t! < L" since
L'z, —<L"+1,>=2 <1— Ew+L%,w+L%> V z € Vobs,
( b4 z) 7,2 y({U—yE)W L2z, ¥, ZLZ([O,oo),Y) Z € Vobs

and the right-hand side of this equality is strictly positive from (3.11). In particular,
this implies that the sequence (||L"z]|),cn is strictly decreasing, for all z € Vops.
Indeed, |L"z || = L%z, 2) > (L2 +Dz, 2) = | LHi |,

It remains to show that for all z € Vops, O is the limit of (||L"z]|),cn- AS a
decreasing sequence of positive operators on the Hilbert space Vops, Lemma 12.3.2
of [39] shows that the sequence converges in £(Vops) to a positive operator Lo €
L(Vops) such that

lim LnZ = Looz A4 Z € VObS?

n—oo

and satisfying Lo, < L" for all n € N. We have for all z1, z2 € Vops

<Lg021 , Zz) = (Loom , LooZZ)

= lim lim (L"z;, L™z5)
n—oo m—oo

= lim lim (L"*"z;, z))
n—o0 m— o0

= (Looz1,22),

which shows that Lgo = L. Furthermore, we have for all z € Vopg\{0}
ILoozl® = (122, 2) = (Looz. 2) < (L22,2) = L2l < Jl2),

The above inequality comes from the first point of Proposition 3.9.

Suppose now that Ran L, # {0}. Then, there exists z € Vops such that Lo,z 7# 0

and then

2
[ Loozll = 1Lzl < I Loozll,

which is impossible. Thus Ran Ly, = {0}, or in other words L, = 0. This shows
that

lim L"[Tz=0 VzelX.

n—0o0
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We conclude using Corollary 3.7

I (2, (0)—z20) =M (T; T{)" (zg —20) =L"M (25 —20) —> 0 Vzg.20 € X.

Proof (Proof of Corollary 1.2) Using (3.1) and (3.2), we rewrite z; (0). We have for
allz,zJ € X

ZT(I) = S,zg —yd W (zg - Zo),

and
27 (0) = S_czf (1) — y 4w (2] (v) — Se20) -
Substituting the first equality into the second one, we obtain
27 (0) = 2§ = ¥S_c @ ¥, (57 — 20) — v ¥ ¥, (2 (1) = Sez0).-
From S_,®; = Qf) s, and de v 5., we get that, for all ZO ,0eX
(2 ©.6) = (5. 0) = ¥ (¥ (5 = 20) . ¥eb) =y (AW () (1) = Si20)  W26).
This implies that
(z7(0),8) =0 Vzg € Vous, 0 € Viunobs-

In other words, for all zg' € Vous, 2| (0) € Vops. We can iterate the cycle of forward—
backward observers and obtain that

2§ € Vobs = 2, (0) € Vobs Vn eN.

We apply Theorem 1.1 with z(‘; € Vobs and the previous result to conclude. O

4 Example

In this section, we investigate a wave equation with colocated Dirichlet control and
observation. This system is known to be well posed (see for instance Guo and Zhang
[22]). Many other examples fitting into the framework of this paper can be found in the
literature. We can mention another work of Guo and Zhang [23] for the wave equation
with partial Dirichlet control and colocated observation with variable coefficients, the
work of Chapelle et al. [9] on the wave equation with distributed observation, of Guo
and Shao [21] for both non-uniform Schrédinger and Euler—Bernoulli equations with
boundary control and observation, and of Curtain and Weiss [12,43] for the Rayleigh
beam equation.
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Let 2 € RN, N > 2, be a bounded domain with smooth boundary 92 = Ty UT7,
InN I = @and I'pand 17 are relatively open in 952. Let A be the Dirichlet Laplacian,
and v the unit normal vector of "] pointing towards the exterior of £2. We consider

wx,t) — Aw(x, 1) =0 Vxe2, t>0,

w(x,t) =0 Vxely, t>0,

w(x,t) =u(x,t) Vxely, t>0, “.1)
w(x,0) = wo(x) VxeSs2,

w(x, 0) = wi(x) Vxes$2,

with u the input function (the control), and (wq, w1) the initial state. We observe this
system on I, leading to the measurement

_3(—A)_1u')(x, 1)

Vxeljt>O0. 4.2)
av

y(x, 1) =

Guo and Zhang [22, Theorem 1.1] proved that this evolution partial differential
equation can be represented by a well posed linear system X with state space
X = L*(2)x H'(2) and U = Y = L*>(I}), and that the operators (A, B, C)
satisfy A* = —A and B = C*. More precisely, there exist Ay (namely —A) a positive
definite self-adjoint operator such that

0 I
A= (o)
1
and Cy € L (D (Aé) , Y) such that

C=1[0 Co].

Moreover, the transfer function of this system is given by

1
G(s) = sCo (s21 + Ao) Ci Vs e

Thus, since 0 € p(A), Remark 2.18 gives
1
E = ) (G*(0) + G(0)) = 0.

In particular, the value of « in Theorem 1.1 is equal to infinity.
Theorem 4.1 Lety > Oandt > 0, (wg, wy) € L2(2) x H1(2) be the initial state

of (4.1), u € L2([0, 7), L2(I)) its input function, w its solution, and y its output,
given by (4.2). Denote, for alln > 1, w; and w,, the respective solutions of
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Initial_State Y
-30 -2,5 25 5 3
— | —

Fig. 1 An example of configuration in two dimensions and the initial state to reconstruct

[W0,7 (x, 1) — Aw,f (x,1) =0 VxeR, te(0,1),
w(x, 1) =0 Vxely te(01),
(=) 1wt(x, ¢
wi(x, 1) =y ( )a:)n(x )—I—yy(x,t)+u(x,t) Vxely, te(,1),
wi (x,00=0 W (x,0)=0 Vxef,
wi (x,0) =w, ,(x,0), w(x,0) =w, ,(x,0) VxefR, n>2,
and
W, (x,1) — Aw, (x,1) =0 Vxef, te(0,r1),
w, (x,1) =0 Vxely, te(0,71),
_ (=) "y (x, 1)
w, (x,t) =y —yyx,t)+ulx,t) Vxelr, te(0,7),
w, (x,7) =wi(x, 1), W, (x,7)=u(x,1) Vxegf.

Denote IT the orthogonal projector from L*(§2) x H~'(£2) onto Vops = Ran @4 (we
do not show it explicitly). Then, from Corollary 1.2, we have

w, (x,0) wo(x)
H(wnu,(») ()

Furthermore, the decay is exponential if and only if Ran (Pf is closed in L*(§2) x
H ().

— 0.
L2(2)xH-1(9) "7

To illustrate Theorem 4.1, consider the configuration on the left of Fig. 1 and let
us try to reconstruct the initial state on the right of Fig. 1, constituted of three bumps,
with null initial velocity. For simplicity sake, we take u = 0.

Then, we choose T > 0 such that, using the geometric optic rays (see Bardos et al.
[5]1), we can reconstruct all initial data with support included in the left striped part,
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and that no information can be obtained from the initial data with support included in
the right striped part. In particular, we cannot expect to reconstruct the bump in the
right top part of £2.

Remark 4.2 1t is well-known that uniform controllability/observability (with respect
to the mesh size parameters) may fail after discretization (see for instance Zhang et
al. [46]) due to high-frequency spurious modes. Using a numerical viscosity method,
Ervedoza and Zuazua [14] proposed a time discretization preserving the uniform (in
the time parameter) exponential stability of a damped wave equation.

More recently, Garcia and Takahashi [17] used a finite-difference discretization in
space for a one-dimensional wave equation. To avoid restrictions on the number of
steps with respect to the mesh size, they add a vanishing viscosity in the numerical
observers. They prove an estimate of the errors with respect to the mesh size and to
the number of steps in the algorithm of [32].

In the case studied here, where we do not have exact observability, it is not clear if
such a process can be used to tackle the spurious modes. Indeed, a further investigation
of the discretization of Vopg and its stability under the discretized algorithm should be
done.

h=0,02, dt=0,005, T=1, gain=1 1
%
—&— Observable Position in L2
20
<]
[
2 \
& X
L1

2 \.
be} N
10
N AN
* N °

5

o , \ . , . . , v

0 0.5 1 1.5 2 2.5 3 3.5 4 Rem"‘*“:»:‘m

Number of iterations  — 2 Q— z_ X

Reconstructed_State v Reconstructed_State
-3 2.5 25 -3 25 25
— | e— zZ X IZ_ X

Fig. 2 Relative error of the “observable part of the position” in L%(£2) and the reconstructions obtained
after the first, second and third iterations
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Remark 4.3 In presence of noisy measurement, we do not know if the stability of Vops
under the discretized algorithm is preserved. It is more likely that this stability fails,
leading to a deterioration of the reconstruction.

Using GMSH [20] and GetDP [13], we have implemented the algorithm with finite
elements in space (parameter # = 0.02) and an unconditionally stable Newmark
scheme in time (parameter A = 0.005), with y = 1 and a time of observation t = 1.

We have obtained Fig. 2, where we can see the efficiency of the algorithm to
reconstruct “the observable part” of the initial data (we take here the truncation on the
bottom part of the figure). After only three iterations, we reach 6 % of relative error
in L2(£2).
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