Numer. Math Numerische
DOI 10.1007/500211-011-0408-x Mathematik

Reconstructing initial data using observers:
error analysis of the semi-discrete and fully discrete
approximations

Ghislain Haine - Karim Ramdani

Received: 24 August 2010 / Revised: 10 May 2011
© Springer-Verlag 2011

Abstract A new iterative algorithm for solving initial data inverse problems from
partial observations has been recently proposed in Ramdani et al. (Automatica 46(10),
1616-1625,2010). Based on the concept of observers (also called Luenberger observ-
ers), this algorithm covers a large class of abstract evolution PDE’s. In this paper, we
are concerned with the convergence analysis of this algorithm. More precisely, we
provide a complete numerical analysis for semi-discrete (in space) and fully discrete
approximations derived using finite elements in space and an implicit Euler method
in time. The analysis is carried out for abstract Schrodinger and wave conservative
systems with bounded observation (locally distributed).

Mathematics Subject Classification (2000) Primary 35Q93; Secondary 35L.05 -
35J10 - 65M22

1 Introduction

The goal of this paper is to present a convergence analysis for the iterative algorithm
recently proposed in Ramdani et al. [24] for solving initial state inverse problems from
measurements over a time interval. This algorithm is based on the use back and forth
in time of observers (sometimes called Luenberger observers or Kalman observers;
see for instance Curtain and Zwart [6]). Inspired by the works of Mathias Fink on time
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reversal [9,10], Phung and Zhang [22] used this algorithm in the particular case of the
Kirchhoff plate equation with distributed observation, while Ito et al. [15] considered
more general evolution PDE’s with locally distributed observation. Let us mention
also Auroux and Blum [1] who implemented a similar algorithm in the context of data
assimilation. More generally, during the last decade, observers have been designed
for linear and nonlinear infinite-dimensional systems in many works, among which
we can mention for instance Deguenon et al. [8], Guo and Guo [13], Guo and Shao
[14] in the context of wave-type systems, Lasiecka and Triggiani [19], Smyshlyaev
and Krstic [26] for parabolic systems and Krstic et al. [17] for the non linear viscous
Burgers equation.

Let us first briefly describe the principle of the reconstruction method proposed
in [24] in the simplified context of skew-adjoint generators and bounded observa-
tion operator. We will always work under these assumptions throughout the paper.
Given two Hilbert spaces X and Y (called state and output spaces respectively), let
A : D(A) — X be skew-adjoint operator generating a Co-group T of isometries
on X and let C € L(X,Y) be a bounded observation operator. Consider the infinite
dimensional linear system given by

z(t) = Az(t), VYt >0, (L1)
y(t) = Cz(t), Vtel0,1]. :

where 7 is the state and y the output function (throughout the paper, the dot symbol is
used to denote the time derivative). Such systems are often used as models of vibrating
systems (e.g., the wave equation, the beam equation,...), electromagnetic phenomena
(Maxwell’s equations) or in quantum mechanics (Schrodinger’s equation).

The inverse problem considered here is to reconstruct the initial state zop = z(0) of
system (1.1) knowing (the observation) y(t) on the time interval [0, 7] (see Fig. 1).
Such inverse problems arise in many applications, like thermoacoustic tomography
Kuchment and Kunyansky [18] or data assimilation Puel [23]. To solve this inverse
problem, we assume here that it is well-posed, i.e. that (A, C) is exactly observable
in time T > 0. In other words, we assume that there exists k; > O such that

T
/ ly(@)1%dr > k2||z0l%, Y z0 € D(A).
0

For instance, in the case of the wave equation on a bounded domain €2, this inequality
holds provided we observe the state on O x (0, t) where O C Q2 and t are chosen
such that the geometric optics condition of Bardos et al. [2] holds. For similar results
related to other equations, see for instance Burq [3], Burq and Lebeau [4] and Jaffard
[16] and the monograph of Lions [20].

Following Liu [21, Theorem 2.3.], we know that AT = A — C*C (respectively
A~ = —A — C*C) generate an exponentially stable Co-semigroup T™ (respectively
T™) on X. Then, we introduce the following initial and final Cauchy problems, called
respectively forward and backward observers of (1.1)
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Reconstructing initial data using observers

Fig. 1 An initial data inverse
problem for evolution PDE’s:
How to reconstruct the initial
state (light grey) for a PDE set
on a domain 2 from partial
observation on O x [0, ]
(dark grey)?

(@) = AtzH () + C*y(1), Vi e0,1], (1.2)
z7(0) =0, '
() = —A"z=(t) — C*y(t), Viel0, 1],

Note that the states z+ and z~ of the forward and backward observers are com-
pletely determined by the knowledge of the output y. If we set L, = T, T, then by
[24, Proposition 3.7], we have n := ||[L¢||zx) < 1 and by [24, Proposition 3.3], the
following remarkable relation holds true

z20=( —L)"'z7(0). (1.4)

In particular, one can invert the operator (I — LL;) using a Neumann series and get the
following expression for the initial state

0= LIz (0). (1.5)

n=0

Thus, at least theoretically, the reconstruction of the initial state is given by the above
formula. Note that the computation of the first term in the above sum requires to solve
the two non-homogeneous systems (1.2) and (1.3), while the terms for n > 1 involve
the resolution of the two homogeneous systems associated with (1.2) and (1.3) (i.e. for
y = 0). In practice, the reconstruction procedure requires the discretization of these
two systems and the truncation of the infinite sum in (1.5) to keep only a finite number
of back and forth iterations. For instance, if we consider a space semi-discretization
corresponding to a mesh size i (typically a finite element approximation), one can
only compute
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Np

200 = D L 25 0), (1.6)

n=0
where

- Ly, = ’]I‘; T']I‘h+t, where ']I‘}jfr € L(X) are suitable space discretizations of T;t,

- 7, (0) € X}, is an approximation of z~ (0) in a suitable finite dimensional subspace
Xp of X,

— Ny, is a suitable truncation parameter.

Similarly, if a full discretization described by a mesh size & and a time step At is
considered, one can compute

Nh,At

20.h.A1 = Z Lh.ank (Z/;)O- (1.7
n=0

where

e + + . . . .
= Lk =T} o k Ty ar > Where T 5, - are suitable space and time discretiza-
tions of T,
—\0 . N -
- (z h ) € X}, is an approximation of z~(0),
— Nj s 18 a suitable truncation parameter.

For the sake of clarity, the precise definition of the spaces and discretizations used
will be given later in the paper.

Our objective in this work is to present a convergence analysis of zo , and zo x As
towards zg. A particular attention will be devoted to the optimal choice of the trun-
cation parameters Ny, and Ny, a; for given discretization parameters (mesh size 4 and
time step At). Let us emphasize that our error estimates (see (2.8), (2.27), (3.15) and
(3.25)) provide in particular an upper bound for the maximum admissible noise under
which convergence of the algorithm is guaranteed. As usually in approximation error
theory of PDE’s, some regularity assumptions are needed to obtain our error esti-
mates. Namely, our result allows us to reconstruct only initial data contained in some
subspace of X (namely D (A?)).

Let us emphasize that similar error estimates have been recently obtained by Cindea
et al. [5] in the context of control problems. Using Russel’s “stabilizability implies
controllability” principle, the authors derived a new approximation method of exact
controls for second order wave type systems with bounded input operator. The con-
vergence analysis is carried out in the case of a Galerkin type semi-discretization.

Let us now make some comments on the type of observation for which we have
been able to prove convergence results. First of all, we assume throughout the paper
that C € L(X, Y) is a bounded observation operator (locally distributed observation).
This assumption is crucially used many times in the proofs and it seems difficult to
extend our result to the case of unbounded observation. However, the reconstruction
algorithm seems to be still efficient in this case, as it can be seen from the numerical
results given in [24].
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In addition to the boundedness of C, we assume that C*C € L (D (A?)) N
L (D (A)). The fact that C*C € L (D (A)) ensures that the contraction property
for TT and T~ is still satisfied when restricted to D (A) and D (Az) (see Lemma 1
of the Appendix). Let us point out that this is proved for the damped wave equation
in Cindea et al. [5, Proposition 2.5]. Moreover, we also have ||L;|[pn) < 1 and
L, ||D( a2) < 1 (by application of [27, Proposition 2.10.4]). The second technical

assumption C*C € L (D (Az)) appears naturally in our analysis, but not in the one
carried out in Cindea et al. [5]. Indeed, this assumption is used to bound a term which
does not appear in the context of control problems they considered. Finally, let us
point out that these assumptions are in particular satisfied when the locally distributed
observation is obtained via a smooth cut-off function.

Remark 1 Using an implicit Euler method preserves the dissipative properties of the
high frequency part of the solution (see (2.30) and (3.30)). This is the main reason for
which we did not use an explicit or midpoint Euler scheme, but we do not know if this
restriction is only technical or not.

The paper is organized as follows: in Sect. 2 we provide a convergence analysis of
the algorithm for an abstract Schrodinger type system, by considering successively the
semi-discretization (Sect. 2.1) and the full discretization (Sect. 2.2). In Sect. 3, similar
results are given for an abstract wave system. Once again, we tackle successively the
semi-discretization (Sect. 3.1) and the full discretization (Sect. 3.2). However, since
the proofs are very similar to those of the Schrodinger case, they will not be given
with full details. Finally, the Appendix is devoted to the proof of two technical lemmas
which are used several times throughout the paper.

Throughout the paper, we denote by M a constant independent of t, of the initial
state zo and of the discretization parameters s and At, but which may differ from line
to line in the computations.

2 Schrodinger equation

Let X be a Hilbert space endowed with the inner product (-, -). Let Ag : D (Ag) — X
be a strictly positive self-adjoint operator and C € L£(X, Y) a bounded observation
operator, where Y is an other Hilbert space. The norm in D(A§) will be denoted

by || - |lo. We assume that there exists some T > 0 such that (i Ag, C) is exactly
observable in time 7. Thus by Liu [21, Theorem 2.3.], AT = iAg — C*C (resp.
A~ = —iAg — C*C) is the generator of an exponentially stable Co-semigroup T

(resp. T7). We want to reconstruct the initial value zg of the following system

[i(t) =iAoz(t), Vt>=0, 2.1

y(t) = Cz(t), Vtel0,1].

Throughout this section we always assume that zg € D (A%) Thus by applying The-
orem 4.1.6 of Tucsnak and Weiss [27], we have

zeC ([0, 1, D (A(%)) nc! ([0, 11, D (Ag)).
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The forward and backward observers (1.2) and (1.3) read then as follows

(1) = iAoz (1) — C*CzH(t) + C*y(r), Vi€ [0, 1], 2.2)
zT(0) =0, :
() = iAoz~ (t) + C*Cz~(t) — C*y(t), ¥t €0, 1], 2.3
2 (1) =zt (2). '

Clearly, the above systems can be rewritten in the general form of an initial value
Cauchy problem (simply by using a time reversal for the second system)

’c}(z‘) = £iAoq(t) — C*Cq(t) + F(1), vt € [0, ], 2.4)

q(0) = qo,

where we have set

— for the forward observer (2.2) : F(t) = C*y(t) = C*Cz(t) and g9 = 0,
— for the backward observer (2.3) : F(t) = C*y(t —t) = C*Cz(t — t) and
g0 =27 (1) € D (A).

2.1 Space semi-discretization
2.1.1 Statement of the main result

We use a Galerkin method to approximate system (2.4). More precisely, consider a

1
family (Xp,)p~0 of finite-dimensional subspaces of D (Aé) endowed with the norm

1
in X. We denote 7, the orthogonal projection from D (Ag) onto X,. We assume that

there exist M > 0,6 > 0 and 2* > 0 such that we have for all 2 € (0, h*)
1
lmng — ¢l < MA® liglly . Vo eD(Ag). @.5)

Givenqg € D (A(%), the variational formulation of (2.4) reads for all ¢ € [0, 7] and all

1
peD (Ag) as follows

—(C*Cq @), ) +{F (1), ),

[<q‘(t),<p) =+i{g(0). ¢)1 (2.6)

q(0) = qo.

Suppose that o, € X, and Fj, are given approximations of go and F respectively in
the spaces X and L' ([0, t], X). Forallz € [0, 7], we define g, (¢) € X, as the unique
solution of the variational problem

[ (Grn(®), on) = £i {gn @), on)1 — (C*Cqp(t), o) + (Fr(t), @) ,
qn(0) = qo,n-

[N]

2.7
for all 5, € Xj.
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The above approximation procedure leads in particular to the definition of the semi-
discretized versions T,jf of the semigroups T+ that we will use. Indeed, we simply
set

TS g0 = Ty ,q0 = qn(t) T, g0 =T, ,q0 = qn(t — 1)

where gy, is the solution of Eq. (2.7) with the corresponding sign and for Fj;, = 0 and
qo.n = 7rqo. The approximation of L, = T; T/ follows immediately by setting

— T TF
Lye=T,,T,..

Assume that yj, is an approximation of the output y in L' ([0, ], ¥) and let Z;T and
z;, denote the Galerkin approximations of the solutions of systems (2.2) and (2.3),
satisfying for all ¢ € [0, t] and all ¢, € X},

[NT]

(i @, on) = i {2 1), on) 1 = (C*Czf (), gn) + (C*yn (@), on),
Z(0) = 0.
[ (2, ), on) =i {2, (1), gn)

z;, (1) = z; (7).

+(C*Czj, (1), @n) — (CFyn(0), on),

1
2

Thus, our main result in this subsection reads as follows.

Theorem 1 Let Ay : D (Ag) — X be a strictly positive self-adjoint operator and
C € L(X,Y) such that C*C € L (D (A%)) N L (D (Ag)). Assume that the pair
(iAo, C) is exactly observable in time © > 0 and set n = ||L;|lgx) < 1. Let
z0 € D (A%) be the initial value of (2.1) and zo  be defined by (1.6).

Then there exist M > 0 and h* > 0 such that for all h € (0, h*)

Np+1
n
lzo — zonll = M ( 1

T
— +h9rN,$) lzoll2 + N / 1C* () — yu(s)) llds
0

A particular choice of Ny leads to an explicit error estimate (with respect to /) as
shown in the next Corollary (the proof is left to the reader because of its simplicity)

Corollary 1 Under the assumptions of Theorem 1, we set

Inh
Ny =60—.
Inn

Then, there exist M; > 0 and h* > 0 such that for all h € (0, h™)

T
lizo — zo.nll < My | B In? Bt |Izoll2 + | In A / IC* (y(s) — yu(s)) llds | . (2.8)
0
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3
Remark 2 In fact, Theorem 1 still holds true for zg € D (Aé) (with the same proofs

and slightly adapting the spaces). Nevertheless, we have not been able to carry out this
analysis for the fully discrete approximation in this case. This is why we restricted our
analysis to the case of an initial data zo € D (A3).

2.1.2 Proof of Theorem 1

Before proving Theorem 1, we first need to prove some auxiliary results. The next
Proposition, which constitutes one of the main ingredients of the proof, provides the
error estimate for the approximation in space of the initial value problem (2.6) by
using the Galerkin scheme (2.7).

Proposition 1 Given gy € D (A%) and qo.n € Xp, let q and qy, be the solutions of
(2.6) and (2.7) respectively. Assume that C*C € L (D (Ag)). Then, there exist M > 0
and h* > 0 such that for all t € [0, t] and all h € (0, h™*)

I1g 1) = an®1 = 1090 = go.nll + MA?[2 (lgoll2 + 1 Fl1oc) + 21 F o

t
+/ £ (s) — Fa(s)lds,
0

where || F|la,co = sup;cjo,¢1 | F () la-

Proof First, we substract (2.7) from (2.6) and obtain (we omit the time dependence
for the sake of clarity) for all ¢;, € X},

(G — Gn.on) = %i (g —qn.on)1 —(C*C(q —qn), on) + (F — Fp, on) .

[~}

Noting that (7;,q — ¢, (ph)% = 0 for all ¢ € X, and that 77, makes sense by the
regularity of ¢ (see (4.1)), we obtain from the above equality that for all ¢, € X},

(thg — qn> on) = (g — 4. on) £i{Thq — qn, ‘Ph)%
—(C*C(q —qn) . on)+ (F — Fn, ¢n) . (2.9)

On the other hand, setting
1 2
En = S llmng — aqnll”,
2
we have
En = Re (ThG — Gn, Thq — qn) -
Applying (2.9) with ¢, = m,q — g, and substituting the result in the above relation,

we obtain by using Cauchy-Schwarz inequality and the boundedness of C that there
exists M > 0 such that
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En < (lmng — Gl + Mlimng — gl + | F = Fal) lng — qnll -
—————

=2&,
Since ) = i./ZS the integration of the above inequality from O to ¢ yields
N , g q y y

t
lmhg (@) — g < llTrgo — 610,h||+/ (mng(s) — )| +Mlmpg(s)—q(s)|) ds
0

t
+/ [ F(s) — Fr(s)llds. (2.10)
0

Thus, it remains to bound |7r,g () — ¢ ()| and ||7Tpg(t) — q(¢)]| for all £ € [0, 7].
Using (2.5) and the classical continuous embedding from D(A%) to D(AP) fora > 8,
we get that

. iy Mh@ . th . .
[ l7ng (1) — g1 < lg®lly = g ()1 Vi e [0, 7], e (0.5,

l7ng () —q @Il < Mh@llq(t)llé < MiNq@)ll2,

Using relations (4.2) and (4.3) proved in Lemma 2 of the Appendix, we get for all
te€[0,t]and all 4 € (0, h™)

l7nG (1) = G + lmng (1) — g0 < MA® (Igolla + 11 F ll2.00 + 1 Fll1.00) -
Substituting the above inequality in (2.10), we get the result.

Using the last result, we derive an error approximation for the semigroups T+ and for
the operator I, = T, T} .

Proposition 2 Under the assumptions of Proposition 1, the following assertions hold
true

1. There exist M > 0 and h* > 0 such that for all t € (0, t) and all h € (0, h*)

|7 a0 = T a0 < Men®lgollo- @.11)

| a0 = Ty 00| = M@ = 08 lgollo 2.12)

2. There exist M > 0 and h* > 0 such that for alln € N, all t € [0, t] and all
h € (0, h*), we have

IL?q0 — L ,q0ll < M(1 + nt)h|qoll2. (2.13)
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Proof

1. Tt suffices to take F = Fj, = 0 and go » = mrqo in Proposition 1.
2.  We first note that

IL7 g0 — L ;qoll < ILYq0 — malli qoll + llmalli go — L, ;qoll.  (2.14)

Using (2.5) and the fact that ||IL; || (pcay) < 1 proved in Lemma 1 of the Appendix,
the first term in the above relation can be estimated as follows

IL?q0 — maliqoll < Mh°llqolla. Vh € (0, h¥). (2.15)
For the second term in (2.14), we prove by induction that for all n € N
lmay g0 — Lj, ,qoll < Mnth®|qoll2, Vh € (0, h¥). (2.16)
By definition, we have

I7aLlego — Liniqoll = lmn T Ty qo — T, Tir ol
< |z T, T/ qo — T}, Tt ol + T}, , (T go — Ty ,qo) -

By Lemma 1 of the Appendix and Eq. (2.12), we get

Il T, T, g0 — T, T/ qoll < M(z — 0)h® llqoll2.  Vh € (0, h¥).

Obviously [T, || z(x) is uniformly bounded with respect to £ (this follows for example
from (2.12)), and thus by (2.5) and Eq. (2.11), we have

ITy., (T g0 — Ty ,q0) Il < 1T 90— T qoll + 177 T, g0 — T ,qoll
< Mth?|\qolla. Vh € (0, h*).

Consequently
InLigo — Lacqoll < MTh®|lqoll2.  Vh € (0, h*), 2.17)

which shows that (2.16) holds for n = 1. Suppose now that for a given n > 2, there
holds

lmnly =" g0 — Ly qoll < M(n — DTh® |igoll2. (2.18)
We write
lealf qo — Lz ,qoll < llwalely ™" qo — L, Lt goll + 1Ly (L7 g0 — L qo) -
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Thanks to Lemma 1 of the Appendix and to the uniform boundedness of [|Lp. ¢l 2cxy
with respect to & (which follows from the uniform boundedness of ||']I‘ i) and using
(2.17) and (2.18), we obtain

ImaLy g0 — L ,qoll < M(x + (n — DDA’ [Ig0]l2.
which is exactly (2.16). Substituting (2.15) and (2.16) in (2.14), we obtain the result.
We are now able to prove Theorem 1.

N,
Proof of Theorem 1 Introducing the term Znio LZJZ_(O)’ we rewrite zo — 2o, in
the following form

Z]L" ~(0) — ZLh 25 (0),

- ZL”Z_(O)—{-Z L2 -1y )z (0)+Z]L (z7(0) — 7, (0)) .

n>Ny

20 — 20,h

Therefore, we have

llzo — zonll < 81+ 82+ S3, (2.19)
where we have set
S1= Zn>Nh Hﬂ"n B ’
5= S 11

n

N,
§3= (Znio ‘Lh T

s [ O =50

Note that the term S is the truncation error of the tail of the infinite sum (1.5), the
term S> represents the cumulated error due to the approximation of the semigroups
T+ while the term S3 comes from the approximation of the first iterate z~(0) of the
algorithm.

Since n = ||L; || z(x) < 1, using relation (1.4), the first term can be estimated very
easily

77Nh-|—1
Si<M =7 lIzoll2.- (2.20)

The term S, can be estimated using the estimate (2.13) from Proposition 2
Nj,

S =MD (1 +n0) | KlIz"O)ll2. ¥h e (0, h").
n=0
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Therefore, using (1.4) and the fact that ||]Lr||D( a2) < 1 in the above relation, we
finally get that

Sy < M[l +(+1)N, + N,%z]heumuz, Vi € (0, h*). 2.21)

It remains to estimate the term S3. As n = |L¢llzx) < 1, (2.13) implies that
IL7,z | c(x) is also uniformly with respect to 4 bounded by 1, provided 4 is small
enough. Hence, we have

S3 < MNy |27(0) — 2, (0|

_ 2.22
< MN;, (|27 (0) — 1z O] + |71z (0) — z;, () ]) - (2.22)

By using (2.5) and (1.4), we immediately obtain that
|z ©) = mz= ()| < MA%lIzo]l2. (2.23)

To estimate the second term 77,z (0) — z,, (0), we apply twice Proposition 1 first for
the time reversed backward observer z~(t — -) and then for the forward observer
7t (the time reversal step is introduced as in the formulation of Proposition 1, only
initial value Cauchy problems can be considered). After straightforward calculation
we obtain that for all & € (0, h™)

7420 = 2, @) = MH [2(l¥ @)z + 1C* 1.00) + T2 UC 2 |

4 / 1C* (6(x — ) — w(x — ) llds
0

4 / 1C* (5(s) — wi(s)) lds. (224)
0

Applying (4.2) of Lemma 2 of the Appendix with zero initial data, we obtain that

Iz ()2 < TlIC*Yll2,00-

Therefore (2.24) also reads

|72 (0) — 2, ()] < MA (x + T*)IC* yll2.00 + 2/ IC* (y(s) — ya(s)) llds.
0
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As C*C € L(D(A3)) N L (D (Ap)) and |1zl2,00 = llzoll2 (since i A is skew-
adjoint), the last relation becomes

T
|7mnz™(0) — 2, () < MR (x + T)l|z0ll2 + 2 / IC* (y(s) = ya(9)) llds.
0
Substituting the above relation and (2.23) in (2.22), we get
T
S3 < MNy | B7(1 + 7+ t)]z0ll2 +/ IC* (y(s) —yn(s) lds | . (2.25)
0

Substituting (2.20), (2.21) and (2.25) in (2.19), we get for all 1 € (0, h*)

nN}Hrl
lzo — zonll =M ( 1

e +n? [1 + (A +14+ )N, + er]) llzoll2

N / 1C* (4(s) = y(s)) lds |
0

which leads to the result (with possibly reducing the value of 1*).

2.2 Full discretization
2.2.1 Statement of the main result

In order to approximate (2.6), we use an implicit Euler scheme in time combined with
the previous Galerkin approximation in space. In others words, we discretize the time
interval [0, 7] using a time step Atz > (0. We obtain a discretization 7, = kAt, where
0 < k < K and where we assumed, without loss of generality, that t = K At. Given a
continuously differentiable function of time f, we approximate its derivative at time
t; by the formula

f'(t) =~ D, f (1) := W

We suppose that go, € X, and F K for 0 < k < K, are given approximations of

qo and F(1) in the space X. We define (q;’f), for 0 < k < K, as the solution of the
following problem: for all ¢, € Xj:

%_<C*CC]£9‘Ph)+(F;],(7¢h>,

{ (Digy. on) = £i (g5 on) (2.26)

a9 = qo.n-
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Note that the above procedure leads to a natural approximation Thi Az Of the contin-
uous semigroup ']I‘,f by setting

+ ot ok - K-k
Tyq0 = Ty Ar190 = di> Tyeqo =Ty arxq0 = ay >

where g¥ solves (2.26) with Ff = Oforall0 < k < K andforgq , = 7;qo. Obviously,
this also leads to an approximation of L, = T, T by setting

_ T +
Ln,arkx = Th,At,KTh,Az,K‘

Assume that forall 0 < k < K, y,’j is a given approximation of y(#;) in Y and let

(z;ﬁ')k and (z;)k be respectively the approximations of (2.2) and (2.3) obtained via
(2.26) as follows:

— Forall0 < k < K, (z;)k = qﬁ where qﬁ solves (2.26) with F;L‘ = C*yﬁ and
q; =0,

— Forall0 <k <K, (z;)k = q}f*k where q}’f solves (2.26) with F¥ = C*yffk
and g) = (z)X.

Then, our main result (which is the fully discrete counterpart of Theorem 1) reads
as follows

Theorem 2 Let Ag : D (Ag) — X be a strictly positive self-adjoint operator and C €
L(X,Y)suchthat C*C € L (D (A%)) NL (D (Ag)). We assume that the pair (i Ag, C)
is exactly observable in time t > 0. Let z9 € D (A(z)) be the initial value of (2.1). With
the above notation, let zo j a; be defined by (1.7) and denote n := ||L¢llzx) < 1.
Then there exist M > 0, h* > 0 and At* > 0 such that for all h € (0, h*) and all
At € (0, At*) we have

Np,ai+1
r} B
lizo = zo.n.aell = M [ (—1 — (n° + A+ T)Ni%,At) lIzoll2

K
+Nnar ALY | CH () — yﬁ)H} .

=0
Corollary 2 Under the assumptions of Theorem 2, we set

In(h® + Ar)

Npar = Inn

@ Springer



Reconstructing initial data using observers

Then, there exist M; > 0,h* > 0 and At* > 0 such that for all h € (0, h*) and
At € (0, Ar¥)

lizo — zo.n.acll < My [(h‘) + A In*(h? + AD)llzoll2

K

+[In(h? + An)| At Z |c*(y(te) — y,f)||:| .27
=0

Remark 3 Contrarily to the semi-discrete case, we have not been able to extend our
results for zg in a larger space than D (A(z))

Remark 4 Let us emphasize that our results hold without assuming a CFL type con-
dition.

2.2.2 Proof of Theorem 2

The proof of Theorem 2 goes along the same lines as the one of Theorem 1 in the
semi-discrete case and uses energy estimates similar to those developed in Fujita and
Suzuki [11, p. 865]. The main ingredient for the convergence analysis is the follow-
ing result (the counterpart of Proposition 1) which gives the error estimate for the
approximation (in space and time) of system (2.6) by (2.26).

Proposition 3 Given initial states gy € D (A(z)) and qon € Xp, let g and q,’f, for
0 < k < K, be respectively the solutions of (2.6) and (2.26). Assume that C*C €
L (D (Ay)). Then, thereexist M > 0, h* > Oand At* > Osuchthatforallh € (0, h™),
all At € (0, At*) and all 0 <k < K:

k

I7ag (4 — ay |l < lIngo — qo.nll + M |Ar D IF@) — Fl
(=1

+ (1 + Ar) [ (lgollz + 1F 100 + 1Flloc) + r,?nFnz,oo]] :

Proof Let ri(tx) denote the residual term in the first order Taylor expansion of ¢
around #;_1, so that

— g 1 1
aW) —qt-1) 7100 = Dig ) = —r1 (1), (2.28)

1) —
q () AL A

Subtracting (2.26) from the continuous weak formulation (2.6) applied for ¢ = #; and
for an arbitrary test function ¢ = ¢;, € X, we immediately get by using (2.28) that
foralll <k <K
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<Dr <4(lk) — 61;’1‘) . §0h> = +i {mnq (), o)y = <C*C (61(lk) — 61/11‘) . §0h>
o @, on) + (Fao — F o).

The above relation implies that

(D1 (mra @) = at) . on) = (Ds ria ) = 4@ on)
+i (g @) - af. 1), - (C*C (a0 - af) . o)
1
- i@ on) + (Fw) = Ff o). (2.29)
Now, forall 1 <k < K, let

1
& = 5 lmha @) - arl?.

Using the identity

1 2 2 2
5 (1 = oI + e = vI?) = Re (w = vow). Vuve X,

one easily obtains that forall 1 <k < K
Digf < Re (D, (mrg () — af)  7ng ) — gf) (2:30)

Substituting (2.29) with ¢ = whq(tx) — ql}; in the above inequality and using the
boundedness of C, we obtain the existence of M > O such thatforalll <k < K

D:&f < [I1Ds (g (t) — q () | + Mlltng (1) — q (8 |

1
o I @l + I @) = FiImng () — gjll- (2.31)

Using the straightforward relations

D.&f = (D,\/;g) (\/575+ \/a) , (2.32)

and

I7ng (1) — gfll < ~/2 (\/671‘+ ,/5,’;‘1) , (2.33)

we obtain from (2.5) and (2.31) that for all 2 € (0, h™)

1
Dyt < m [h9 (12 @y + g @0lly) + < Ir @0l + 1F ) = F,fn] .
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By (2.28) and relations (4.2) and (4.3) in Lemma 2 of the Appendix, the last estimate
yields

D& < Mihe (Igoll2 + 1l Fll2,00 + 1 Fll1,00)

h? 1
gk -
HIF ) — Fpll + A ||’"l(lk)||%+ A7 IIrl(tk)Il]-
(2.34)

To conclude, it remains to bound the two last terms in the above estimate. By definition
of r;, we have

ri(t) = q(te—1) — q(te) + At g (t),

1

inD (Aé ) and thus by the mean value theorem, we get

I @lly < A sup Gy + Arlg ()l

se[tr_1.1]

Using once again (4.3), we obtain that there exists M > 0 such that
1l = MAt (Igoll2 + tl Fll2,00 + 1F11.00) - (2.35)

Now by the regularity of ¢ (see Lemma 2), the residual r; can be expressed via the
integral

173

ri(ty) = /51'(S) (te—1 — $) dss,

k-1

in X, and thus

Ir1 ()l < A% sup 1G]l
SE[tkfl,tk]

Using Eq. (2.4) verified by g and the boundedness of C, we have

§oi = [ w] = | 4] +ia0qw - ccqw + Fo)
= 1aO s + Mg+ 1 F O,

)

Hence, once again by (4.3), we get

1)l < A2 (Igoll2 + tkll Fll2,.00 + 1 Fll100 + 1 lloc) - (2.36)
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Substituting inequalities (2.35) and (2.36) in relation (2.34) provides estimates for
o JE-fE

Dy ~—, for k = 1,..., K, that can be added together to get the

desired inequality (since ||, q (fx) — qh I = 25{:).

Using this Proposition, we can derive an error estimate for the semigroup ']I‘i (for all
1 < k < K) and for the operator L; = T; T (the counterpart of Proposition 2).

Proposition 4 Under the assumptions of Proposition 3, the following assertions hold
true

1. There exist M > 0,h* > 0 and At* > 0 such that for all h € (0, h™), all
At € (0, At*)and all0 <k < K

| a0 = T o, k0| = Mt + An)ligollo. (2.37)
|7 Ta0 = T s = M@ =0 + anlgoll2. @39)

2. There exist M > 0, h* > 0 and At* > 0 such that for alln € N, all h € (0, h™),
all At € (0, At*)and all0 <k < K

I =Ly a0l < MR 40t (1 + A0 lgoll2. (239)

Proof
1. It suffices to apply Proposition 3 with F(#;) = F,’f =0forall0 <k < K and

q0,h,At = TTh{q0-
2. First, we note that

L% g0 — Ly arxq0ll < L7 g0 — 7nllf qoll + lIwnlly, g0 — Ly A, 1 90ll-  (2.40)

Using (2.5), the fact that ||} || ¢(pa)) < 1 (proved in Lemma 1 of the Appendix), the
first term in the above relation can be estimated as follows

L7, g0 — 7n Lt goll < Mhligoll2,  Vh € (0, h*). (2.41)

For the second term in (2.40), we prove by induction that foralln € N, all 1 € (0, h*)
and all Ar € (0, Ar*) (for some At* > 0)

lrnLy go — L, p; xq0ll < Mnt (B + At) llqoll2- (2.42)

By definition, we have

|71 Lo — L arkgo| = |70 Tr T g0 — Ty ar £ Th
< | (5 = Ty s T
[T (7% - T ) ]
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Using (2.38) and Lemma 1, we get
T, — T, Trqo| < M(t — 1) (b’ + A
Ty, noark) Thlgqol| = M(T — 1) (h” + A1) llgolla-

Obviously ||T), 5, s llzx) is uniformly bounded (with respect to & and Ar), and thus
again by (2.37) we have

T s (70T =T ar) @0] = Mo (4 + A1) ol
So, by adding the two last inequalities, we obtain that
|1 Lecgo — L arkdo| < Mz (b + At) llqoll2, (2.43)
showing that (2.42) holds for n = 1. Suppose now that for some n > 2
lall ™ g0 — Ly p, xqoll < M(n — 1T (B + At) llqoll2. (2.44)
Writing
lnLlit go — Lk a; xqoll < lmaLy Lt~ g0 — L ararmay ™ qoll
L, ark (Tl g0 — Ly A; 1q0)I,

we get by using Lemma 1, the uniform boundedness of ||y, ar |l £(x) With respect to
h and At, (2.43) and (2.44) that

lmali go — Ly a; xq0ll < M [(1+ (n — D)7 (A% + Af)] lIqoll2.

which is exactly (2.42). Substituting (2.41) and (2.42) in (2.40), we obtain the result.
We are now able to prove Theorem 2.

. N, .
Proof of Theorem 2 We first introduce the term > i’OA’ Ly \, k2~ (0) to rewrite the
approximation error zg — 20,4, A in the following form:

Nh At

(o 0]
20 — 200 A1 = ZL';Z_(O) Z Lh ark Zh
- Nh At
= Z L2z~ (0)+Z LhAtK)Z ©)
n>Np At
Ni,at

_ )
ZLth(Z (O)_(Zh) )
Therefore, we have

lzo — zo.n,Acll < S1+ 82+ 83, (2.45)
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where we have set

3

S1= Zn>Nh1At ||L¥Z7(O)
N, _
S2= S (1 -1 k) O

Np, _ _\0
S3 = (Znéé’ H“Z,At,KHL(X)) HZ ) - (Zh) ”

)

Since n = ||L;[lg(x) < 1, the first term can be estimated very easily

Np ar+1
n h,At

S <MLAt—
l—n

lzoll2- (2.46)

The second term S, can be estimated using the estimate (2.39) from Proposition 4

Np,at
Sy < M[ > (0 4t + An) ]Ilz_(0)||2, Vh € (0,h*), At € (0, At*).
n=0

Therefore, using (1.4), the fact that ||]Lr||D( A2) < 1 (see Lemma 1) in the above
relation, we get that for all 4 € (0, h*) and At € (0, Ar™*)

S = M[1+ A+ 0Ny a+ (L + DN 5 | (0 + A1) ol 247)

It remains to estimate the term S3. As for the semi-discrete case, one can easily show
that ||y, ar, & | £(x) is uniformly bounded by 1 (with respect to 42 and At), and thus
we have

S5 = MNwa [ = @)
B L B . (2.48)
= M (27O = 1z~ @] + |7z~ © = )] ) -
By using (2.5) and (1.4), we immediately obtain that
|2~ = miz= @] = MK lzoll. (2.49)

To estimate the second term 77,z (0) — (z;)o, we apply twice Proposition 3 first for
the time reversed backward observer z~(tr — -) and then for the forward observer 7
(the time reversal step is introduced simply because Proposition 3 is written for initial
(and not final) value Cauchy problems). After straightforward calculation we obtain
that for all 2 € (0, ™) and all At € (0, At*)
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7127 = @) = M@+ A0 [T @2 + 1€ ¥l100 + 1C*Fo0)

+12||C*yllz,°°] Al i HC* (y(f —- yé{%) H
(=1

A i H c* (y(tg) — y,‘ﬁ) H . (2.50)
=1

Applying (4.2) of Lemma 2 of the Appendix with zero initial data, we obtain that

25 (D)2 < TlIC*yll2,00-
As C*C € L(D(A3)) N L(D(Ap) and |Izll2,00 = llzoll2 (since iAg is skew-
adjoint), (2.50) also reads

|27 = @) = M@® + A + D)zl + 240 > e (vao —5f)
=0

Substituting the above relation and (2.49) in (2.48), we get

S3 < MNpar [(h‘) +AN1+ 1+ 7% 2oll2 + Afﬁ HC (W‘f) - yﬁ)”] '
= (2.51)

Substituting (2.46), (2.47) and (2.51) in (2.45), we get for all » € (0, h*) and all
At € (0, Ar*)

nNILAI"l‘]
L —n

K
lz0 = zon.a0ll = M [Nh,mm > e (vao )| + ol
=0

+ 0 + AD[1+ (T + Wi+ 1+ DN Jloll )

which leads to the result (with possibly reducing the value of A* and Ar*).

3 The wave equation

Let H be a Hilbert space endowed with the inner product (-, -). The corresponding
norm of H is denoted by || - ||. Let Ag : D (Ag) — H be a strictly positive self-adjoint
operator and Co € L(H,Y) a bounded observation operator, where Y is an other
Hilbert space. The norm in D(Ag) will be denoted by || - ||o. Given T > 0, we deal
with the general wave type system

W(t) + Agw(t) =0, V>0,

y(1) = Cow(®), Vi el0, 1], G.1)

@ Springer



G. Haine, K. Ramdani

and we want to reconstruct the initial value (wg, wi) = (w(0), w(0)) of (3.1) know-
ing y(¢) for ¢t € [0, t]. In order to use the general iterative algorithm described in the
introduction, we first rewrite (3.1) as a first order system of the form (1.1). To achieve
this, it suffices to introduce the following notation:

(1) = [zgi] . X=D (Aé) x H,
0 1 1
A= (—Ao 0), D (A) =D (Ao) xD(Aé), (3.2)
CeL(X,Y), C = [0 Co]. (3.3)

The space X is endowed with the norm

21
lzll = [llz1l3 + llz212, Vz= €X.
2 22

Note that the operator i A is selfadjoint but has no sign so that the problem studied here
does not fit into the framework of Sect. 2. We assume that the pair (A, C) is exactly
observable in time T > 0. Thus, according to Liu [21, Theorem 2.3.], At =A-C*C
(resp. A~ = —A — C*C) is the generator of an exponentially stable Co-semigroup
T+ (resp. T™). We set as usually

L. =T, T;.

3
Throughout this section we always assume that (wo, wi) € D (A%) = D | A7 ) x

D (Ap). Thus by applying Theorem 4.1.6 of Tucsnak and Weiss [27], we have

weC ([0’ 7l.D (Ao)) N €' (0,71, D (49) N C2 ([0, o], D (AO)) .

The forward and backward observers (1.2) and (1.3) read then as follows (as second-
order systems)

[ i)+ Agw* () + GGGt ) = Gy, Viel0 Tl g
wT(0) =0, wT(0) =0,
(1) + Aow= (1) = CGCoib™ (1) = =Cjy(), Yrelo.rl, 5o
w () =wh(r), w(r)=wT (). :

Clearly, the above two systems can be written as a general initial value Cauchy problem
of the same form (simply by using a time reversal for the second system)

[ B + Aop(®) + C5Cop(t) = f(1),  Vr €0, 7], (3.6)

p0) = po, p0) = pi

where we have set
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— for the forward observer (3.4): f(t)=C{y(t)=C;Couw(t) and (po, p1)=(0, 0),
— for the backward observer (3.5): f (1) = —Ci5y(tr —t) = —C;Cow(r — t) and

(po. p1) = (w* (1), —ir* (1)) € D (A%) = D (Ag) % D (Ao).

Let us emphasize that with these notation, the semigroups T are given by the relations

+|po| _ | p(®) —|{po|_| p(x—=1)
T [m] - [pm} T [Pl] - [—pu = r)] G-
where p solves (3.6) with f = 0.

In the next two subsections, we present a convergence analysis of semi-discretized
and fully discretized approximation schemes for the forward and backward observers
(3.4) and (3.5). Our proof is based on the convergence analysis of the semi and fully
discretizations of (3.6). For the sake of clarity, we dropped in the proofs some of the
details which are very close to the ones given in the Schrodinger. As far as we know,
the existing literature on the convergence analysis of full discretizations of wave-type
systems concern only the particular cases of conservative systems (i.e. without damp-
ing), see e.g. Raviart and Thomas [25, p. 197] or Dautray and Lions [7, p. 921] and
systems with constant damping coefficients Geveci and Kok [12]. For a recent review
of numerical approximation issues related to the control and the observation of waves,
we refer the reader to the review paper of Zuazua [28].

3.1 Space semi-discretization
3.1.1 Statement of the main result

We use a Galerkin method to approximate system (3.6). More precisely, consider a

1
family (Hp)p~0 of finite-dimensional subspaces of D Aé endowed with the norm

1
in H. We denote 7, the orthogonal projection from D (Ag) onto Hj. We assume

that there exist M > 0,0 > 0 and &* > 0 such that we have for all & € (0, h™*)
1
lmag — ol < ME gy, Vo eD(Ag). (3:8)

Given (po, p1) € D (Az), the variational formulation of (3.6) reads for all ¢ € [0, 7]
1

andallp € D (AO2 ) as follows

[ (PO 0)+ (p(1). 9}y +{CGCop1). 9) = {f ()9} Vi el0) oo

p(0) = po, p(0) = p1.

Suppose that (po.n, p1.n) € Hp, x Hy and fj, are given approximations of (pg, p1)
and f respectively in the spaces X and LY ([0, t], H). We define phr(t) as the solution
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of the variational problem

{(ﬁh(t),goh) (pn(1), ¢h)l+(C0Coph(l) on)=(fu(®), on), Vtel0, 1], (3.10)

Pr(0) = pon, Pr(0) = pip.

forall r € [0, t] and all ¢, € Hj,.

The above approximation procedure leads in particular to the definition of the semi-
discretized versions "JI"ZE of the semigroups T+ that we will use. Indeed, we simply
set

+ | PO _ pr(t) _[po] _ on(T —1)
g, [p-[ne] m]-[nen)] an

where pj, solves (3.10) for f = 0 and (po.n, p1.n) = (@hpo.wrp1). The semi-
discretized counterpart of L, = T; T is then given by

— T TF
Lhe=T,,T,,.

Assume that yy, is an approximation of the output y in L' ([0, 7], Y) and let w;[ and
w, denote the Galerkin approximations of the solutions of systems (3.4) and (3.5),
satisfying for all ¢ € [0, t] and all ¢, € H},

(i, (0, @n) + (W (0), @n)1 + (CCow (1), @n) = (CEyn (D), @n)
: 4 2 (3.12)
wi(0) =0, w;(0) =0,
(8, (1), @n) + (wy (). @n)1 — (CECoy, (1), @) = — (CEyn (1), @n).
- . _ 2 (3.13)
w, (t) =w, (1), w, (r) =w, (7).

With the above notation, the main result of this section reads as follows.

Theorem 3 Let Ay : D (Ag) — H be a strictly positive self adjoint operator and
Co € L(H,Y) such that C;Co € L (D (Az)) NnL (D( )) Define (A, C) by
(3.2) and (3.3). Assume that the pair (A, C) is exactly observable in time t > 0 and
set = ||L¢llgxy < 1. Let (wo, wy) € D (Aé) x D (Ag) be the initial value of
(3.1) and let (wo_p, w1.5) be defined by
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Np —
wo.n | _ n | wy, (0)
[wl’h} =>'L;, [wh(O) : (3.14)
n=0
Then there exist M > 0 and h* > 0 such that for all h € (0, h*)

nNh+1
lwo — wO,h”% +llwy —wiall =M (1

Tﬁ “rheTN;%) (“wO”% + “wl”l)

N, / 1CE (v(s) — Y (s)) llds
0

Corollary 3 Under the assumptions of Theorem 3, we set

N, =60—.
Inn

Then, there exist My > 0 and h* > 0 such that for all h € (0, h*)

01,2
lwo = wolly + lwr = wiall < Me | 5210k (lwolly + 1wy

+|1nh|/IICE§ () = yn(s) llds | . (3.15)
0

3.1.2 Proof of Theorem 3

The next Proposition provides the error estimate for the approximation of (3.9) by
using the Galerkin scheme (3.10).

Proposition 5 Given (po, p1) € D (Ag) x D (Ao) and (po.n, p1.n) € Hp x Hp,
let p and py, be the solutions of (3.9) and (3.10) respectively. Assume that C;Cy €
L (D (Aé)) Then, there exist M > 0 and h* > 0 such that for all t € [0, t]
and all h € (0, h™)

720 p(®) = pr @l + 70 p(6) = PO = M[Ilﬂhpo = poally +llwnpr = prall

t
+h” [ (Ipolly + Ipully + 17111 o) + 20 f 100 ] +/||f(s)—fh(5)||ds-
0
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Proof First, we substract (3.10) from (3.9) to obtain (we omit the time dependence
for the sake of clarity) for all ¢, € Hj,

(P — Pr.on) + (p— phoon)1 +(C5Co (p — pr)on) = (f — fn, on) -

1
2

Noting that (m,p — p, ¢n) 1= 0 for all ¢;, € Hj, and that 5 p makes sense by the

regularity of p (this is a direct consequence of relation (4.1) from Lemma 2 used with

q= ]]; ), we obtain from the above equality that for all ¢, € Hj,

(7Th P — Phson) + (Tnp — pr.on) L = (P — P.on) +(C5Co (P — P) » )
+(f = Jnon) - (3.16)

[S]

On the other hand, setting

1 . . 1
En = =llmnp — pull* + < lmwp — paull3,
2 2 2
we have

En = (TnP — P Tnp — Pn) + (Thp — Py THD — Pi) 1 -

(S]]

Applying (3.16) with ¢, = 5 p — pj, and substituting the result in the above relation,
we obtain by using Cauchy-Schwarz inequality and the boundedness of Cy that there
exists M > 0 such that

€n = (I = B+ Mllzp = pll + 1.f = full) I = .
————

<J2&,
Since ) = i«/25 the integration of the above inequality from O to ¢ yields
NeriP ) g q y y

lwnp(t) — Ph(f)”% + lmrp @) — pr| < M[||7ThP0 - PO,h”% + llmnpt — prall

t t
+/ (lnp(s) = pI + llmnp(s) — p(s)l) ds +/ If(s) = fh(S)IIdS]-
0 0

(3.17)

Thus, it remains to bound |7, p(¢) — p(¢)|| and |7, p(t) — p(¢)| for all ¢ € [0, 7].
Using (3.8) and the classical continuous embedding from D(A%) to D(AP) fora > B,
we get that

{||7Th15(f)—ﬁ(f)|| < MI° 1)y Vi€ (0,71, h € O.h")

s p(t) = p@Il < M p@)Iy < MA®|[p(O)]1,
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Using relations (4.3) proved in Lemma 2 of the Appendix for the first order unknown

q= [2} and the right-hand side F = [;)C:|,we getforallr € [0, r]andall i € (0, h*)

5= BON+ I p©) = pOI < MA® (Ipolly +1p1 I+ £ 100111y o) -

Substituting the above inequality in (3.17), we get the result.

Thanks to the last result, we are now in position to derive an error approximation for
the semigroups T+ and for the operator I, = T, T, . This result has been recently
proved in [5] we refer the interested reader to the proof given there, which is similar
to the one of Proposition 2.

, 0

Proposition 6 Let I1;, = [ 0

]. Under the assumptions of Proposition 5, the
following assertions hold true
1. There exist M > 0 and h* > 0 such that for all t € (0, t) and all h € (0, h*)

I T+—T+ Po
H( hiy h,t) [Pl

— — Po
n, T —T
H( W =T [m]

= mun? (Ilpoll +1p1ll) (3.18)

= M@ =0k (Ipoly + Ipilh) . (3.19)

2. There exist M > 0 and h* > 0 such that for alln € N, all t € [0, t] and all
h € (0, h™), we have

H @ -1y, [iﬂ

Now, we can turn to the proof of Theorem 3

= M +nor (Ipolly +lpilh) . (320)

w(0)

w=(0)
o0 n B 0 n . O .

error term [ZO} — [Z?ﬂ =D o7 [z_goi] - Zi\’io I/ [zzg()ﬂ in the fol-

1

Proof of Theorem 3 Introducing the term ZN” ]L” i|, we first rewrite the

lowing form
wo| |Won| _ n w™(0) n n w™(0)
iR [w‘@)}*ZL -t [0
w(0) — w, (0)
+Z]th[w (O)—wz (0)]
Therefore, we have

<81+ 52+ 83, (3.21)

][]
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where we have set

()
S = Zn>Nh Lg [zgo;} ' ’
N
S = Zflvio (M - LZJ) [zEOﬂ ’
. N, n w*(())
S3 = (Z"ﬁo ’L"»f c(X)) H [ﬁ)_(o)} H '

Following exactly the same way than in the proof of the Schrodinger case, we get the
claimed result.

3.2 Full discretization
3.2.1 Statement of the main result

In order to approximate (3.9) in space and time, we use an implicit Euler scheme in
time combined with the previous Galerkin approximation in space. We discretize the
time interval [0, T] using a time step Ar > 0. We obtain a discretization t; = kAt,
where 0 < k < K and where we assumed, without loss of generality, that T = K At.
Given a function of time f of class C?, we approximate its first and second derivative
at time #; by

£ = Dyl = T TO,
) 3 B
£ = Dy ) o= L2 OD 4 T O0)

We suppose that (po.n ar, P1.h.ar) € Hp X Hp and f,{‘, for 0 < k < K, are given
approximations of (pg, p1) and f(#) in the space X and H respectively. We define
the approximate solution ( pﬁ)oskf k of (3.9) as the solution of the following problem:
pﬁ € Hj, such that for all ¢, € Hj,

[(anﬁj, on) + (P} on)y +(C5CDi P o) = (i on). 2=k <K (3.22)

Py = ponae. Pp =Py + At praar.

Note that the above procedure leads to a natural approximation ']I“hjE A Of the contin-
uous operators Ti by setting

k
o [P e [Po] T Ph
i [Pl ALk py D, pj,

(3.23)
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where pk solves (3.22) with ff = 0forall 0 < k < K and for (pon,ars P1.iar) =
(mtn po, Tn p1). Obviously, this also leads to a fully discretized approximation of the
operator L, = T; T/ by setting

_ +
L ark = Th,At,KTh,At,K'

Assume that forall 0 < k < K, y;l‘ is a given approximation of y(fx) in Y and let

(w;[)k and (w;)k be respectively the approximations of (3.4) and (3.5) obtained via

(3.22) as follows:

— Forall0 <k <K, (w ) = ph where ph solves (3.22) with fh = Coyh and
(Po.h,ats P1.a,ar) = (0,0),

— Forall0 <k <K, (w;)k = pK=* where p solves (3.22) with ff = —ClyK~*
and (po.n,ars p1.wan) = (W)X, =Dy (wHF).

Then, our main result (the fully discrete counterpart of Theorem 3) reads as follows

Theorem 4 Let Ay : D (Ag) — H be a strictly positive self-adjoint operator and
Co € L(H,Y) such that C;Cp € L (D (Aé)) NnL (D (Aé)) Define (A, C) by
(3.2) and (3.3). Assume that the pair (A, C) is exactly observable in time T > 0 and
set n = |L¢llzoxy < 1. Let (wp, wy) € D (Aé) X D (Ag) be the initial value of
(3.1) and let (wo,p, Ar» W1.n, A1) be defined by

Np

wo.nAr | (w;)°
|:w1,h,At:| N Z kALK [D (S)h) } ’ (3.24)

n=0

1 _ —0
where Dy (w), y = M

Then there exist M > 0, h* > 0 and At* > 0 such that for all h € (0, h*) and
At € (0, At*)

nNh,A["rl

lwo — wO,h,At”% + lwy — wip Al = M[(T

; + (h? + At) (1+71) N,%VA[)

x (Ilwolly + lwill) + No,ar At
K

x> | s -] }
=0

Corollary 4 Under the assumptions of Theorem 4, we set

In(h® + Ar)

Npar = Inn
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Then, there exist M; > 0,h* > 0 and At* > 0 such that for all h € (0, h*) and
At € (0, Ar*)

lwo—won.adlly +lwr—wiparll < MT[(h6+At> In?(h”+Ar) (lwolly +lwi 1)

K
+[inh? + An|arS H ci (v - ¥f) ” }
(=0
(3.25)
3.2.2 Proof of Theorem 4

As in the semi-discrete case, the main ingredient for the convergence analysis is the
following result (the counterpart of Proposition 5) which gives the error estimate for
the full approximation of the general system (3.9) by (3.22).

Proposition 7 Given (pg, p1) €D (Aé) x D (Ao) and (po.n,at> P1.h.Ar) € Hp X Hp,
let p and ( pl}j)k be the solutions of (3.9) and (3.22) respectively. Assume that C§Co €
L (D (Aé)) Then, there exist M > 0,h* > 0 and At* > 0 such that for all
1<k=<K,allh € (0,h*)and all At € (0, At*)

72 p (1) = Pl |y 700 (1) = Di | < M[ 7 po — por.arll s+l p1 = praadll

+ (n” + ) [ (Ipolly + 1ol H1F Ny g+ 1Floo) + 21 F 11 0]
k
+Ar2||f(re>—f,f||].
=1

Proof Denote by r1(#;) the residual term in the first order Taylor expansion of p
around #;_1. Then

- _ 1 1
Pt = w —n) = Dip) = i, (326)

We have

IA

||alrhﬁ<rk> — 1y Dy p(t) || + 1Dy (r p (1) — P
~ M@+ 101 G p () — Pl

|7t p(tx) — De ph|

IA

Therefore, the error we need to bound satisfies
1
k . k k
l7zn p (i) — Phll% + lmnp(ti) — Dippll <24/&; + E””l(fk)” (3.27)

@ Springer



Reconstructing initial data using observers

where we have set forall1 <k < K

& = % [” D, (ﬂhp(tk) - Plﬁ) H2 + ”ﬂhp(lk) -

2
[
2

On the other hand, if r>(#;) denote the residual term first order the Taylor expansion
of p around #;_1, then

Ptx) = Dy p(t) — vF, (3.28)
where

1 1
vk = <7 (@) = i) + (0.

Using (3.26) and (3.28), and subtracting (3.22) from the variational formulation (3.9)
written for ¢ = #; and for an arbitrary test function ¢ = ¢, € Hj, one easily obtains

(Dus (a0 = ) on) + (mup @) = b ), = (Du Gup (@) = p(0)) )
~(ccon, (pw — pk) o) + [ o) + < (CsCon ). )
RUGES RS (3.29)
Using the identity
3 (1l = 102 4l = 0I?) = Re (@~ v, ), Ve, v e H,

one easily obtains that forall 2 <k < K

D& < <Dn (nhp(tk) - Pﬁ) » Dy (”hp(fk) - p’,;)>

+(mnp = vk i (mapo - o)), (3.30)
2

Taking ¢, = D; (nh p(ty) — pﬁ) in (3.29) and substituting in the above inequality
and using the boundedness of Cy, we obtain the existence of M > 0 such that for all
2<k=<K

D&, < M[ I1Dss Gt p (k) — p@) | + 1Dy Gunp (@) — pa))ll + N1y

1
Il + 1/ ) - f;fll} | Denp e = p| - (3:31)
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Using relations (2.32) and (2.33), we obtain from (3.8), (3.31), (3.26), (3.28) and rela-
tions (4.2) and (4.3) in Lemma 2 of the Appendix for the first order formulation of
(3.6) that for all & € (0, h™)

D&k < M[/ﬁ (Hpolly + 11l + el F oo + £y o0) + 1700 = £E1

h? h’
5 lIn ) = r@-nly + - (I @Iy + Il )

1
ozl @) = Dl + 5 (Il + ||”2(lk)||)]- (3.32)

To conclude, it remains to bound the terms including the residuals r and r, in the
above estimate. By definition of r,, the mean value theorem and using once again (4.3),
we obtain that there exists M > 0 such that

2Bl = MAt (IIPoII% +lIpilh + el fll1,00 + ||f||%,oo) : (3.33)

Now by the regularity of p (see Lemma 2 applied to the first order formulation of (3.6)),
the residual 7, can be expressed via the integral

T

d3
Fa(t) = / RS G s,

Tk—1

in H. Using Eq. (3.6) verified by p and the boundedness of Cyp, we have

H 5 )H [ o] = | £ - 40p0 ~ cicopr + 7|

< IpOli +MIFON+ I F @)l (3.34)

Hence, once again by (4.3), we get

Ira@l = MAZ (Ipolly + Ipalh + 1l flnoe + 11y oo + 1 fllc) - (3.35)

For the term implying rj, we note that

Tk
Ft) = / Bs) (o1 — s)ds,

Ir—1
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1
in D (Ag ) Hence, by a similar argument and (4.3),

Il = Mir@olly = MAZ (Ipolly + Ipalh + el flnoe + 1£1 o) -
(3.36)

1
Then, we write in D Aé the difference r () — r1(fx—1) on the integral form.

Using the above relation, it comes by using once again (4.3)

Ir1e) = ri-Dlly < MAZ - sup - [[B6)]lL.

SE(t—2,tk—1)
< MAR (Ipolly + Ip1lh + -1l oo + 1£111 o) -
(3.37)
Finally
-1 s
d3p
lri() — (G-Il < Ar F(G) do ds,
tk—2 s—At
d3
< MAP®  sup ‘—f(s)H .
s€(tk—3,1k—1) ds

Using (3.34) and (4.3), we get

I )=l < MAE (Ipoly + Pt + st flhoo + 1715 oo + 1) -
(3.38)

Substituting (3.33), (3.35), (3.36), (3.37) and (3.38) in relation (3.32) provides esti-
© e e . . .
mates for D; Sh =—Fa fork =1,..., K. By adding all these inequalities,

we immediately get an upper bound for S}]f, and thus the desired inequality thanks
to (3.27) and (3.36).

Using this Proposition, we can derive an error estimate for the semigroup Ti (for all
0 < k < K) and for the operator L, = T, T (the counterpart of Proposition 6). We
skip the proof, which is nearly the same as the one of Proposition 4.

Proposition 8 Ler 1, = [jg’ ;)h] Under the assumptions of Proposition 1, the fol-

lowing assertions hold true
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1. There exist M > 0,h* > 0 and At* > 0 such that for all h € (0, h*), all
At € (0, At and all 0 <k < K
< Muh” + 80 (Ipolly + llpill)
(3.39)
= M@ =)t + A0 (Ipoly + Ipilh ) -
(3.40)

| a0 [ 2]

_ - 0
H(Hthk - Th,At,k) |:§1i|

2. There exist M > 0, h* > 0 and At* > 0 such that for alln € N, all h € (0, h*),
all At € (0, At*)and all 0 <k < K

s -0 [2]

< M [ +ne® + 20] (Ipolly +lpilh) -
(3.41)

We are now able to prove Theorem 4.

w™(0)

Proof of Theorem 4 Introducing the term Z,I,Vi’om Ly ark |:u')_ )

|:w0j| - [wo’h’mj| in the following form
w1 W1,h, At

], we can rewrite

|:woi| _ |:U)O,h,Ati| _ iﬂ"n |:w_(0):| B N"va o |: (w;)o i|
wi wina] = T w™(0) ~ ALK D)t |
Ni,ar
n|w(0) ~ o n o w=(0)
=2 L [w—(o)} + 2 (L =L A k) |:u')_(0)i|
n>Np ar n=0

Noar o n w=(0) — (w;;)°
+2020 Lhank (|:1b_(0) — Dt(lil)h)l}) '

Therefore, we have

lwo — wO,h,At”% + lwi —wipacll <81+ 82+ 83, (3.42)

n|w (0
=[Gl
: -0
(]L? - H“h,At,K) [z—gog]

L7 prk| w™(0) = (w;)°
ALK 2o ) | L™ (0) = Dyw) |

where we have set

Sl = Zn>N;LA,

3

Sy =3

S3 = (Z,ivioA K
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Once again, using similar arguments as the ones detailed for the Schrodinger case, we
get the claimed result.

Appendix

Let A : D(A) — X a skew-adjoint operator and C € L(X,Y) such that C*C €
L (D (A)). Assume that A—C*C generates a Cy-semigroup T of contractions on X,
i.e.that |T;|lzx) < 1forallt > 0.

Lemma 1 The operator A—C*C generates a Co-semigroup of contractions on D (A)
and D (A?).

Proof As C € L(X,Y) is bounded, we clearly have D (A) = D (A — C*C).
Moreover, C*C € L (D (A)) implies that D (A2) = D ((A - C*C)Z). The result
follows then from [27, Proposition 2.10.4].

Lemma 2 Given qo € D (A?) and F € C ([0, 7], D (A%)) N C' ([0, T], D (A)), let
q denote the solution of the initial value problem

[c}(t) = Aq(t) — C*Cq(t) + F(t), t€(0,1),
q(0) = qo.

Then, we have the following statements

1. Regularity:
gec(10.71.D(A%))nC' (0. ek DANNC2 (0. 7L X), A1)
2. Bound for q:
lg@lle < llgolle + I Flla.co.  fora=0,1,2, (4.2)
3. Bound for q : there exists M > 0 such that

Iglle < M (Igolla+1 + 11 Fllat1,00) + 1 Fllgoo, fora =0,1, (4.3)

where || F|la,co = sup;cfo,¢1 | F () la-

Proof

1. By [27, Theorem 4.1.6], we have g € C ([0, ], D (Az)) nct (10, 7], D (A)).
But since C*C € £ (D (A)) and F € C ([0, 7], D (A%)) N C! ([0, 7], D (A)), we
have

(A—C*C)q(t) € C (10,71, D (A) N C ([0, 7], X).

The last inclusion follows then from the fact that (1) = (A — C*C) ¢ (t) in D (A).
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2. By Duhamel’s formula, we have
t
gl = [T+ [ TicFyas]
o
0
t
< Tl + [ 1T F )l s
0
< llgolla + 11 Flla, 00,
where we have used Lemma 1 of the Appendix for the last inequality.
3. Using the estimate (4.2) obtained for ¢(¢) and the continuity of the embeddings
D (A?%) = D (A) < X, we easily get
lg(lle =1 (A—=C*C)q@) + F®)lla,
= lgOlla+1 +Mllg@Olle + 1 F lla 00
< M (Igollas1 + 11 Fllact1,00) + 1 F e co-
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