Curriculum vitæ

Education


Work experience


Publications


Journal Articles

  1. Rotational shallow water equations with viscous damping and boundary control: structure-preserving spatial discretization

    Cardoso-Ribeiro Flávio Luiz, Haine Ghislain, Lefèvre Laurent, Matignon Denis

    DOI: 10.1007/s00498-024-00404-6

    Cardoso-Ribeiro Flávio Luiz, Haine Ghislain, Lefèvre Laurent, Matignon Denis (2025) Rotational shallow water equations with viscous damping and boundary control: structure-preserving spatial discretization. Mathematics of Control, Signals, and Systems; 37(2):361–394

  2. Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled N-Dimensional Wave Equation as a Port-Hamiltonian System

    Haine Ghislain, Matignon Denis, Serhani Anass

    DOI: 10.4208/ijnam2023-1005

    Haine Ghislain, Matignon Denis, Serhani Anass (2023) Numerical Analysis of a Structure-Preserving Space-Discretization for an Anisotropic and Heterogeneous Boundary Controlled \(N\)-Dimensional Wave Equation as a Port-Hamiltonian System. International Journal of Numerical Analysis and Modeling; 20(1):92–133

Conference Papers

  1. Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box

    Verrier Gabriel, Haine Ghislain, Matignon Denis

    DOI: 10.1007/978-3-031-38299-4_41

    Verrier Gabriel, Haine Ghislain, Matignon Denis (2023) Modelling and Structure-Preserving Discretization of the Schrödinger as a Port-Hamiltonian System, and Simulation of a Controlled Quantum Box. In: Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science; 14072:392–401. Springer, Cham. St. Malo, France.

  2. Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model

    Bendimerad-Hohl Antoine, Haine Ghislain, Lefèvre Laurent, Matignon Denis

    DOI: 10.1016/j.ifacol.2023.10.387

    Bendimerad-Hohl Antoine, Haine Ghislain, Lefèvre Laurent, Matignon Denis (2023) Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model. IFAC-PapersOnLine 56(2):6789–6795. Yokohama, Japan.

  3. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control

    Serhani Anass, Matignon Denis, Haine Ghislain

    DOI: 10.1007/978-3-030-26980-7_57

    Serhani Anass, Matignon Denis, Haine Ghislain (2019) A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. In: Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science; 11712:549–558. Springer, Cham. Toulouse, France.

  4. Numerical Simulation on a Fixed Mesh for the Feedback Stabilization of a Fluid–Structure Interaction System with a Structure Given by a Finite Number of Parameters

    Delay Guillaume, Ervedoza Sylvain, Fournié Michel, Haine Ghislain

    DOI: 10.1007/978-3-030-55594-8_19

    Delay Guillaume, Ervedoza Sylvain, Fournié Michel, Haine Ghislain (2021) Numerical Simulation on a Fixed Mesh for the Feedback Stabilization of a Fluid–Structure Interaction System with a Structure Given by a Finite Number of Parameters. In: Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications. Notes on Numerical Fluid Mechanics and Multidisciplinary Design; 147:195–211. Springer, Cham. Santorini, Greece.

PhD advisor


  1. Antoine Bendimerad-Hohl: Discrétisation structurée de systèmes Hamiltoniens à ports d’interaction implicites. Supervised with Laurent Lefèvre and Denis Matignon. Started in October 2022, defense on November, the 5th.
  2. Anass Serhani: Systèmes couplés d’EDPs, vus comme des systèmes Hamiltoniens à ports avec dissipation : Analyse théorique et simulation numérique. Supervised with Denis Matignon. Started in October 2017, defense on September 2020, the 28th.
  3. Guillaume Delay: Étude d’un problème d’interaction fluide-structure : modélisation, analyse, stabilisation et simulations numériques. Supervised with Sylvain Ervedoza and Michel Fournié. Started in November 2015, defense on August 2018, the 31st.

Service and leadership